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Preface

Since the publication of Computational Toxicology: Risk Assessment for
Pharmaceutical and Environmental Chemicals in 2007 a lot has happened
both in the career of the editor and in science in general. For one, my focus
has expanded towards many computational applications to drug discov-
ery rather than solely focused on ADME/Tox. I have also garnered new
collaborators some of whom have very graciously agreed to contribute to
this volume. Science is changing. Publishing may be adjusting slowly too.
This book will likely be read as much on mobile devices or computers as in
physical hard copies. Computational toxicology has also evolved in the past
decade with the dramatic increase in public data availability. There have also
been a number of more collaborative projects in Europe around toxicology
(e.g. e-Tox and OpenTox), in addition we have seen a growth in open compu-
tational tools and model sharing (QSAR toolbox, Chembench, CDD, Bioclipse
etc.). Groups like the EPA have developed and expanded ToxCast which
represents a valuable resource for toxicology modeling. We are now therefore
in the age of truly Big Data compared with a decade ago and there have been
several efforts to combine different types of data for toxicology. To round this
off, the growth in nanotechnology has seen the emergence of computational
nanotoxicology which would not have been predicted my earlier book.

This book is therefore aimed at this next generation of computational toxicol-
ogy scientist, comprehensively discussing the state-of-the-art of currently avail-
able molecular-modelling tools and the role of these in testing strategies for
different types of toxicity. The overall role of these computational approaches
in addressing environmental and occupational toxicity is also covered. These
chapters before you aim to describe topics in an accessible manner especially
for those who are not experts in the field. My goal with this book was to not
cover too much of the same ground as the earlier book because much of what
we published then is still generally valid, but to make the book focused on newer
topics. I hope this book also serves to introduce some of the younger scientists
from around the world who will likely drive this next generation of compu-
tational toxicology for many years to come. Finally, I hope this book inspires
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xxii Preface

scientists to pursue computational toxicology so that it continues to expand
across different industries from pharmaceutical to consumer products and its
importance increases, as it has over the past decade.

Sean Ekins
Fuquay Varina, NC, USANovember 12, 2017
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CHAPTER MENU

Introduction, 3
Bayesian Models, 5
Deep Learning Models, 13
Comparison of Different Machine Learning Methods, 16
Future Work, 21

1.1 Introduction

Computational approaches have in recent years played an increasingly
important role in the drug discovery process within large pharmaceutical
firms. Virtual screening of compounds using ligand-based and structure-based
methods to predict potency enables more efficient utilization of high through-
put screening (HTS) resources, by enriching the set of compounds physically
screened with those more likely to yield hits [1–4]. Computation of absorp-
tion, distribution, metabolism, excretion, and toxicity (ADME/Tox) properties
exploiting statistical techniques greatly reduces the number of expensive assays
that must be performed, now making it practical to consider these factors
very early in the discovery process to minimize late-stage failures of potent
lead compounds that are not drug-like [5–11]. Large pharma have successfully

Computational Toxicology: Risk Assessment for Chemicals, First Edition. Edited by Sean Ekins.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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integrated these in silico methods into operational practice, validated them,
and then realized their benefits, because these firms have (i) expensive
commercial software to build models, (ii) large, diverse proprietary datasets
based on consistent experimental protocols to train and test the models, and
(iii) staff with extensive computational and medicinal chemistry expertise to
run the models and interpret the results. Drug discovery efforts centered in
universities, foundations, government laboratories, and small biotechnology
companies, however, generally lack these three critical resources and, as a
result, have yet to exploit the full benefits of in silico methods. For close
to a decade, we have aimed to used machine learning approaches and have
evaluated how we could circumvent these limitations so that others can benefit
from current and emerging best industry practices.

The current practice in pharma is to integrate in silico predictions into a
combined workflow together with in vitro assays to find “hits” that can then
be reconfirmed and optimized [12]. The incremental cost of a virtual screen
is minimal, and the savings compared with a physical screen are magnified if
the compound would also need to be synthesized rather than purchased from
a vendor. Imagine if the blind hit rate against some library is 1%, and the in sil-
ico model can pre-filter the library to give an experimental hit rate of 2%, then
significant resources are freed up to focus on other promising regions of chem-
ical property space [13]. Our past pharmaceuticals collaborations [14, 15] have
suggested that computational approaches are critical to making drug discovery
more efficient.

The relatively high cost of in vivo and in vitro screening of ADME and toxicity
properties of molecules has motivated our efforts to develop in silico methods
to filter and select a subset of compounds for testing. By relying on very large,
internally consistent datasets, large pharma has succeeded in developing
highly predictive proprietary models [5–8]. At Pfizer (and probably other
companies), for example, many of these models (e.g., those that predict the
volume of distribution, aqueous kinetic solubility, acid dissociation constant,
and distribution coefficient) [5–8, 16] are believed (according to discussions
with scientists) to be so accurate that they have essentially put experimental
assays out of business. In most other cases, large pharma perform experimental
assays for a small fraction of compounds of interest to augment or validate
their computational models. Efforts by smaller pharma and academia have
not been as successful, largely because they have, by necessity, drawn upon
much smaller datasets and, in a few cases, tried to combine them [11, 17–22].
However, this is changing rapidly, and public datasets in PubChem, ChEMBL,
Collaborative Drug Discovery (CDD) and elsewhere are becoming available for
ADME/Tox properties. For example, the CDD public database has >100 public
datasets that can be used to generate community-based models, including
extensive neglected infectious disease structure–activity relationship (SAR)
datasets (malaria, tuberculosis, Chagas disease, etc.), and ADMEdata.com
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datasets that are broadly applicable to many projects. Recent efforts with
them have led to a platform that enables drug discovery projects to benefit
from open source machine learning algorithms and descriptors in a secure
environment, which allows models to be shared with collaborators or made
accessible to the community.

In the area of pharmaceutical research and development and specifically that
of cheminformatics, there are many machine learning methods, such as sup-
port vector machines (SVM), k-nearest neighbors, naïve Bayesian, and deci-
sion trees, [23] which have seen increasing use as our datasets, have grown to
become “big data” [24–27]. These methods [23] can be used for binary classifi-
cation, multiple classes, or continuous data. In more recent years, the biological
data amassed from HTS and high content screens has called for different tools
to be used that can account for some of the issues with this bigger data [26].
Many of these resulting machine learning models can also be implemented on
a mobile phone [28, 29].

1.2 Bayesian Models

Our machine learning experience over a decade [14, 30–46] has focused on
Bayesian approaches (Figure 1.1). Bayesian models classify data as active or
inactive on the basis of user-defined thresholds using a simple probabilistic
classification model based on Bayes’ theorem. We initially used the Bayesian
modeling software within the Pipeline Pilot and Discovery Studio (BIOVIA)
with many ADME/Tox and drug discovery datasets. Most of these models
have used molecular function class fingerprints of maximum diameter 6 and
several other simple descriptors [47, 48]. The models were internally validated
through the generation of receiver operator characteristic (ROC) plots. We
have also compared single- and dual-event Bayesian models utilizing pub-
lished screening data [49, 50]. As an example, the single-event models use only
whole-cell antitubercular activity, either at a single compound concentration
or as a dose–response IC50 or IC90 (amount of compound inhibiting 50% or
90% of growth, respectively), while the dual-event models also use a selectivity
index (SI=CC50/IC90, where CC50 is the compound concentration that is
cytotoxic and inhibits 50% of the growth of Vero cells). While single-event
models [13, 51, 52] are widely published, dual-event models [53] attempt
to predict active compounds with acceptable relative activity against the
pathogen (in this case, Mtb), versus the model mammalian cell line (e.g., Vero
cells). Our models identified 4–10 times more active compounds than random
screening did and the models also had relatively high hit rates, for example,
14% [54], 71% (Figure 1.1) [53], or intermediate [55] for Mtb. Recent machine
learning work on Chagas disease has identified in vivo active compounds
[56], one of which is an approved antimalarial in Europe. Most recently, we
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