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 Unexpected adverse toxicity fi ndings in drug development or postlaunch have resulted in 
numerous costly late-stage drug development failures and market withdrawals. To mitigate 
this risk, the pharmaceutical industry has adopted a range of assays to probe the liability of 
compounds earlier in the drug development process consistent with the mantra “fail faster, 
fail cheaper”. In the drug discovery process, lead optimization is the ideal phase to screen 
for safety issues, since at this point failure is relatively cheap and the number of potential 
compounds for selection (~1000) is greatest. The currently available standard testing mod-
els include primary tissue and immortalized cell lines. While immortalized cell lines lend 
themselves to screening applications (e.g. relatively inexpensive, abundant, easy to handle), 
the assay end point can be overly simplistic, leading to false positives (i.e. compounds 
fl agged as toxic which are in fact safe) and false negatives (i.e. compounds misidentifi ed as 
safe when actually toxic). Primary tissue (typically rodent) is often useful for small investiga-
tive studies but is not applicable for screening applications, due to both cost and ethical 
concerns with regard to animal consumption (3Rs). Concerns also persist with the transla-
tion of this data to humans due to possible species differences. Consequently, there is 
increasing demand for more relevant and predictive nonclinical models for in vitro toxicity 
testing (see Chap.   1    , Gintant and Braam). 

 Since the fi rst descriptions of the differentiation of cardiomyocytes from human embry-
onic stem cells (hESC) more than a decade ago, there has been much speculation over the 
utility of these cells for drug safety assessment [1]. Human ESC and human-induced plu-
ripotent stem cell-derived (hiPSC) models, together termed human stem cell-derived (hSC) 
models, offer an opportunity to provide a more predictive, integrated human model system 
that is amenable to high-throughput screening in preclinical drug safety assessment. The 
relative immaturity of these stem cell-derived models is well documented (e.g. [2]), which 
has led some to question the applicability of hSC-derived models in toxicological studies 
(i.e. “they are not old enough for drugs”). 

 Although methods to produce hSC-derived models with more “adultlike” phenotypes 
are currently the focus of intensive research efforts, there is considerable data in the literature 
to suggest a role for the current iteration of this technology. Accordingly, the potential appli-
cation of hSC-cardiomyocytes (hSC-CMs) in advancing the development of more predictive 
preclinical cardiac safety assessment is now the subject of extended testing in the regulatory 
communities. This includes proposals such as the Japan iPS Cardiac Safety Assessment 
(JiCSA) consortium with the objective to validate hiPSC-CM assay for regulatory purposes 
and HESI’s Comprehensive in vitro Proarrhythmia Assay (CiPA) which aims to obviate the 
need for clinical QT studies. The core components of CiPA will include a mathematical (i.e. 
in silico) model of cardiac muscle electrical activity based on in vitro ion channel data to 
predict whether new drugs will cause dangerous changes to heart rhythm (i.e. proarrhyth-
mia). A complementary in vitro hSC-CM assay will be integrated into this process with the 
aim of confi rming or casting doubt on the in silico predictions and to broaden the cardiac 
safety assessment of the candidate drug to include additional  proarrhythmic mechanisms not 
discoverable by the in silico analysis. This is a very promising development for the acceptance 
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of hSC-derived models in drug discovery and toxicology, and with increased characteriza-
tion of these hSC-derived models and validation of their associated assays, they will surely 
grow in prominence. 

 The majority of this book is focused on differentiated tissues, but we begin the protocol 
chapters with a high-throughput screen designed to predict embryonic-foetal developmen-
tal toxicity using hESCs (Chap.   2    , Kameoka and Chiao). One of the fi rst applications of 
pluripotent stem cells in toxicology was the mouse embryonic stem cell test (mEST), which 
has been deemed of suffi cient value for consideration in regulatory acceptance and submis-
sion documents. Here, Kameoka and Chiao describe an improved human embryonic stem 
cell test (hEST) thus avoiding the extrapolation of responses from animals to humans. 

 Over half of the chapters in this volume are focused on cardiotoxicity applications. The 
underlying reason for this bias towards hSC-CM assays is severalfold. Firstly, the cardio-
myocyte differentiation process was one of the fi rst to be characterized (hESC-CMs in 
2003 and hiPSC-CMs in 2009) and can now be employed to manufacture these cells on an 
industrial scale suitable for screening applications. Secondly, a human primary model is not 
readily available (e.g. unlike for hSC-hepatocytes), so there is a large unmet need from the 
cardiotoxic fi eld. Thirdly, the hSC-CM model has been demonstrated to add value over and 
above existing model systems (e.g. the antihistamine, terfenadine, produces the expected 
prolongation of the cardiac action potential in hSC-CMs at clinical relevant concentrations, 
unlike the false-negative result observed in both canine and porcine Purkinje fi bres even at 
supra-therapeutic concentrations). Finally, cardiotoxicity is one of the most prevalent forms 
of drug-induced toxicity. Although the recent regulatory guidelines have been successful in 
reducing the release of proarrhythmic drugs coming to market, there is a general consensus 
that the extensive focus on a single ion channel (hERG K +  channel) has resulted in an overly 
high attrition rate (false positives) in drug development, prematurely halting the develop-
ment of otherwise promising candidate drugs. CiPA proposes that safety studies using 
multiple ion channel effects (MICE) models, such as hSC-CMs, are likely to be more pre-
dictive of clinical drug response where compensatory drug actions on one or more other 
ion channels mitigate the effects due to hERG blockade. 

 Manual patch-clamp remains the “gold-standard” for probing drug-induced cardiac 
ion channel effects (see Chap.   3    , Renganathan et al.), and an automated method for increas-
ing assay throughput is also described here (Chap.   4    , Obergrussberger et al.). However, 
manual patch-clamp is very labour intensive, and the diffi culties translating automated 
patch-clamp protocols to hSC-derived models have resulted in the CiPA initiative focusing 
on analogous emerging electrophysiology-based technologies, namely, multi-electrode 
array (MEA; see Chap.   5    , Millard et al., and Chap.   10     Obergrussberger et al.) and voltage- 
sensitive optical probes (i.e. genetically encoded voltage indicators, GEVIs (see Chap.   6    , 
Dempsey et al.), and voltage-sensitive dyes, VSDs (see Chap.   7    , Kettenhofen)). These tech-
niques present their own strengths and limitations as discussed in the relevant chapters. 

 Not all cardiotoxicity can be observed by changes in hSC-CM excitability with the 
aforementioned electrophysiology-based assays. Full and effi cient assessment of new drug 
development liabilities must take a holistic account of both the structural and functional 
aspects of cell biology. The relative complexity of stem cell-derived models makes them 
applicable to surveying a wide range of mechanisms whereby a new chemical entity may 
perturb cell function. Accordingly, this has sparked the development of a diverse range of 
innovative analytical platforms with the potential to probe previously inaccessible features 
of cell function (Fig.  1 ). 

 Cardiomyocyte excitability (i.e. an action potential) initiates calcium release into the 
cell and is subsequently removed from the cytoplasm prior to the next contraction event. 
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Compound-induced effects on these calcium transients can be measured with high- 
throughput calcium imaging platforms as either the mean response of the hSC-CM mono-
layer (see Chap.   7    , Kettenhofen) or with single-cell resolution (see Chap.   8    , Pfeiffer et al., 
and Chap.   9    , George et al.). In turn, this calcium signal is converted into the mechanical 
contraction of the cardiomyocyte. The physical movement of a layer of beating cardiomyo-
cytes can be continuously monitored with the impedance assay (see Chap.   10    , 
Obergrussberger et al.) or image-based edge detection of a beating spheroid (see Chap.   11    , 
Zuppinger et al.). Measuring this downstream hSC-CM movement can be advantageous 
since compounds can perturb the cell’s contractile machinery, without impacting its elec-
trophysiology, e.g. the myosin II inhibitor blebbistatin. These platforms, however, do not 
measure the direct force of contraction, which would be advantageous when screening for 
unwanted compound-induced changes to the strength of cardiac contractility (i.e. inotro-
pic effects). This requirement is addressed in Chap.   12     (Oleaga et al.), where a novel micro-
cantilever-based device is employed to detect perturbations in the force of hSC-CM 
contractions. 

 In addition to altering the acute mechanical function of the heart (functional toxicity), 
cardiotoxicity can also occur due to morphological damage to cardiomyocytes, damage to 
intracellular organelles, or loss of cardiomyocyte viability (structural toxicity), resulting in 
cardiomyopathy and heart failure. Methods for screening for compound-induced changes 
to cell morphology are described in Chap.   13     (Roquemore et al., high-content image anal-
ysis, HCA) and Chap.   14     (Kriston-Vizi et al., hypertrophy). 

  Fig. 1    One cell to bind them all: bridging analytical platforms. As well as providing a more relevant nonclinical 
model for in vitro toxicity testing, hSC-derived models have the potential to bridge analytical platforms and in 
doing so provide an integrated model for probing many possible causes and mechanisms of toxicity. The 
example of hSC-cardiomyocytes ( centre ) and some of the possible associated assays are illustrated here       
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 Human SC-neurons similarly offer a novel method of screening for neurotoxins. The 
MEA assay can be employed to predict neurotoxic risk associated with drugs or compounds 
present in the environment by monitoring subtle perturbations to the spontaneous fi ring 
patterns of hSC-neuronal cultures (e.g. insecticides; see Chap.   15    , Kraushaar et al.). 

 Hepatotoxicity is a major cause of drug attrition, and consequently, in vitro liver-based 
assays are an integral part of preclinical safety assessments. Primary human hepatocytes are 
currently the model of choice but are limited by donor-to-donor variability and the short 
period of time they are functional in culture (i.e. they are unsuitable for assessing the effects 
of prolonged compound exposure). Human SC-hepatocytes could potentially address these 
concerns, but their implementation in toxicity assays has been hindered largely due to dif-
fi culties in obtaining a mature metabolic phenotype. The expression of CYP3A4, the most 
abundant cytochrome P450 in the liver, is expressed at lower levels in hSC-hepatocytes 
compared with primary human hepatocytes. This is of concern since CYP450-dependent 
formation of toxic metabolites is a cause of drug-induced liver injury. That said, promising 
hSC-hepatocyte data has emerged from methods attempting to replicate the cellular micro-
structure of the liver (see Chap.   16    , Ware and Khetani). 

 With the fi rst commercially available hSC-derived models, there was an initial drive to 
produce >95% “pure” cell models. The rationale behind this approach was that it would be 
preferable if drug-induced effects observed in biochemical assays could be assigned to a 
single-cell type. However, recent fi ndings suggest that the presence of stromal (e.g. fi bro-
blast) cells in the culture of interest adds functionality and ultimately increases predictivity. 
The precise mixing of different highly pure cell types with stromal cells now allows the end 
user to titre the performance of the model to achieve the desired functionality (see Chap.   11    , 
Zuppinger, for hSC-CMs; and Chap.   16    , Ware and Khetani, for hSC- hepatocytes). The 
advent of technologies that facilitate self-assembling 3D spheroids and self-ordering pat-
terns of cells in 2D culture has helped limit the inevitable increase in assay set-up time and 
cost associated with the added complexity of these co-culture models. 

 For the fi rst time, this volume brings together a diverse collection of stem cell-derived 
model-based toxicity assays, from those routinely used to those deemed to have considerable 
potential. Key opinion leaders from academia and industry have been invited to contribute 
their preferred assay protocols with accompanying rationale and example output data. Our 
goal is to enable adoption of these protocols in laboratories that are interested in entering the 
fi eld as well as to facilitate the transfer of best practices between laboratories that are already 
actively pursuing these technologies. The use of stem cell-derived models in safety pharmacol-
ogy and toxicology is in their infancy, but their potential for improving risk assessment will 
inevitably drive the development of even more innovative methods to probe toxicity.

Atlanta, GA, USA Mike Clements
Cardiff, UK Liz Roquemore
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    Chapter 1   

 Stem Cell‐Derived Models for Safety and Toxicity 
Assessments: Present and Future Studies 
in the “Proclinical Space”                     

     Gary     Gintant      and     Stefan     Braam      

  Abstract 

   The promise of human, stem cell-derived models for safety and toxicity assessments remains great. Using 
such preparations it should be possible to provide preclinical assessments of drug effects with human-
derived cells and engineered tissues, creating a new “proclinical” paradigm to study human responses 
without administering drugs to human volunteers or patients. Along with this promise come challenges 
related to more fully characterizing, standardizing, and understanding these novel preparations, develop-
ing the experimental platforms necessary for effi cient and reproducible studies, and validation studies 
demonstrating overall utility of various models. This chapter describes some issues encountered with the 
development of human-induced stem cell-derived cardiomyocytes for safety and toxicity studies with 
evolving drug candidates, along with a discussion of the role of future proclinical studies as part of an 
integrated package of more traditional safety and toxicology assessments.  

  Key words     Preclinical studies  ,   Translational  ,   Stem cell-derived cardiomyocytes  ,   Proclinical studies  , 
  CiPA  ,   Phenotypic assays  ,   Drug screening  

1      The Promise of Human-Induced Pluripotent  Stem Cell-derived Cardiomyocytes   

 Over the past two decades, two seminal scientifi c breakthroughs, 
namely, (1) the fi rst report of long-term culture of human  embry-
onic  stem cells by Jamie Thomson [ 1 ] and (2) the discovery of 
human- induced  pluripotent stem cell-derived cells (iPSCs) by 
Shinya Yamanaka [ 2 ], led to the birth of a completely new fi eld of 
 translational   science focused on the derivation of personalized fully 
functional human cells (both healthy and diseased) of many differ-
ent organs. Many major technical advances followed quickly. In 
particular, major improvements have been made in the process of 
deriving these cells in culture and the development of reproducible 
differentiation strategies to produce functional cells like  cardiomy-
ocytes  , neurons, and  hepatocytes   in numbers and purities amena-
ble for functional assays. These advances sparked interest in the 
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development of novel preclinical in vitro testing strategies (to 
 evaluate drug safety and effi cacy) as well as the development of 
novel cellular therapies for human diseases. 

 The functional cell types derived from “healthy” (representing 
non-diseased states) iPSCs in combination with novel assay strate-
gies have now found their way to the safety/ADME/toxicology 
departments of biopharmaceutical companies and CROs where 
they are being used to study effects of evolving drugs in human 
cellular models in the preclinical R&D space. Besides being useful 
for the generation of healthy cells, this technology is very amend-
able to the generation of  “disease-in-a-dish” models  .  Congenital 
diseases   are at the forefront of these applications, in part because 
existing genome-wide association datasets for many diseases enable 
functional assessment in experimental in vitro human models. 
Furthermore, rapid advances in  genome engineering   now allow 
the construction of isogenic control cell lines which increase confi -
dence that observed cellular phenotypes are directly correlated to 
the genetic variant of interest. In particular, in the case of  cell 
autonomous diseases   like cardiac arrhythmias, this technology is 
exceptionally well placed to study molecular mechanisms that drive 
disease progression and putative targets for reversal of disease 
symptoms. It has been demonstrated in many articles that  arrhyth-
mic phenotypes   can be observed in human-induced pluripotent 
stem cell-derived cardiomyocytes (hiPSC-CMs) derived from LQT 
patients [ 3 ], a concept inconceivable a decade ago. In conclusion 
rapid advances in iPSC biology have resulted in novel in vitro mod-
els that are already impacting today’s drug discovery process. 

 Most chapters in this book describe platforms and method-
ological approaches used or being developed for in vitro stem cell 
human-derived cellular models. It is important to not only under-
stand the strengths and limitations of these various methodological 
approaches but also to understand the strengths and limitations of 
the preparations themselves. Both components (preparations and 
methodological approaches) will defi ne the utility, best applica-
tions, and adoption of the models. This chapter will discuss some 
general principles and concepts regarding the use and translation 
of phenotypic models employing stem cell-derived preparations for 
drug discovery and safety, as well as considerations regarding the 
infl uence (and promise) of evolving stem cell-derived therapies. 
While the focus in this chapter may be on cardiomyocytes, compa-
rable issues are applicable with  neuronal and hepatocyte models  , 
two areas of intense interest. Finally, while the perspectives and 
opinions in this chapter are centered primarily on the use of human- 
derived models for evaluating drug safety and toxicity, these con-
cepts are also applicable to the use of these preparations as disease 
models in drug discovery.  

Gary Gintant and Stefan Braam



3

2    Understanding The Preparations 

 For decades,  biomedical and pharmaceutical researchers   have used 
model systems to study human biology, development, disease, and 
drug therapy. In particular, model organisms are widely used to 
investigate treatments and potential causes of human disease when 
experiments directly on humans are not feasible or are unsafe and 
therefore unethical. Examples of commonly used laboratory model 
systems include the  fruit fl y     Drosophila melanogaster   , the  zebrafi sh   
  Danio rerio   , the  rat     Rattus norvegicus   , and the  mouse     Mus muscu-
lus   . Largely because of the ability to perform reverse genetics, the 
mouse has evolved as the favorite model to study human genes and 
disease processes [ 4 ]. Although all of these model organisms have 
their own specifi c advantages and disadvantages, they have one 
major disadvantage in common, namely, they are not human and 
thus may not possess systems similar to humans. Care must always 
be taken when extrapolating from any model system to humans.  

3    The iPSC-Derived Cardiomyocyte Model 

 Ideally, human iPSC model systems overcome this major “ transla-
tional”   issue and fulfi ll the main criteria of an experimental system: 
simple, idealized, readily accessible, and easily manipulated [ 5 ]. 
With experimental animal models, it is clearly more challenging to 
study mechanisms that may involve multiple cellular systems and 
multiple organs, where multiple interactions modulate and defi ne 
the cellular phenotype through autocrine,  paracrine  , and  endo-
crine/exocrine factors  , as well as physical/mechanical characteris-
tics of the microenvironment and mechanotransduction (see 
section on Maturation, below). However, processes “at the cellular 
level” like transcriptional regulation, proliferation, differentiation, 
cell migration, and specifi c cellular functions (e.g., electrophysiol-
ogy and contractility) are very well suited to being studied in 
human-derived in  vitro cellular models   [ 6 – 8 ]. 

 Despite higher-level similarities, it remains crucial to recognize 
cellular differences between acutely isolated primary cells and stem 
cell-derived cardiomyocytes used in in vitro models. For studies 
involving ex vivo-derived cells and tissues, nature provides the nec-
essary quality control standards, as the preparations were properly 
functioning in (presumably) a healthy integrated animal. Consider 
adult rat papillary muscles as an example. Given identical experi-
mental protocols and reagents, studies conducted with adult rat 
papillary muscles harvested from a particular strain of healthy rats 
today would be expected to provide the same experimental result 
as those generated some 50 years ago. Assuming standardized (and 

Stem Cell‐Derived Models for Safety and Toxicity Assessments…
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