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Introduction
Ramesh C. Gupta

INTRODUCTION

According to the Merriam Webster Dictionary, the term 
“nutraceutical” is defined as “a foodstuff (as a fortified 
food or dietary supplement) that provides health ben-
efits in addition to its basic nutritional value.” In 1989, 
Dr. Stephen DeFelice coined the term “nutraceutical” from 
the words nutrition and pharmaceutical and defined it as 
“a food (or part of a food) that provides medical or health 
benefits, including the prevention and/or treatment of a 
disease.” The dietary supplement industry defines nutra-
ceutical as “any nontoxic food component that has scien-
tifically proven health benefits, including treatment and 
prevention.” According to the North American Veterinary 
Nutraceutical Council, Inc., a veterinary nutraceutical is 
defined as “a substance which is produced in a purified 
or extracted form and administered orally to patients to 
provide agents required for normal body structure and 
function and administered with the intent of improving 
the health and well-being of animals.” Based on the defi-
nitions for nutraceuticals proposed or discussed here, 
a more appropriate definition would be the following: 
a substance that is cultivated/produced/extracted or 
synthesized under optimal and reproducible conditions 
and, when administered orally to patients, would pro-
vide the nutrient(s) required for bringing altered body 
structure and function back to normal, thus improving 
the health and well-being of the patients. Therefore, 
nutraceuticals fall somewhere between food nutrients 
and drugs. Nutraceuticals, because they may comprise 
more than a single food or plant component(s) that may 
be a contributing active ingredient, have the advantage 
over foods and drugs because they are not required to 
be listed in the nutrient profiles. Additionally, regulation 
of nutraceuticals varies widely around the world. For 
example, China allows nutraceutical claims to treat and 
prevent diseases with a formal approval from that coun-
try’s regulatory body, whereas the United States does not 
allow any health claims for nutraceuticals because there 
is no formal review and approval process for the market-
ing authorization of nutraceuticals. The only major US 
regulation related to nutraceuticals is the 1994 passage 
of the Dietary Supplement Health and Education Act 
by the US Congress. Based on this act, dietary supple-
ments are classified as foods, not drugs, allowing them 
to be sold without proof of safety and effectiveness (FDA, 

1994). It has been estimated that more than 150 million 
Americans consume either a single or multiple dietary 
supplements, yet it is not necessary for companies to seek 
FDA approval before marketing and manufacturing these 
supplements in compliance with the Dietary Supplement 
Health and Education Act of 1994. Nutraceuticals can be 
food or a part of food; however, unlike foods, they are 
not generally recognized as safe, nor can one assume that 
all nutraceuticals are safe.

By the turn of the twenty-first century, the use of 
nutraceuticals became increasingly popular around the 
world. Currently, the nutraceutical industry earns more 
than a $200 billion per year. Most herbal supplements are 
classified as dietary supplements and are not subject to 
the regulations and safety standards applied to conven-
tional medicine in the United States. Current European 
Union regulations require evidence that herbal medici-
nal products meet acceptable standards of quality, safety, 
and efficacy before a product license can be issued. As 
the global use of dietary supplements has increased, 
so have health risks emerging from active and inac-
tive components and potential contaminants of dietary 
supplements, as well as likely interactions with other 
medications and/or dietary supplements. Consultations 
with physicians and pharmacists are essential for patient 
safety because of the potential for side effects and toxic-
ity that may be associated with some nutraceuticals. An 
updated understanding of currently available scientific 
information for nutraceuticals and their potential side 
effects is therefore crucial in well-informed patient care.

Compared to pure synthetic pharmaceuticals, phar-
macological and toxicological evaluation of phytochemi-
cals is complex due to: (i) multiple phytochemicals that 
can be found in a single plant; (ii) variability in plants 
and their phytochemical constituents due to geography, 
soil characteristics, and climate; (iii) use of fertilizers and 
pesticides; (iv) stress; and (v) diurnal variation during 
harvesting. Also, unlike pharmaceuticals, there is a need 
for more than one active component in many cases as 
well as need for extraction procedures (standardized, nor-
malized, or quantified extract preparation) of the active 
component(s). Some or all of these factors can influence 
identity, purity, quality, quantity, composition, potency/
strength, and safety of active component(s), thereby 
causing a wide variability in product effectiveness from 
batch to batch and from one company to another.
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Medicinal plant extracts and phytochemicals have 
been used since the ancient practices of holistic healing 
in Chinese, Indian (Ayurveda, Homeopathic, Siddha, or 
Unani), Middle Eastern, Russian, and many other cul-
tural and traditional systems of medicine for prevention 
and treatment of various acute and chronic ailments. 
Thousands of these ancient medicines/products have 
been documented in Chinese, Indian, Japanese, European, 
and US herbal pharmacopoeias. Phytochemicals and 
plant-derived components have been the armamentar-
ium of major health care since ancient human civili-
zation. Even today, approximately 80% of the world’s 
populations living in developing countries rely on tra-
ditional medicine for their primary health care. In every 
traditional system of medicine, nutraceuticals play an 
important role because they are considered effective in 
the prevention and treatment of diseases with a wide 
margin of safety and cost-effectiveness compared to 
modern synthetic drugs (Nasri et al., 2014).

By having antioxidant, anti-inflammatory, immuno-
modulatory, adaptogenic, anticancer, and several other 
health benefits, nutraceuticals are used worldwide for 
the prevention and treatment of chronic diseases such 
as diabetes, arthritis, cardiovascular and respiratory 
disorders, neurodegenerative diseases, and cancer. 
Nutraceuticals are also used to improve general health 
and delay the aging process by supporting the structure 
and function of the body, thus contributing to an increase 
in life expectancy. While some nutraceuticals (e.g., antho-
cyanins, caffeine, curcumin, fenugreek, ginseng, mela-
tonin, quercetin, and resveratrol) have been extensively 
studied for their mode of action, efficacy, and safety via 
well-characterized animal studies and human clinical 
trials, many others are still used on an anecdotal basis.

Currently, the rapidly growing nutraceutical industry 
is facing many challenges such as: (i) lack of authentic-
ity of active principle due to unavailability of reference 
materials or marker compounds; (ii) lack of understand-
ing of molecular interactions between bioactive phyto-
chemicals within the same plant; (iii) variability in origin 
of raw material (e.g., Chinese vs American ginseng); 
(iv) variability in processing raw material; (v) lack of 
standardization of extraction processes; (vi) inadequacy 
and inconsistency in quality control standards; (vii) 
lack of good safety and toxicity data; and (viii) lack 
of well-established and evidence-based clinical trials. 
In addition, adulteration of nutraceuticals with other 
phytochemicals such as pyrrolizidine alkaloids, metals 
(arsenic, lead, and cadmium), mycotoxins (aflatoxins, 
ochratoxins, etc.), pesticides (insecticides, herbicides, 
fungicides, etc.), pharmaceutical drugs, and drugs of 
abuse due to lack of state and international regulations 
can contribute to severe adverse effects.

Recently, herb–drug interactions are of the utmost 
concern to consumers and governmental regulatory 

agencies. Although the underlying mechanisms for the 
altered drug effects by concomitant herbal medicines 
have yet to be determined, both pharmacokinetic and 
pharmacodynamic mechanisms have been considered to 
play a role in these interactions (Hu et al., 2005). Often, 
patients do not inform their physicians about concurrent 
use of nutraceuticals. This has resulted in incidences of 
herb–drug interactions, ranging from minor side effects 
to those as severe as liver or kidney failure or even death 
(Kupiec and Vishnu, 2005). To address these challenges, 
systematic studies using integrative approaches, includ-
ing in vitro and in vivo assays using animal models and 
human tissue/cell lines as well as human clinical trials, 
are warranted to better understand the bioavailability, 
metabolism, dose-responses, and pharmacological and 
toxicological actions. Additionally, scientists in the field 
of nutraceuticals need to develop sensitive and reliable 
biomarkers to validate toxicity and safety data (Gupta, 
2014). The partnership initiated between the US EPA, the 
FDA, and the National Institutes of Health to establish 
a framework for mechanism-based toxicological assess-
ment would be of great help in this direction. Above 
all, a thorough understanding and development of trust 
between the nutraceutical industry, regulatory agencies, 
health care provider, and patient is the ultimate need 
for productive and judicious use of nutraceuticals as a 
complimentary system of medicine.

Recently, Dr. Margaret Chan, Director-General at the 
World Health Organization (WHO), stated that tradi-
tional medicine holds great potential to improve peo-
ple’s health and wellness in every part of the world 
(Chan, 2014). She emphasized the need to integrate tra-
ditional medicine in existing health systems, to modern-
ize this rich resource and cultural heritage using systems 
biology and toxicology, “Omics,” bioinformatics, and 
other latest technologies, and to educate consumers 
about what it can and cannot do (Leshner, 2014). No 
matter the weight of historical, anecdotal data, the US 
Food and Drug Administration (FDA) or EFSA will not 
allow new therapeutics for human treatment without 
verifiable scientific evidence. Scientists in the field of 
nutraceuticals are applying the latest technologies in an 
attempt to standardize traditional treatments, especially 
through isolation, identification, and purification of bio-
active compounds and careful analysis of their levels 
and activities in various herbal remedies. Both the nutra-
ceutical industry and the FDA acknowledge that many 
new products have been introduced without any safety 
assessment.

To meet the challenges of the twenty-first century, the 
nutraceutical industry needs to follow rigorous quality 
control, pharmacological and toxicological testing, care-
fully designed clinical studies, reproducibility of results, 
safety assessment, and proper regulations applicable to 
all nutraceuticals. With regard to toxicological testing, 
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special attention needs to be given to some toxicities 
that are not detected by conventional nonclinical test-
ing, including evaluation of acute and chronic expo-
sure, genotoxicity, carcinogenicity, and reproductive and 
developmental toxicity and to close pharmacovigilance 
during early drug exposure to humans (Williamson et al., 
2015). In addition, the current toxicological testing para-
digm uses modern tools for predictive toxicology, molec-
ular biology, system biology, high-throughput screening 
methods, computational toxicology, and bioinformatics. 
Good agricultural and collection practices, good labora-
tory practices, good manufacturing practices, and good 
clinical practices can help assure both practitioners and 
patients that a nutraceutical is effective, safe, and of high 
quality, meeting international standards and its accep-
tance in a global market.

In view of these challenges, Nutraceuticals: Efficacy, 
Safety and Toxicity is prepared to meet the current needs 
of academia, industry, and regulatory agencies. The book 
explicitly describes the origin and historical background 
of common nutraceuticals, underlying pharmacological 
mechanisms of action at biochemical and molecular 
levels, models for toxicity and safety evaluation, clini-
cal applications, safety, toxicity, herb–drug interactions, 
and regulatory guidelines. There are 69 chapters that are 
logistically arranged in six sections. After a brief intro-
duction, a large section covers chapters on the applica-
tion of nutraceuticals in system diseases and disorders. 
Section II deals with various models and mechanisms 
involved in the evaluation of safety and toxicity of nutra-
ceuticals. More than 20 standalone chapters are devoted 
to common nutraceuticals in Section III. In Section IV, 
several chapters cover prebiotics, probiotics, and synbi-
otics. The last two sections of this book deal in detail with 
toxicity, herb–drug interactions, and regulatory aspects 

of nutraceuticals from various countries and continents. 
Thus, this is presented as the most comprehensive book 
to date on nutraceuticals.

The editor remains grateful to the contributors of this 
book for their hard work and dedication. These contrib-
utors are international authorities in the field of nutri-
tion, pharmacology, toxicology, molecular biology, and 
nutraceuticals research. The editor expresses his grati-
tude to Ms. Denise Gupta for indexing, and Ms. Robin B. 
Doss and Ms. Michelle A. Lasher for their valuable time 
checking text and references. The editor commends the 
tireless efforts of Ms. Molly McLaughlin for her multiple 
roles in the preparation of this book. Finally, the editor 
would like to thank Ms. Lucía Pérez in the Production 
Department, as well as Dr. Erin Hill-Parks and Ms. 
Kristine M. Jones from the Editorial Department.
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INTRODUCTION

In recent years, there has been increasing attention 
devoted to the possibility that several nutraceuticals 
may act as neuroprotective agents (Mecocci et al., 2014). 
Such protective effects have often been ascribed to a 
direct antioxidant effect and/or to an anti-inflammatory 
action (Kelsey et al., 2010). However, the exact mecha-
nisms of neuroprotection are still elusive, and various 
mechanisms have been proposed (Halliwell et al., 2005; 
Fraga et al., 2010).

Other chapters in this volume (e.g., Chapters 2 and 3)  
discuss in more detail the beneficial effects of several 
nutraceuticals in cognitive disorders and various neu-
rodegenerative diseases. This chapter focuses instead 
on potential mechanisms of neuroprotection at cellu-
lar, biochemical, and molecular levels (Kelsey et  al., 
2010; Mazzio et  al., 2011; Vauzour, 2012). Polyphenols 
(particularly quercetin) are discussed as model nutra-
ceuticals, although other molecules are mentioned and 
discussed to illustrate additional potential neuroprotec-
tive mechanisms.

POLYPHENOLS

Several thousand molecules with a polyphenol struc-
ture have been identified in plants, and several hun-
dred are found in edible plants. These compounds are 
often classified on the basis of their chemical structure, 
with flavonoids being one of the major classes (Manach 
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et  al., 2004; Del Rio et  al., 2013). Among flavonoids, 
several subclasses can be identified, such as flavonols 
(e.g., quercetin), flavones, anthocyanidins, and various 
others. Innumerable studies support the idea that diets 
rich in polyphenols and/or supplementation with spe-
cific compounds are endowed with health benefits. In 
particular, polyphenols have been shown to exert pro-
tective actions in several pathological conditions such 
as cardiovascular disease, metabolic disorders, obesity, 
diabetes, infections, and cancer, as well as neurotoxic/
neurodegenerative processes (Graf et al., 2005; Arts and 
Hollman, 2005; Scalbert et al., 2011; Vauzour, 2012; Del 
Rio et al., 2013; Bhullar and Rupasinghe, 2013).

Quercetin (Figure 1.1) is found in many common 
fruits and vegetables such as apples, berries, onions, 
and capers (USDA, 2003). Its estimated dietary intake 
ranges from 4 to 68 mg/day, but it can increase to 200–
500 mg/day in individuals who consume high quantities 
of fruits and vegetables rich in flavonols. Furthermore, 
quercetin is also sold as a dietary supplement, with a 
recommended dosage of 1 g/day (Harwood et al., 2007). 
The quercetin present in foods is not present as agly-
con (i.e., without sugar groups), but rather as quercetin 
glycosides, which, contrary to previous belief, can be 
efficiently absorbed. Studies using rats and pigs have 
shown that quercetin distributes to several tissues,  
particularly lung, kidney, colon, and liver, and lower 
levels appear in the brain (DeBoer et  al., 2005). Total 
quercetin derived from the diet is normally present in 
plasma in the nanomolar range (<100 nM), but it can be 
increased in the micromolar range after supplementation 
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(Manach et al., 2005; Conquer et al., 1998). The half-life 
of quercetin ranges between 11 and 28 h, suggesting the 
possibility of significantly increasing plasma concentra-
tion on supplementation (Manach et  al., 2004, 2005). 
Quercetin has an unremarkable toxicological profile, 
as evidenced by animal and human studies (Harwood 
et  al., 2007; Russo et  al., 2012). Similar to other poly-
phenols, reported beneficial effects of quercetin include 
effects on cardiovascular diseases, cancer, infections, 
inflammatory processes, gastrointestinal tract, diabetes, 
and nervous system disorders (reviewed in Boots et al., 
2008; Kelly, 2011; Russo et al., 2012).

COUNTERACTING OXIDATIVE 
STRESS AS A MECHANISM OF 

NEUROPROTECTION

Oxidative stress is recognized as an important factor 
in a variety of neurodegenerative diseases, as a media-
tor of the adverse effects of a number of neurotoxicants, 
and as a mechanism for age-related degenerative pro-
cesses (Halliwell, 2006; Lin and Beal, 2006; Martin and 
Grotewiel, 2006; Popa-Wagner et  al., 2013). Oxidative 
stress occurs when reactive oxygen species (ROS) accu-
mulate in cells, either from excessive production or from 
insufficient neutralization, causing damage to proteins, 
lipids, and DNA. Mitochondria are a major contributor 
of cellular ROS; ROS produced in the mitochondria can 
also target the electron transport chain (e.g., complex I), 
resulting in a cycle generating more ROS, followed by 
ATP depletion and ultimately cell death (Ott et al., 2007; 
Kelsey et al., 2010). Based on these premises, the identi-
fication of novel compounds that can counteract oxida-
tive stress as potential therapeutics is a very active area 
of research (Linseman, 2009). Natural compounds have 
received much attention in this regard; among these, 
polyphenols have been most investigated (Dajas et  al., 
2003; Ossola et  al., 2009; Spencer, 2009; Kelsey et  al., 
2010). Evidence for neuroprotection has been provided 
by in vitro studies showing that various polyphenols 
protect neuronal cells from damage due to oxidative 
stress, and by in vivo animal studies that have shown 
their ability to protect neurons against oxidative insults. 

Furthermore, clinical and epidemiological studies have 
shown that polyphenols can improve deterioration of 
brain function due to aging or neurodegenerative dis-
eases (Kelsey et al., 2010; Vauzour, 2012).

Specific evidence exists regarding the neuroprotective 
effects of quercetin (Ossola et  al., 2009). In vitro stud-
ies of neuronal cell lines and of primary neurons have 
shown that quercetin antagonizes cell toxicity induced 
by various oxidants (e.g., hydrogen peroxide) and other 
neurotoxic molecules believed to act by inducing oxida-
tive stress (e.g., 6-hydroxydopamine and N-methyl-4-
phenyl-1,2,3,6-tetrahydropyridinium) (Dajas et al., 2003; 
Mercer et al., 2005; Vauzour et al., 2008; Arredondo et al., 
2010). Important issues for the potential use of querce-
tin in vivo are whether it passes the blood–brain barrier 
(BBB) and what concentrations of quercetin and/or its 
metabolites are present in brain tissue. In vitro studies 
with BBB models consistently indicate that quercetin 
enters the brain (Faria et al., 2010; Ishisaka et al., 2011; 
Schaffer and Halliwell, 2012). On administration of quer-
cetin in vivo to rats and pigs, low levels (from picomolar 
to nanomolar) were found in brain tissue (DeBoer et al., 
2005; Huebbe et al., 2010; Ishisaka et al., 2011). Of interest 
in this regard are the recent successful efforts to increase 
bioavailability of quercetin (Russo et al., 2012). In partic-
ular, the formulation of quercetin in lipid nanoparticles 
significantly increases its penetration in the brain (Das 
et  al., 2008; Dhavan et  al., 2011). Several studies show 
that quercetin can exert neuroprotection and antagonize 
oxidative stress when administered in vivo. For exam-
ple, oral quercetin (0.5–50 mg/kg) was shown to protect 
rodents from oxidative stress and neurotoxicity induced 
by various neurotoxic insults (Hu et al., 2008; Das et al., 
2008; Barcelos et al., 2011; Ishisaka et al., 2011; Bavithra 
et al., 2012; Denny Joseph and Muralidhara, 2013).

DIRECT ANTIOXIDANT  
ACTION OF QUERCETIN

Quercetin is a potent scavenger of ROS, such as O2
•−, 

and of RNS (reactive nitrogen species), such as NO and 
ONOO (Boots et  al., 2008). The antioxidative capacity 
of quercetin has been ascribed to the presence of two 
antioxidant pharmacophores within the molecule that 
have the optimal configuration for free radical scaveng-
ing, such as the catechol group in the B ring and the OH 
group at position 3 (Boots et al., 2008). Direct scavenging 
of ROS in vitro has been observed with quercetin con-
centrations ranging from 5 to 50 μM (Saw et  al., 2014). 
However, it has been pointed out that the concentration 
of quercetin expected to be present in the brain would 
likely be in the nanomolar range, which is not suffi-
cient to exert an appreciable direct antioxidant effect. 
In contrast, glutathione and vitamin C are present at 
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FIGURE 1.1 Structure of quercetin.
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millimolar concentrations (Schaffer and Halliwell, 2012). 
Thus, despite its potent antioxidant capacity in vitro, 
it is unlikely that neuroprotective effects of quercetin 
observed in vivo are due to direct antioxidant action. 
Rather, it has been suggested that quercetin and/or its 
metabolites, as well as other polyphenols, may exert 
their neuroprotective effects by modulating the antioxi-
dant defense mechanisms of the cell (Halliwell et  al., 
2005; Fraga et  al., 2010; Kay, 2010). In this regard, it 
has been suggested that the beneficial effects of poly-
phenols may be due to their “prooxidant,” rather than 
“antioxidant,” properties (Halliwell, 2008, 2012). A mild 
degree of oxidative stress may increase the cell’s own 
antioxidant defenses, resulting in overall cytoprotection. 
This important aspect of polyphenols’ biological activ-
ity is being discussed more in depth as it relates to the 
principle of hormesis.

POTENTIAL ROLE OF HORMESIS  
IN NEUROPROTECTION

Hormesis is generally defined as a dose-response 
phenomenon characterized by low-dose stimulation 
and high-dose inhibition, which may be graphically 
represented by a J-shaped or U-shaped dose response 
(Mattson, 2008). Such biphasic dose responses have been 
shown to occur broadly in the biomedical sciences, and 
are independent of biological model, end-point measure, 
and chemical class. Hormesis includes the phenomenon 
of preconditioning, whereby “exposure to a low dose of 
an agent that is toxic at high doses induces an adaptive, 
potentially beneficial effect on the cell or organism if 
exposed to a subsequent and more massive dose of the 
same or related stressor agent” (Calabrese et  al., 2007). 
As stated, quercetin may have “prooxidant,” rather than 
“antioxidant,” properties (Halliwell, 2008, 2012; Boots 
et  al., 2008). During its antioxidant activities, querce-
tin becomes oxidized into various oxidation products, 
including semiquinone radicals and quinones (Boots 
et al., 2008), which may mediate the toxicity of quercetin 
observed in certain conditions in what is referred to as 
the quercetin paradox (Boots et al., 2008; Halliwell, 2012).

Evidence is emerging to support hormetic roles for 
low increases in membrane oxidative stress (Calabrese 
et al., 2010). Lipid peroxidation generated during moder-
ate exercise has been shown to play an important role in 
hormetic effects on muscles (Sachdev and Davies, 2008). 
Similar considerations also apply to oxidative stress in 
mitochondria; although high levels of oxidative stress 
are unquestionably detrimental to mitochondria, low 
levels of ROS may actually have a protective, hormetic 
effect, hence the term “mito-hormesis” (Tapia, 2006; 
Calabrese et  al., 2010). There is limited evidence that 
neurons exposed to subtoxic levels of oxidants may be 

protected against a subsequent exposure to what would 
have otherwise been a lethal level of stress (Calabrese 
et al., 2007, 2010, 2012).

Some recent studies with the marine neurotoxin domoic 
acid (DomA) (Giordano et al., 2013a) provide additional 
support for this hypothesis. DomA is a potent human 
and animal neurotoxin that causes primarily apoptotic 
cell death of neurons as a consequence of activation of 
AMPA/kainate receptors (Giordano et al., 2007). DomA-
induced apoptosis involves oxidative stress, is inhibited 
by antioxidants, and is more pronounced in neurons 
from transgenic mice (Gclm−/− mice), which lack the 
modifier subunit of glutamate cysteine ligase (GCL) and 
have very low glutathione (GSH) levels (Giordano et al., 
2007). Prolonged exposure of mouse neurons to low, 
nontoxic levels of DomA (5 nM for 10 days) has been 
shown to protect cells from a subsequent insult of a 
high concentration of DomA itself and of other oxidants 
(Giordano et al., 2013a). The mechanism of such protec-
tion was related to the ability of chronic low DomA to 
increase the levels of the two subunits of GCL (GCLC 
and GCLM) and those of GCLholo, leading to increased 
GCL activity and GSH synthesis. Transcription of GCL 
subunits occurs through the sequence-specific binding 
of nuclear factor erythroid 2-related factor 2 (Nrf2) to 
antioxidant response elements (AREs) present in the 
promoters of these two genes (Moinova and Mulcahy, 
1999; Wild et al., 1999). The effect observed with DomA 
in wild-type CGNs resembles the phenomenon of pre-
conditioning, which is considered part of hormesis 
(Calabrese et al., 2007). Low levels of DomA may thus 
elicit a mild degree of oxidative stress, particularly in 
mitochondria (Giordano et al., 2007), which would lead 
to increased transcription of Gclc and Gclm, ultimately 
leading to increased GSH synthesis and neuroprotection.

MODULATION OF THE Nrf2-ARE 
PATHWAY AS A MECHANISM OF 

QUERCETIN NEUROPROTECTION

Nrf2 is a master regulator of cellular defense against 
oxidative stress (Figure 1.2). Under physiological condi-
tions, Nrf2 is sequestered in the cytoplasm by the protein 
Keap1 (Kelch-like ECH-associated protein 1) with Cullin 
3-base E3 ligase, by which Nrf2 protein is ubiquitinylated 
and targeted for proteasome degradation (Shih et al., 2005; 
Calabrese et al., 2012; Liang et al., 2013; Gan and Johnson, 
2014). Keap1 has several cysteine residues that make it act 
as a molecular switch by responding to electrophiles and 
ROS with a conformational change that releases Nrf2 (Shih 
et al., 2005). Dissociated Nrf2 translocates into the nucleus, 
where it binds to small Maf proteins. The formed heterodi-
mer binds to cis-acting ARE and thereby promotes the 
transcription of a broad range of phase II and antioxidant 
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genes (Liang et al., 2013; Gan and Johnson, 2014). Proteins 
that are under control of the Nrf2-ARE pathway include 
heme oxygenase-1, GCL, glutathione S-transferases, glu-
tathione peroxidase, superoxide dismutase (SOD), cata-
lase, sulforedoxin, thioredoxin, and several others (Shih 
et  al., 2005; Gan and Johnson, 2014). Activation of the 
Nrf2-ARE pathway provides neuroprotection against 
oxidative damage and cell death. More recent evidence 
also suggests that the Nrf2-ARE pathway may modu-
late the formation and degradation of misfolded protein 
aggregates that are present in various neurodegenerative 
diseases (Parkinson’s, Alzheimer’s, and Huntington’s dis-
eases and amyotrophic lateral sclerosis) (Gan and Johnson, 
2014). For example, studies with tert-butylhydroquinone, 
a prototype Nrf2 inducer, have shown that activation of 
the Nrf2-ARE pathway confers protection against neuro-
toxicity induced by amyloid β and 3-nitropropionic acid 
(Shih et al., 2005; Nouhi et al., 2011).

Quercetin has been shown to counteract oxida-
tive stress-induced cellular damage by activating the 
Nrf2-ARE pathway (Arredondo et  al., 2010; Granado-
Serrano et al., 2012; Saw et al., 2014), and similar effects 
have been reported for dihydroquercetin (Liang et  al., 
2013). Additionally, other nutraceuticals (e.g., kaemp-
ferol, pterostilbene) have been shown to interact syn-
ergistically with quercetin (Saw et  al., 2014). The Akt, 
ERK, and JNK signaling pathway may be involved in 
the activation of Nrf2 (Liang et  al., 2013) and, in turn, 
they are activated by stress stimuli, including oxidative 
stress. Thus, quercetin and many other nutraceuticals 
(e.g., resveratrol, sulforaphane, carnosic acid, dimethyl 
fumarate) may all act as neurohormetic phytochemicals 
(Mattson and Cheng, 2006; Calabrese et al., 2012).

MODULATION OF PARAOXONASE 
2 (PON2) AS A POTENTIAL NOVEL 

MECHANISM OF QUERCETIN 
NEUROPROTECTION

Paraoxonase 2

The paraoxonases (PONs) are a family of three genes 
(PON1, PON2, PON3) clustered in tandem on the long 
arm of human chromosome 7q21-22 and on mouse 
chromosome 6 (Primo-Parmo et  al., 1996). Although 
the name of these enzymes derives from paraoxon, 
the active metabolite of the organophosphorus (OP) 
insecticide parathion, which is hydrolyzed by PON1 
in vitro (Li et  al., 2000), the other two PONs do not 
have OP esterase activity. In contrast, all three PONs 
are lactonases and they hydrolyze a number of acyl-
homoserine lactones (acyl-HCL), molecules that mediate 
bacterial quorum-sensing signals and are important in 
regulating expression of virulence factors and in induc-
ing a host inflammatory response (Draganov et al., 2005; 
Teiber et  al., 2008). PON2 also plays a significant role 
in atherosclerosis, as shown by studies indicating that 
PON2 overexpression decreases atherosclerotic lesions, 
although the opposite is true in PON2-deficient mice 
(Ng et  al., 2006a,b). In contrast to PON1 and PON3, 
which are expressed primarily in the liver, and their 
protein products associated with high-density lipopro-
teins in the plasma, PON2 is a ubiquitously expressed 
intracellular enzyme but is not present in plasma (Ng 
et al., 2001; Marsillach et al., 2008; Giordano et al., 2011).

In several tissues, PON2 has been shown to exert an 
antioxidant effect (Ng et  al., 2001; Horke et  al., 2007), 
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which is believed to play a major role in preventing 
the atherosclerotic process, as shown directly in PON2-
knockout mice (Horke et al., 2007; Devarajan et al., 2011). 
Subcellular distribution studies have shown that PON2 
is localized primarily in the mitochondria (Giordano 
et  al., 2011; Devarajan et  al., 2011). Mitochondria are 
a major source of free radical-related oxidative stress, 
and the preponderant localization of PON2 in mitochon-
dria would support a role for this enzyme in protecting 
cells from oxidative damage. In HeLa cells, PON2 has 
been shown to bind to coenzyme Q10 that associates 
with complex III in mitochondria, and PON2 deficiency 
causes mitochondrial dysfunction (Devarajan et  al., 
2011). In human endothelial cells, PON2 has been shown 
to reduce, indirectly but specifically, the release of super-
oxide from the inner mitochondrial membrane, without 
affecting levels of other radicals such as hydrogen per-
oxide and peroxynitrite (Altenhofer et al., 2010).

Paraoxonase 2 in the Central Nervous System

PON2 mRNA has been found in mouse and human 
brain, and PON2 protein has been detected in mouse 
(Primo-Parmo et  al., 1996; Ng et  al., 2006a; Marsillach 
et al., 2008) as well as rat, human (Giordano et al., 2013b), 
and monkey brain (Costa, de Laat et al., unpublished). 
In a series of recent studies, the expression of PON2 has 
been characterized in mouse brain (Giordano et al., 2011, 
2013b; Costa et  al., 2014). The highest levels of PON2 
protein were found in three dopaminergic regions, the 
substantia nigra, the striatum, and the nucleus accum-
bens, with lower levels in cerebral cortex, cerebellum, 
hippocampus, and brainstem. The higher levels of PON2 
in dopaminergic areas are of interest because they may 
be related to the higher level of oxidative stress, due 
to dopamine metabolism, present in these regions. The 
regional distribution and gender difference of PON2 
were confirmed by measurements of its lactonase activ-
ity (measured by dihydrocoumarin (DHC) hydrolysis) 
and of PON2 mRNA levels (Giordano et al., 2011). At the 
cellular level, PON2 is significantly higher in astrocytes 
than in neurons in all brain regions, with the highest 
levels in cells isolated from the striatum. Striatal neurons 
and astrocytes isolated from female mice express higher 
levels of PON2 than the same cells from male animals. 
PON2 is also present in cortical microglia, at levels simi-
lar to those found in neurons (Giordano et  al., 2011). 
At the subcellular level, the highest levels of PON2 are 
found in mitochondria, followed by membranes (micro-
somes), in agreement with previous observations in 
HeLa cells (Devarajan et al., 2011).

To provide a direct indication of whether PON2 exerts 
a protective effect toward oxidative stress in brain cells, 
as observed in other tissues and cell types, the cytotox-
icity of two known oxidants, hydrogen peroxide (H2O2) 

and 2,3-dimethoxy-1,4-naphtoquinone (DMNQ), was 
investigated in neurons and astrocytes from different 
brain regions isolated from wild-type (PON2+/+) and 
PON2−/− mice. In all instances, cells from mice lacking 
PON2 were more susceptible to the toxicity of both com-
pounds by a factor of 5-fold to 11-fold. The protection 
afforded by PON2 to neurons and astrocytes was related 
to its ability to scavenge ROS on exposure to oxidants. 
For example, DMNQ (10 μM) increased ROS to ~400% of 
basal levels in cerebellar granule neurons from PON2−/− 
mice, but only to 170% in the same cells from PON2+/+ 
mice (Giordano et al., 2011).

Gender Differences in Paraoxonase 2 
Expression

In every brain region, PON2 levels are higher (by 
approximately two-fold to three-fold) in female mice 
than in male mice (Giordano et al., 2011). This may be 
related to a positive modulatory effect by estrogens. In 
striatal astrocytes from male mice, 17β-estradiol causes 
time-dependent and concentration-dependent increases 
in the levels of PON2 protein. For example, 12 h to 24 h 
exposure with 200 nM estradiol increases PON2 expres-
sion in striatal astrocytes from male mice to the lev-
els found in female striatal astrocytes (Giordano et  al., 
2013b). Interestingly, in female astrocytes, estradiol can 
further increase PON2 expression by a factor of approxi-
mately 2.5-fold. The estradiol effect is due to transcrip-
tional activation of the PON2 gene and is mediated by 
activation of estrogen receptors alpha (Giordano et al., 
2013b). In ovariectomized mice, PON2 levels (protein 
and mRNA) are significantly reduced in striatum, cere-
bral cortex, and liver, approaching the levels found in 
male mice. Given the findings of enhanced susceptibility 
to oxidative stress due to lack of PON2 (Giordano et al., 
2011), it was of interest to ascertain whether the two-fold 
to three-fold difference in PON2 levels between genders 
was sufficient to confer differential susceptibility to oxi-
dants. This was indeed the case, because striatal astro-
cytes and neurons from male mice were more sensitive to 
H2O2 and DMNQ-induced oxidative stress and ensuing 
cytotoxicity (Giordano et al., 2013b). Although gender-
dependent differences in other cell defense mechanisms 
cannot be excluded, it is noteworthy that levels of GSH 
did not differ between genders.

Another important aspect is related to the lack of 
gender difference in susceptibility in cells from PON2−/− 
mice. Striatal astrocytes from PON2−/− mice of either 
gender are highly susceptible to oxidant-induced toxic-
ity, as expected, but there are no significant female/male 
differences (Giordano et  al., 2013b). Further evidence 
for a central role of PON2 in mediating gender differ-
ences in susceptibility to oxidative stress toxicity is pro-
vided by experiments with estradiol. In central nervous 
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system (CNS) cells from PON2+/+ male mice, exposure 
to estradiol (200 nM, 24 h) provided protection against 
toxicity induced by the two oxidants. This is not sur-
prising because neuroprotective actions of estrogens are 
well known (Simpkins et al., 2010; Azcoitia et al., 2011). 
However, the protective effect of estradiol is absent in 
cells from PON2−/− mice, suggesting that a major mech-
anism of estrogen neuroprotection may be represented 
by induction of PON2 (Giordano et al., 2013b).

Modulation of Paraoxonase 2

The studies summarized in the previous paragraph 
show that the enzyme paraoxonase 2 exerts an antioxi-
dant/anti-inflammatory effect in the CNS, and that lev-
els of expression of PON2 are an important determinant 
of susceptibility to neurotoxicity. Hence, modulation of 
PON2 by agents/factors that increase its level of expres-
sion may result in neuroprotection.

In macrophages, PON2 expression is increased by oxi-
dative stress (Rosenblat et al., 2003), and in vascular cells 
an endoplasmic reticulum stress element-like sequence 
was found to be present in the promoter region of PON2 
(Horke et al., 2007). Arachidonic acid (Rosenblat et al., 
2010), the licorice phytoestrogen glabridin (Yehuda et al., 
2011), and the hypocholesterolemic drug atorvastatin 
(Rosenblat et al., 2004) also upregulate PON2 expression 
in various cell types. Urokinase plasminogen activator 
upregulates PON2 in macrophages via NADPH oxidase 
and the transcription factor SREBP-2 (Fuhrman et  al., 
2009). Pomegranate juice was found to increase PON2 in 
macrophages through activation of the PPARγ and AP-1 
pathways (Shiner et al., 2007), whereas extracts of Yerba 
mate (Ilex paraguariensis) have been reported to increase 
PON2 mRNA and lactonase activity in macrophages in 
vitro and after in vivo administration to healthy women 
(Fernandes et al., 2012).

Modulation of Paraoxonase 2 by Quercetin

Quercetin was reported to increase PON2 mRNA and 
protein in macrophages in vitro, although administra-
tion of 150 mg/day to human volunteers for 6 weeks 
was without effects (Boesch-Saadatmandi et  al., 2009). 
A recent study has examined the induction of PON2 
by quercetin in vitro (Costa et al., 2013). Quercetin was 
found to increase PON2 protein expression in mouse 
striatal astrocytes (mixed gender) by approximately  
two-fold at concentrations ranging from 1 to 20 μM  
(Figure 1.3). Similar results were also observed in mouse 
striatal neurons and in mouse RAW264.7 macrophages 
(Costa et al., 2013). The effect of quercetin was antago-
nized by SP600125, an inhibitor of the JNK/AP-1 path-
way. In contrast, the PPARγ inhibitor GW9662 did not 
antagonize quercetin’s effect on PON2 while totally 

abrogating the induction of PON2 by the PPARγ ago-
nist rosiglitazone (Costa et al., 2013). Quercetin may thus 
induce a very low level of oxidative stress (Halliwell, 2008; 
Chang et al., 2009), which in turn would modulate the 
JNK/AP-1 pathway (Granado-Serrano et al., 2010), caus-
ing an increase in PON2 expression. Alternatively, given 
the effects of estradiol on PON2 expression (Giordano 
et  al., 2013b), quercetin may induce PON2 expression 
by virtue of its phytoestrogen activity (Galluzzo et  al., 
2009; Ruotolo et al., 2014), although this would need to 
be investigated further.

Independent of the underlying mechanism(s), the 
ability of quercetin to induce PON2 may play a role in 
the reported neuroprotective actions of this polyphenol, 
which have been observed in vitro as well as in vivo 
(Miodini et  al., 1999; Mercer et  al., 2005; Boots et  al., 
2008; Ossola et al., 2009; Barcelos et al., 2011; Selvakumar 
et  al., 2012). In striatal astrocytes from PON2+/+ mice 
(mixed gender), exposure for 24 h to quercetin abol-
ished the increase in ROS levels caused by hydrogen 
peroxide (H2O2) or DMNQ (Costa et  al., 2013). This 
resulted in protection against the toxicity of these oxi-
dants, as shown in Table 1.1; indeed, the IC50 values for 
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FIGURE 1.3 Induction of PON2 by quercetin. Mixed gender 
mouse striatal astrocytes were exposed for 24 h to quercetin (1, 10, or 
20 μM). Shown are the quantification of the 42 kDa alloform (top, n=3) 
and a representative blot (bottom). Significantly different from control: 
*P<0.05, **P<0.01. Source: From Tait (2011).
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cytotoxicity of H2O2 and DMNQ increased by 3.5-fold 
to 4-fold after treatment with quercetin, which doubled 
PON2 expression. This is similar to what is observed in 
brain cells from male and female mice, in which a two-
fold to three-fold difference in PON2 expression resulted 
in a three-fold to four-fold difference in susceptibility to 
these two oxidants (Giordano et  al., 2013b). Although 
other neuroprotective pathways (e.g., Nrf2-ARE) may 
be involved in the observed neuroprotection, experi-
ments performed in cells from PON2−/− mice show that 
modulation of PON2 expression plays an important role 
in the neuroprotective effect of quercetin. On querce-
tin exposure of PON2−/− cells, the IC50 for H2O2 and 
DMNQ were increased by only 1.9-fold and 1.4-fold, 
respectively (Table 1.1). This partial protection may be 
due to NrF2-ARE induction.

THE ISSUE OF METABOLITES

An important issue to consider as part of the dis-
cussion on the beneficial effects of quercetin relates 
to the potential role played by its metabolites (Del 
Rio et  al., 2010). Quercetin is metabolized to various 
conjugated metabolites: 3′-O-methyl-quercetin (isor-
hamnetin; MeQ), quercetin-3-O-glucuronide (Glu3Q); 
3′-O-methylquercetin-O-glucuronide (Glu3MeQ); and 
quercetin-3′-O-sulfate (Sul3Q) (Day et al., 2001; Harwood 
et al., 2007). As stated, only limited amounts of quercetin 

aglycon are found after ingestion of quercetin, although 
there is some controversy regarding this issue (e.g., 
Shanely et  al., 2010; Kelly, 2011), and methylated, sul-
fated, and glucuronide metabolites are the most prom-
inent moieties found in plasma. Studies have shown 
that Glu3Q has antioxidant abilities in vitro and in vivo 
(Moon et al., 2001; Shirai et al., 2006; Kawai et al., 2008). 
Additional biological effects of methylated and sulfate 
metabolites have been reported (Yeh et al., 2011; Boesch-
Saadatmandi et al., 2011; Ruotolo et al., 2014), although 
some studies have failed to observe an effect of querce-
tin metabolites (Cho et al., 2012). Of interest is also the 
observation that conjugated quercetin can enter the cell, 
where it is converted to its nonconjugated form (Fiorani 
et al., 2003). Thus, quercetin metabolites should be tested 
to ascertain, for example, whether they induce the Nrf2-
ARE pathways or modulate PON2 expression. One 
metabolite, Glu3Q, has been recently shown to act as an 
agonist at estrogen receptor α, and may thus be capable 
of inducing PON2 (Ruotolo et  al., 2014). Furthermore, 
various other polyphenol catabolites have been shown 
to exert strong biological activity, particularly in pro-
tecting neuronal cells against DMNQ-induced oxidative 
stress and toxicity (Verzelloni et al., 2011).

CONCLUDING REMARKS AND FUTURE 
DIRECTIONS

There is still great interest in the mechanisms that may 
underlie the neuroprotective effects of nutraceuticals. In 
this chapter, the focus has been on the polyphenol querce-
tin and on mechanisms related to its ability to counteract 
oxidative stress-mediated neurotoxicity. However, several 
other potential mechanisms have been investigated and 
should be considered. Because nutraceuticals comprise 
a large and diverse class of compounds with different 
chemical structures and bioavailability, multiple targets 
for biological activity are to be expected. For example, 
in a discussion on the biochemical and cellular bases 
for nutraceutical strategies to combat Parkinson’s dis-
ease (PD), the following potential targets were indicated: 
α-synuclein aggregation; ubiquitin proteasome function; 
mTOR signaling/lysosomal-autophagy; energy failure; 
faulty catecholamine trafficking; dopamine oxidation; 
synthesis of toxic dopamine-quinones; inflammation; 
methylation; and oxidation of neuromelanin (Mazzio 
et  al., 2011). Dozens of nutraceutical compounds have 
been identified that would affect at least one of the indi-
cated targets (Mazzio et al., 2011). On a more general basis, 
neuroinflammation, which is believed to be most relevant 
in neurodevelopmental and neurodegenerative disorders 
(Skaper et al., 2014; Baune, 2015), represents a potential 
important target for nutraceuticals (Baune, 2015; Nabavi 
et al., 2015). Compounds that may antagonize microglia 

TABLE 1.1 Role of PON2 in Quercetin Protection Against 
Oxidative Stress in Striatal Astrocytes

IC50 (μM)

Control Quercetin

PON2+/+ MICE

H2O2 38.9 ± 4.5 157.0 ± 8.1*

DMNQ 37.5 ± 5.6 131.3 ± 9.2*

PON2−/− MICE

H2O2 6.3 ± 1.3 11.9 ± 1.2

DMNQ 6.1 ± 1.0 8.3 ± 1.1

Source: Adapted from Costa et al. (2013).
Striatal astrocytes from wild-type (PON2+/+) or PON2−/− mice (mixed 
genders) were exposed for 24 h to 20 μM quercetin. After washout, cells were 
treated for 24 h with four to five concentrations of hydrogen peroxide (H2O2) 
or 2,3-dimethoxy-1,4-naphtoquinone (DMNQ), and cytotoxicity was measured 
by the MTT assay. Results indicate the IC50 values (μM) and are the mean 
(± SD) of three separate experiments. *Significantly different from wild-type 
control (P < 0.01). The findings indicate that exposure of wild-type cells to 
quercetin provides neuroprotection, as evidenced by an approximately four-
fold increase in IC50 for the two oxidants. Control astrocytes from PON2−/− 
mice are six-fold more susceptible to the toxicity of H2O2 and DMNQ, likely 
because of the lack of PON2. Additionally, in PON2−/− cells, quercetin-induced 
protection is small (approximately 1.5-fold).
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activation and reduce the release of pro-inflammatory 
cytokines would be of much relevance. Soy isoflavones 
daidzein and genistein are suggested to reduce microglial 
activation and subsequent release of pro-inflammatory 
factors (Chinta et  al., 2013; Jantaratnotai et  al., 2013), 
although further studies in this area are needed. There 
is also evidence in this regard that polyphenols or garlic 
extract may have beneficial anti-inflammatory properties 
(Vauzour, 2012; Takechi et al., 2013).

An additional field of interest with regard to the 
mechanisms of neuroprotection provided by nutraceu-
ticals is that of sirtuins. These proteins (in mammals 
there are seven, SIRT1–SIRT7) are involved in a vari-
ety of cellular and molecular processes and pathways 
with distinct cellular localization and molecular targets 
(Dang, 2012). Of these, SIRT1 predominantly localizes 
in the nucleus and acts as a deacetylase for histones and 
other targets. SIRT1 protects cells from apoptosis and 
promotes differentiation of stem cells. SIRT2 is preva-
lent in the cytoplasm and has been found to accumu-
late in neurons, whereas other SIRTs localize primarily 
in the mitochondria (Dang, 2012). The neuroprotective 
effects of the polyphenol resveratrol have been ascribed 
to activation of SIRT1, leading to inhibition of amyloid-β 
peptide, suppression of Bax-dependent apoptosis, and 
repression of multiple pro-apoptotic transcription  
factors (Kelsey et al., 2010).

One aspect that may deserve more attention relates 
to the modulation of autophagy. Autophagy (from the 
Greek “to eat oneself”) refers to the cellular degrada-
tive pathways that involve delivery of the cytoplasmatic 
cargo to the lysosomes (Mariño et  al., 2011; Gabryel 
et al., 2012; Giordano et al., 2014). Autophagy (macroau-
tophagy) is a multistep process involving the formation 
of double membrane structures, the autophagosomes, 
which then fuse with lysosomes. The content of the 
resulting autophagolysosomes (misfolded proteins, cel-
lular metabolic waste) is then degraded by hydrolytic 
enzymes. Autophagy is also important for removal of 
damaged mitochondria and of normal mitochondria 
undergoing turnover in a process known as mitophagy. 
The integrity of the CNS is very dependent on normal 
basal autophagy because damaged organelles and mis-
folded proteins would accumulate in neurons unless they 
are successfully removed (Marino et al., 2011). Deletion 
of key autophagy genes (Atg5, Atg7) causes severe neu-
rodegeneration (Komatsu et  al., 2006). Rapamycin, an 
inhibitor of mTOR (mammalian target of rapamycin) 
activity, is a potent inducer of autophagy and acts as a 
neuroprotector (Pan et al., 2009; Giordano et al., 2014). 
Stimulation of autophagy by nutraceuticals would thus 
lead to neuroprotection, as has been shown, for example, 
in the case of resveratrol (Lin et al., 2014), a traditional 
Korean herbal formula (Bae et al., 2015), carnosine (Baek 
et al., 2014), and other compounds (Giordano et al., 2014). 

Because the well-being of most CNS cells is dependent 
on the integrity of mitochondria, these organelles repre-
sent the principal target for neuroprotective strategies, 
including, among several, modulation of mitophagy and 
oxidative stress (Perez-Pinzon et al., 2012).
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2

INTRODUCTION

Dietetic macronutrients and micronutrients play 
a crucial role in the control of brain physiology, and 
food intake is known to stimulate the activity of neu-
rotrophic factors regulating synaptic plasticity. Among 
micronutrients, vitamins (e.g., B1, B6, folic acid, B12, C, 
D, K, and α-tocopherol) and minerals (e.g., iron, lith-
ium, magnesium, copper, iodine, and manganese) are 
known to modulate central nervous system (CNS) func-
tionality, whereas macronutrients (e.g., polyunsaturated 
fatty acids (PUFAs), essential amino acids, low glyce-
mic index foods, and dietary fibers) are relevant for the 
maintenance of cognitive functions and the prevention 
of neurodegeneration (Pistollato and Battino, 2014).

The chronic persistence of neuroinflammation is cur-
rently considered the main driving force of the neuro-
degenerative process. Neuroinflammation is generally 
characterized by the activation of glia and microglia 
and the upregulation of inflammatory-related molecules 
(Morales et al., 2014), and this phenomenon seems to occur 
especially during the aging process (Michaud et al., 2013). 
Plant-derived bioactive nutrients, such as antioxidants, 
n-3 and n-6 PUFAs, and other anti-inflammatory nutra-
ceuticals, have been shown to prevent neuroinflamma-
tion, thus reducing the risk of neurodegeneration (Virmani 
et al., 2013). The presence of chronic neuroinflammatory 
status is determined by several factors, such as lifestyle 
and diet. Importantly, dietetic patterns characterized by 
high consumption of animal-derived products and a 
very low or null intake of plant-derived foods can lead 
to persistent chronic inflammation, the potential onset of 
metabolic syndrome (MetS)-related dysfunctions, and a 
high risk of cognitive impairment (Pistollato and Battino, 
2014). One of the factors characteristic of both the MetS 
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and neurodegeneration is the presence of a high plasma 
homocysteine level, a condition known as hyperhomo-
cyteinemia (hHcy). Indeed, hHcy is commonly known 
as an independent risk factor for cardiovascular disease 
and stroke; however, it is also correlated to several neu-
rodegenerative diseases (Boldyrev et al., 2013), including 
Alzheimer’s disease (AD) and vascular dementia (Troen 
et al., 2008). hHcy has also been found in l-DOPA-treated 
Parkinson’s disease (PD) patients (Zoccolella et al., 2005) 
and is correlated to neuroinflammation (Sudduth et  al., 
2013) and to loss of central cholinergic neurons (Pirchl 
et al., 2010). Additionally, a high level of serum homocys-
teine has been found in the body fluids of autistic children 
(Kaluzna-Czaplinska et  al., 2013). Some nutraceuticals, 
specifically B vitamins, are fundamental to stabilize 
homocysteine levels; indeed, vitamin B6 (pyridoxine), 
B12 (cobalamin), and B9 (folic acid) are cofactors needed 
to guarantee the physiological functioning of the enzymes 
specifically involved in homocysteine metabolism.

To counteract neuroinflammation-related processes 
plant-derived polyphenols, such as resveratrol, sulfora-
phanes, and curcumin, have been regarded as essen-
tial antioxidant factors contributing to the regulation of 
brain homeostasis. Besides their antioxidant capacity, 
these neurohormetic phytochemicals are also known to 
downregulate oxidative/inflammatory stress signaling 
pathways and to upregulate the expression of genes 
encoding antioxidant enzymes, phase-2 enzymes, neu-
rotrophic factors, and cytoprotective-related signaling 
pathways, such as the sirtuin–Forkhead box O (FoxO) 
pathway, the nuclear factor-kappaB (NF-κB) pathway, 
the nuclear factor erythroid 2-related factor 2 (Nrf2)/
antioxidant responsive element (ARE) pathway, and the 
cyclic AMP responsive element binding protein (CREB)-
related pathway (Vauzour, 2012).
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This chapter describes the molecular mechanisms 
underlying the beneficial effects elicited by well-described 
nutraceuticals in the prevention and the regression of 
AD, PD, and autism spectrum disorders (ASDs).

NUTRACEUTICALS FOR  
THE PREVENTION AND  
AMELIORATION OF AD

AD is the most common form of dementia, character-
ized by the extracellular accumulation of beta-amyloid 
(Aβ) deposits and progressive microtubule disintegra-
tion, leading to dysfunctional neuronal communication 
and neuronal cell death. Moreover, mature long-lasting 
amyloid plaques appear to be less toxic than the prefibril-
lar aggregates, which represent their precursors. The early 
aggregates seem to interact with cell membranes, causing 
oxidative stress and an increase in free Ca2+ levels, eventu-
ally leading to apoptotic or necrotic cell death (Stefani and 
Dobson, 2003). As the disease advances, confusion, irrita-
bility, aggression, mood swings, trouble with language, 
and long-term memory loss often occur, with an average 
life expectancy upon diagnosis of approximately 7 years 
(Waldemar et  al., 2007). Among risk factors, hyperlipid-
emia, hHcy, diabetes, alcohol consumption, smoking, and 
obesity have been found to increase AD risk, whereas 
consumption of plant-based foods, enriched in bioactive 
phytocompounds, and also fish, Mediterranean diet, and 
unsaturated fat or n-3 fatty acids, together with physical 
and social activity, have been described as protective in 
observational studies (Weih et al., 2007). Currently, given 
the lack of a definitive and effective treatment for AD, 
lifestyle changes, including plant-based nutritional inter-
ventions and natural nutraceutical supplementations, and 
also practicing cognitive and social activity and physical 
exercise are considered alternative measures to prevent 
AD occurrence (Mecocci et al., 2014). In particular, flavo-
noids, vitamins, and other natural substances have been 
studied in relation to AD and have been considered benefi-
cial for the maintenance of cognitive performances (Table 
2.1). Polyphenols, which are naturally present in vegeta-
bles, fruits, herbs, and nuts, may promote prevention and 
regression of AD by targeting specific signaling pathways 
associated with protein folding and neuroinflammation 
(Essa et  al., 2012). Importantly, an effective strategy to 
prevent and/or reduce protein misfolding and Aβ forma-
tion and restoring cellular aggretome might be the use of 
amyloid-binding polyphenols. These polyphenols seem to 
act via different mechanisms, either inhibiting fibril for-
mation or steering oligomer formation into unstructured, 
nontoxic pathways (Ngoungoure et al., 2015).

AD and its consequential neuronal damage seem to 
occur as a consequence of a sustained neuroinflamma-
tory process, which seems to be caused by a plethora 

of different damage signals such as trauma, infection, 
oxidative agents, redox-active iron, and oligomers of 
tau and Aβ. In this context, astrocytes and microglial 
cells get progressively activated, leading to overproduc-
tion of pro-inflammatory agents (Morales et  al., 2014). 
Several natural anti-inflammatory compounds have been 
tested in AD models both in vitro and in vivo and are 
currently regarded as preventive and coadjuvant treat-
ments for AD. In particular, curcumin, a natural pheno-
lic compound derived from the perennial herb Curcuma 
longa (turmeric), is known to exhibit anti-inflammatory 
and antioxidant effects (Lu et  al., 2014). Curcumin has 
been found to activate the heat shock response, reduc-
ing oxidative damage related to AD (Calabrese et  al., 
2003). Moreover, curcumin treatment has been reported 
to attenuate cognitive impairment and stimulate neuro-
protection in a mouse model of AD and to inhibit the 
generation of Aβ by inducing autophagy, as evidenced by 
analysis of the autophagy-related protein LC3, and this 
effect was mediated via downregulation of the phospha-
tidylinositol-3-kinase (PI3K)/Akt and the mammalian 
target of rapamycin (mTOR) signaling pathway (Wang 
et al., 2014). Furthermore, an in vitro study has shown that 
both curcumin and its analog Cur1 protect neuroblas-
toma SK-N-SH cells from the exogenous effects of Aβ1–
42 exposure, and the protective effect is elicited via the 
upregulation of human telomerase reverse-transcriptase 
(hTERT) expression (Xiao et al., 2014).

Soybean isoflavones, such as genistein, have been 
regarded as beneficial for the prevention and regres-
sion of neurodegenerative diseases (Lee et  al., 2005). 
In vitro treatment with a synthetic version of genistein, 
called GS-14, has been shown to be neuroprotective on 
SH-SY5Y cells previously exposed to Aβ proteins; GS-14 
inhibits acetylcholinesterase (AChE) and also modu-
lates estrogenic activity, suggesting its possible use as an 
effective agent for the treatment of AD (Shi et al., 2012). 
Analogously, some genistein derivatives, in particular 
one called 25d, tested both in vitro and in vivo, have been 
found to promote AChE inhibitory activity and to dis-
play antioxidative activity, promoting inhibition of Aβ 
aggregation and exhibiting metal chelating properties. 
The analog 25d reversed scopolamine-induced memory 
deficit in mice, suggesting that 25d may be a promising 
multifunctional agent for the treatment of AD (Qiang 
et  al., 2014). Additionally, treatment with genistein has 
been found to attenuate the cytotoxicity and inflam-
matory damage induced by Aβ25–35 exposure in vitro 
by inhibiting the Toll-like receptor 4 (TLR4) and NF-κB 
upregulation mediated by Aβ25–35 and the DNA binding 
and transcriptional activities of NF-κB (Zhou et al., 2014).

Among phytochemicals, the isothiocyanate sulfora-
phane, derived from the hydrolysis of the glucoraphanin, 
a glucosinolate mainly present in Brassica vegetables, 
has also demonstrated neuroprotective effects in several 
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TABLE 2.1 summary of Nutrients and Nutraceuticals and their relevance to aD and Dementia

Nutrient or nutraceutical Elicited effects References

Polyphenols, amyloid-binding 
polyphenols

Target-specific signaling pathways associated with protein folding 
and neuroinflammation
Inhibit fibril formation or steer oligomer formation

Essa et al. (2012), Ngoungoure et al. 
(2015)

Curcumin, Cur1 Anti-inflammatory and antioxidant effects
Activate the heat shock response, reducing oxidative damage
Attenuate cognitive impairment and stimulate neuroprotection, 
inhibit the generation of Aβ by inducing autophagy via 
downregulation PI3K/Akt and mTOR
Protect from exogenous effects of Aβ1–42 via the upregulation of 
hTERT expression

Calabrese et al. (2003), Lu et al. 
(2014), Wang et al. (2014), Xiao et al. 
(2014)

Isoflavones (e.g., genistein,  
GS-14, 25d)

Elicit neuroprotection from Aβ protein exposure, inhibits AChE, 
modulates estrogenic activity
Antioxidative activity, inhibit Aβ aggregation and exhibit metal 
chelating properties; reverse scopolamine-induced memory deficit
Attenuate cytotoxicity and inflammatory damage induced upon 
Aβ25–35 exposure by inhibiting TLR4 and NF-κB upregulation

Lee et al. (2005), Qiang et al. (2014), 
Shi et al. (2012), Zhou et al. (2014)

Isothiocyanates (e.g.,  
sulforaphane)

Activate Nrf2/ARE pathway, promoting the upregulation of GSH
Antioxidant potential upon exposure to Aβ25–35, upregulate 
antioxidant enzymes via activation of Nrf2, prevent Aβ-mediated 
apoptosis

Lee et al. (2013), Tarozzi et al. (2013)

Folate, vitamin B12,  
vitamin B6

Prevent tau hyperphosphorylation and memory deficits induced  
by acute administration of homocysteine
Inhibit tau hyper-phosphorylation and accumulation in 
hippocampus and cortex; downregulate GSK-3β, CDK5, JNK, ERK, 
and p38MAPK, attenuate memory deficits
No improvements of primary and secondary cognitive 
measurements, depression as adverse effect
Ineffective for AD or dementia

Aisen et al. (2008), Nelson et al. 
(2009), Wei et al. (2011), Zhang et al. 
(2008)

Fortasyn Connect™ (cocktail 
of docosahexaenoic acid, 
eicosapentaenoic acid, uridine-
5'-monophosphate, choline, 
phospholipids, antioxidants,  
and B vitamins)

Designed to enhance synapse formation and functionality
Improve memory performance, positively affect brain functional 
connectivity

Engelborghs et al. (2014), Mi et al. 
(2013)

Shilajit, fulvic acid, with/ 
without B vitamins

Contribute to AD prevention Carrasco-Gallardo et al. (2012)

Vitamin E, vitamin C, α-lipoic  
acid (E/C/ALA)

Lower CSF F2-isoprostane levels, indicative of oxidative stress 
reduction in the brain but associated with faster cognitive decline

Galasko et al. (2012)

γ- and α-Tocopherols High α-tocopherol seems to be associated with higher amyloid  
load when γ-tocopherol levels were low
Conversely, high α-tocopherol seems to be associated with lower 
amyloid levels when γ-tocopherol levels were high

Morris et al. (2015)

SAM, PUFAs Neuroprotective (particularly SAM) under conditions of reduced 
GST activity, diminished SAM, increased accumulation of SAH,  
and deprived folate

Panza et al. (2009)

in vitro and in vivo studies. Sulforaphane, in particu-
lar, seems to activate the antioxidant Nrf2/ARE path-
way, promoting the upregulation of glutathione (GSH) 
(Tarozzi et al., 2013). Additionally, in vitro treatment with 
sulforaphane exerts antioxidant potential in SH-SY5Y 
cells exposed to Aβ25–35, as shown by the upregula-
tion of antioxidant enzymes (i.e., γ-glutamylcysteine 
ligase, NAD(P)H:quinone oxidoreductase-1, and heme 

oxygenase-1) via activation of Nrf2, thus preventing 
Aβ-mediated apoptosis (Lee et al., 2013).

Numerous epidemiological findings, confirmed also 
by in vivo animal studies, show that several MetS-related 
factors, such as atherosclerosis, diabetes, hHcy, hyperten-
sion, and high total and LDL cholesterol levels, may play 
a role in the development of AD (Ehrlich and Humpel, 
2012). For this reason, supplementation with folate and 
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E (α-tocopherol, 800 IU/day), vitamin C (500 mg/day), 
α-lipoic acid (900 mg/day), globally named the E/C/
ALA group, or coenzyme Q (400 mg, three times per day), 
or simple placebo (Galasko et al., 2012). Importantly, the 
antioxidants present in the E/C/ALA treatment did not 
alter any cerebrospinal fluid (CSF) biomarkers related to 
amyloid or tau pathology, rather than lowering CSF F2-
isoprostane levels, which is indicative of oxidative stress 
reduction in the brain. However, the E/C/ALA treatment 
also induced a faster cognitive decline, which represents a 
possible serious concern, especially if longer-term clinical 
trials have to be conducted (Galasko et al., 2012).

The correlation between α- and γ-tocopherol brain con-
centrations and AD neuropathology has been assessed 
in 115 deceased participants of the prospective Rush 
Memory and Aging Project by taking into account the fol-
lowing parameters: amyloid load and neurofibrillary tan-
gle severity. In particular, brain concentrations of γ- and 
α-tocopherols seem associated with AD neuropathology 
in an interrelated mechanism. High α-tocopherol seems to 
be associated with higher amyloid load when γ-tocopherol 
levels were low; conversely, high α-tocopherol seems to be 
associated with lower amyloid levels when γ-tocopherol 
levels were high (Morris et al., 2015).

A 2009 review has commented on the positive 
effects elicited by a combined supplementation with 
S-adenosylmethionine (SAM) and PUFAs for very mild 
AD subgroups or mild cognitive impairment (Panza et al., 
2009). In particular, the use of SAM as a neuroprotective 
dietary supplement for AD patients seems to be relevant 
because AD subjects are often characterized by reduced 
glutathione S-transferase (GST) activity, diminished SAM, 
and increased accumulation of the downstream metabolic 
product resulting from SAM-mediated transmethylation 
(i.e., S-adenosylhomocysteine (SAH)) under conditions of 
deprived folate (Panza et  al., 2009). These studies glob-
ally suggest that appropriately combined, rather than 
single, nutraceutical supplementations might prevent 
AD-related symptoms and/or benefit AD patients. Large 
scale clinical trials will be essential to confirm the effi-
cacy of nutrients and nutraceuticals for the prevention or 
regression of both mild cognitive impairment and AD.

NUTRACEUTICALS FOR  
THE PREVENTION AND  
AMELIORATION OF PD

PD is a degenerative disorder of the CNS charac-
terized by motor symptoms, such as shaking, rigidity, 
slowness of movement, and difficulty with walking 
and gait, possibly followed by late-onset dementia. 
These impairments are a consequence of a progressive 
degeneration of dopaminergic neurons localized in the 
substantia nigra. The pathology of this disease is also 

vitamin B12 has been found to be effective in prevent-
ing tau protein hyperphosphorylation and memory defi-
cits induced by acute administration of homocysteine in 
young rats (Zhang et al., 2008). Folate and vitamin B12 
supplementation has also been found to be effective in 
aged rats with chronic hHcy, promoting inhibition of tau 
hyperphosphorylation and accumulation in hippocam-
pus and cortex, together with downregulation of gly-
cogen synthase kinases-3β (GSK-3β), cyclin-dependent 
kinase-5 (CDK-5), c-Jun N-terminal kinase (JNK), extra-
cellular signal-regulated kinase (ERK), and p38 mitogen-
activated protein kinase (p38MAPK). As a consequence, 
a significant attenuation of memory deficits occurs (Wei 
et  al., 2011). Nevertheless, a multicenter, randomized, 
double-blind, controlled clinical trial of high-dose folate, 
vitamin B6, and vitamin B12 supplementation in 409 (of 
601 screened) individuals with mild-to-moderate AD and 
normal folic acid, vitamin B12, and homocysteine levels 
has shown that vitamin supplements effectively reduced 
homocysteine levels compared to the placebo group, they 
did not improve primary and secondary cognitive mea-
surements, eventually leading to adverse events such as 
occurrence of depression (Aisen et  al., 2008). For this 
reason, regimens with high-dose B vitamin supplements 
might not be advisable. Accordingly, a 2009 study has 
examined the associations between dietary and supple-
mentation of folate, vitamin B12, and vitamin B6 and the 
incidence of AD among elderly men and women (Cache 
County Memory, Health and Aging Study). Interestingly, 
the authors of that study have not observed differences 
in risk of AD or dementia by increasing the total intake 
of folate, vitamin B12, or vitamin B6 (Nelson et al., 2009).

Several nutritional intervention studies in patients 
affected by AD have been conducted in past years; some 
of these interventions are based on single nutrient admin-
istrations, and others are based on nutrient combination, 
such as the medical food “Fortasyn Connect™,” which is 
designed to enhance synapse formation and functionality 
and contains a cocktail of docosahexaenoic acid, eicosa-
pentaenoic acid, uridine-5'-monophosphate, choline, 
phospholipids, antioxidants, and B vitamins (Mi et  al., 
2013). In two randomized controlled trials, “Fortasyn 
Connect™” in its nutrient formulation (Souvenaid®) has 
resulted in improving memory performance in mild, 
drug-naïve patients with AD, positively affecting brain 
functional connectivity (Engelborghs et al., 2014; Mi et al., 
2013). Moreover, a clinical trial conducted on patients 
with mild AD has shown that both shilajit alone, a sticky 
tar-like substance, and its active principle, fulvic acid, as 
well as a combination of shilajit and B vitamins, contrib-
ute to AD prevention (Carrasco-Gallardo et al., 2012).

Another randomized clinical study has been con-
ducted on subjects with mild to moderate AD and 
analyzed the effects elicited by a 16-week treatment 
intervention comparing the administration of vitamin 
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characterized by the accumulation of the α-synuclein 
protein into the Lewy bodies within neurons, and the 
insufficient formation and activity of dopamine within 
the midbrain (Shulman et al., 2011).

Current treatments are effective in managing the 
early motor symptoms, mainly through the adminis-
tration of l-DOPA and dopamine agonists; however, 
with the progression of the disease, these drugs even-
tually become ineffective and often further complica-
tions occur, such as dyskinesia, which is characterized 
by involuntary writhing movements (Shulman et  al., 
2011). Besides surgery, deep brain stimulation, gene 
therapy, stem cell transplantations, and novel neuro-
protective pharmacologic agents, supplementation with 
specific plant-based phytocompounds and foods and 

some forms of rehabilitation have been proven effec-
tive in alleviating PD-related symptoms. In particular, 
nutraceuticals play a critical role in the regulation of 
energy metabolism and signaling pathways that control 
neurotransmission and neuroinflammation (Table 2.2). 
Nutraceuticals have been proven to interfere with several 
mechanisms related to the PD symptoms manifestation, 
such as α-synuclein aggregation, ubiquitin-proteasome 
function, mTOR signaling and lysosomal-mediated 
autophagy, energy failure, faulty trafficking of catechol-
amine, dopamine oxidation, hHcy, methylation pat-
terns, neuroinflammation, and irreversible oxidation of 
neuromelanin (Mazzio et al., 2011). Some of the applied 
nutraceuticals include vitamins C, D, and E, coenzyme 
Q10, creatine, unsaturated fatty acids, sulfur-containing 

TABLE 2.2 summary of Nutrients and Nutraceuticals and their relevance to PD

Nutrient or nutraceutical Elicited effects References

Vitamins C, D, and E, coenzyme Q10, 
creatine, unsaturated fatty acids, sulfur-
containing compounds, polyphenols, 
stilbenes, and phytoestrogens

Prevent α-synuclein aggregation, ubiquitin-proteasome function, 
mTOR signaling and lysosomal-mediated autophagy, energy 
failure, faulty trafficking of catecholamine, dopamine oxidation, 
hHcy, methylation patterns, neuroinflammation, and irreversible 
oxidation of neuromelanin
Useful for the management of PD

Chao et al. (2012), Mazzio 
et al. (2011)

Sulforaphane Reduces motor coordination deficits and rotations induced 
by 6-OHDA in mice, reduces apoptosis by blocking DNA 
fragmentation and caspase-3 activation, enhances GSH levels  
and some neuronal survival pathways (ERK1/2)

Morroni et al. (2013)

Catechins, (−)-epigallocatechin- 
3-gallate, quercetin

Neutralize stress-related free radicals and inflammation
Inhibit l-DOPA methylation and prevents oxidative  
hippocampal neurodegeneration
Inhibit human liver COMT-mediated O-methylation of  
l-DOPA in vitro
(only (+)-catechin)
Inhibit l-DOPA methylation in both peripheral compartment  
and striatum in rats, reduce glutamate-induced oxidative 
cytotoxicity in vitro via inactivation of NF-κB signaling, confer 
neuroprotection against kainic acid in vivo

Kang et al. (2010), Kang 
et al. (2013b), Mandel et al. 
(2012), Weinreb et al. (2004)

Extracts of tangerine peel (rich in 
polymethoxylated flavones), cocoa-2  
(rich in procyanidins), and red clover  
(rich in isoflavones)

Attenuate dopaminergic neuron loss, no protection observed  
in vivo

Datla et al. (2007)

Ginkgo biloba extract 761 (EGb 761, 
containing 24% flavonoids and 6% 
terpenoids)

Antioxidant, elicits neurorecovery of damaged midbrain DA 
neurons, improves locomotion

Rojas et al. (2012)

Resveratrol Activates the SIRT1 enzyme; neuroprotective against oxidative 
stress
Prevents H2O2 or 6-OHDA triggered toxicity and the toxic effects 
elicited by Aβ1-42 and the α-synuclein-A30P
Improves mitochondrial activity by activating several metabolic 
sensors, resulting in the activation of PGC-1α
Activates AMPK and SIRT1 and upregulates the expression of 
several PGC-1α target genes, resulting in enhanced  
mitochondrial oxidative function

Albani et al. (2009, 2010), 
Ferretta et al. (2014)

(Continued)
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compounds, polyphenols, stilbenes, and phytoestrogens 
(Chao et al., 2012). Among plant-derived nutraceuticals, 
the antioxidant sulforaphane has been found to reduce 
motor coordination deficits and rotations induced by 
6-hydroxydopamine (6-OHDA) in mice (Morroni et al., 
2013); 6-OHDA is a chemical compound used in some 
animal models to mimic the effects of PD. Sulforaphane 
reduces the 6-OHDA-dependent apoptosis by block-
ing DNA fragmentation and caspase-3 activation and 
enhances GSH levels and some neuronal survival path-
ways, such as ERK1/2, in the murine brain (Morroni 
et al., 2013). These data suggest that sulforaphane might 
effectively slow the progression of PD by modulating 
oxidative stress and the apoptotic machinery (Pistollato 
and Battino, 2014).

Moreover, natural plant polyphenols, such as the 
green and black flavonoid catechins present in tea, seem 
to neutralize stress-related free radicals and inflamma-
tion (Mandel et  al., 2012; Weinreb et  al., 2004). It has 
recently been shown that (−)-epigallocatechin-3-gallate, 
a tea polyphenol, inhibits l-DOPA methylation and pre-
vents oxidative hippocampal neurodegeneration (Kang 
et  al., 2010). Additionally, tea catechins [(+)-catechin 
and (−)-epicatechin] and quercetin have been reported 
to strongly inhibit human liver catechol-O-methyltrans-
ferase (COMT)-mediated O-methylation of l-DOPA in 
vitro, whereas only (+)-catechin, due to its better bio-
availability in vivo, has been found to significantly inhibit 
l-DOPA methylation in both peripheral compartment 

and striatum in rats. Furthermore, (+)-catechin elicits 
strong reduction of glutamate-induced oxidative cyto-
toxicity in HT22 mouse hippocampal neurons cultured 
in vitro, and this occurs via inactivation of the NF-κB 
signaling pathway. In vivo administration of (+)-cate-
chin has been found to be neuroprotective against kainic 
acid-induced oxidative rat hippocampal neurodegenera-
tion (Kang et al., 2013b).

Another study conducted in vivo by using a 6-OHDA-
induced PD rat model has reported that short-term pre-
supplementation with plant extracts rich in flavonoids 
composed of extracts of tangerine peel (rich in polyme-
thoxylated flavones), cocoa-2 (rich in procyanidins), and 
red clover (rich in isoflavones) significantly attenuates 
dopaminergic neuron loss, whereas no significant pro-
tection has been observed in animals supplemented with 
red and white grape seeds (rich in catechins) and cocoa-1 
(rich in catechins) (Datla et al., 2007).

G. biloba extract 761 (EGb 761), a patented and defined 
mixture of active compounds extracted from G. biloba 
leaves and containing flavonoids (24%) and terpenoids 
(6%), has been described as neuroprotective due to  
its antioxidant function (Rojas et  al., 2012). In a  
rodent model of PD, EGb761 has been found to be neu-
roprotective and to elicit neurorecovery of damaged  
midbrain DA neurons, improving locomotion (Rojas 
et al., 2012).

Resveratrol, a natural phytocompound acknowledged 
as a potential anticancer drug, has recently been shown 

TABLE 2.2 summary of Nutrients and Nutraceuticals and their relevance to PD

Nutrient or nutraceutical Elicited effects References

Curcumin, curcuminoids, CNB-001  
(a curcumin derivative)

Prevent neuroinflammation
Prevent MPTP-mediated depletion of dopamine and tyrosine 
hydroxylase immunoreactivity, downregulate GFAP, iNOS 
proteins, pro-inflammatory cytokine, and total nitrite generation 
in the striatum of MPTP-treated mice; promote increased motor 
performance and gross behavioral activity
Ameliorate behavioral anomalies, increase expression of 
monoamine transporter, and improve mitochondria  
functionality
Attenuate motor impairments and pathological changes elicited by 
MPTP administration
In combination with DFO elicit neuroprotection in a 6-OHDA-PD 
rat model, increasing the levels of PCC, SOD, and GSH

Jayaraj et al. (2014a,b), Lv 
et al. (2014), Ojha et al. 
(2012), Witkin and Li 
(2013)

Vitamin D3 Stabilizes PD symptoms without triggering hypercalcemia Suzuki et al. (2013)

Folate, vitamin B12, vitamin B6 Only vitamin B6 decreases risk of PD de Lau et al. (2006), 
Murakami et al. (2010)

Tocopherol, CoQ10, and GSH CoQ10 and GSH in particular show a small but significant 
improvement in PD symptoms

Weber and Ernst (2006)

Creatine Ameliorates PD symptoms Gualano et al. (2010)

(continued)
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to display neuroprotective actions by activating the sir-
tuin 1 (SIRT1) enzyme, one of the seven described sirtuin 
deacetylases involved in many physiologic and patho-
logic processes including apoptosis, autophagy, diabetes, 
cancer, cardiovascular disorders, and neurodegenera-
tion (Albani et al., 2010). In this regard, resveratrol has 
been found to be neuroprotective in a neuroblastoma cell 
model of oxidative stress, preventing H2O2 or 6-OHDA 
triggered toxicity and also the toxic effects elicited by 
exposure to two aggregation-prone proteins (i.e., the 
Aβ1–42 and the α-synuclein-A30P) (Albani et al., 2009). 
Furthermore, resveratrol has been described to improve 
mitochondrial activity by activating several metabolic 
sensors, resulting in the activation of the peroxisome 
proliferator-activated receptor-gamma coactivator-1α 
(PGC-1α) (Ferretta et al., 2014). Recent data on primary 
fibroblast cultures obtained from two patients with 
early-onset PD linked to different Park2 mutations have 
revealed that resveratrol activates AMPK and SIRT1 
and upregulates the expression of several PGC-1α target 
genes, resulting in enhanced mitochondrial oxidative 
function, indicative of a shift from glycolytic to oxida-
tive metabolism (Ferretta et al., 2014).

Animal models and human-related studies have indi-
cated curcumin as beneficial for stroke, AD, stress and 
mood disorders, and also PD and its related neuroinflam-
mation (Witkin and Li, 2013). In particular, oral adminis-
tration of curcuminoids has been found to significantly 
prevent 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine 
(MPTP)-mediated depletion of dopamine and tyrosine 
hydroxylase immunoreactivity. Also, downregulation 
of glial fibrillary acidic protein (GFAP) and inducible 
nitric oxide synthase (iNOS) protein expression has 
been observed, and pro-inflammatory cytokine and 
total nitrite generation in the striatum of MPTP-treated 
mice have been noted to be significantly reduced by cur-
cuminoid administration. Motor performance and gross 
behavioral activity have been improved, suggesting cur-
cuminoid compounds as potential therapeutic candidate 
nutraceuticals for the prevention and/or management 
of PD (Ojha et al., 2012). Recent studies have described 
the effects of CNB-001, a novel pyrazole derivative of 
curcumin known to possess various neuroprotective 
properties, in a subacute MPTP rodent model of PD. 
Pretreatment with CNB-001 ameliorates behavioral 
anomalies, increases expression of monoamine trans-
porter, and improves mitochondria functionality (Jayaraj 
et  al., 2014a). CNB-001 has also been found to signifi-
cantly attenuate motor impairments and pathological 
changes elicited by MPTP administration (Jayaraj et al., 
2014b). However, it is important to notice that data related 
to the neuroprotective efficacy of tested agents may 
depend on the MPTP administration protocol adopted 
(i.e., acute vs subacute administration) (Anderson et al., 

2006). Combined treatment with curcumin and desfer-
rioxamine (DFO), a bacterial siderophore produced by 
the actinobacteria Streptomyces pilosus and used as an 
iron chelating agent, has been found to be neuroprotec-
tive in a 6-OHDA-PD rat model, increasing the levels 
of propionyl-CoA carboxylase (PCC), superoxide dis-
mutase (SOD), and GSH (Lv et  al., 2014). Altogether 
these in vitro and in vivo animal studies suggest that 
plant-derived nutraceuticals may play a protective role 
in the prevention of PD.

Some clinical studies tried to address the efficacy of 
nutraceutical administration in PD-affected subjects. A 
2013 study assessed whether vitamin D3 supplementa-
tion inhibits PD progression in patients with vitamin 
D receptor FokI CC genotype and found that vitamin 
D3 supplementation could stabilize PD symptoms for 
a short period of time without triggering hypercalce-
mia (Suzuki et  al., 2013). Furthermore, in the so-called 
Rotterdam Study, a prospective population-based 
cohort study including people aged 55 years and older, 
the association between dietary intake of folate, vita-
min B12, and vitamin B6 and the incidence of PD has 
been assessed in 5289 participants who were free of 
dementia and parkinsonism and underwent complete 
dietary assessment at baseline. Authors of this study 
have found that a higher dietary intake of vitamin B6 
is associated with a significantly decreased risk of PD, 
whereas no association has been observed for intake 
of dietary folate and vitamin B12. Thus, supplemen-
tation with vitamin B6 might decrease PD risk, prob-
ably through mechanisms not related to homocysteine 
metabolism (de Lau et al., 2006). The results were later 
confirmed by a Japanese study, where it has been 
reported that although the intake of folate, vitamin B12, 
and riboflavin is not associated with the risk of PD, a 
low intake of vitamin B6 is related to an increased risk 
of PD, as observed in 249 patients with diagnosed PD 
and 368 controls without neurodegenerative diseases 
(Murakami et al., 2010).

A 2006 study revised publications on the effects of 
the three main antioxidants or supplements used for the 
prevention and/or treatment of PD: tocopherol, CoQ10, 
and GSH. Authors have found that, besides some large 
observational studies focusing on tocopherol adminis-
tration and one study of CoQ10 that enrolled 80 patients, 
other retrieved studies included less than 30 patients 
and were conducted for 3 months or shorter periods 
of time. Whereas tocopherol supplementation does not 
alter the course of PD, two of the CoQ10 studies and the 
study on GSH show a small but significant improvement 
of PD symptoms (Weber and Ernst, 2006).

Recent findings point to the potential use of creatine, 
which is implicated in energy provision through a reac-
tion catalyzed by phosphorylcreatine kinase, for the 
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prevention and amelioration of PD symptoms, and cre-
atine supplementation has been proposed as a therapeu-
tic tool for elderly subjects (Gualano et al., 2010). Further 
large scale clinical studies would be required to better 
define the role of nutraceutical supplementations for PD 
prevention and amelioration of PD symptoms.

NUTRACEUTICALS FOR THE 
PREVENTION AND AMELIORATION  

OF ASD

ASD is a cluster of heterogeneous and complex 
neurodevelopmental disorders. The current revised 
definition of ASD no longer differentiates the various 
ASD subtypes such as autistic disorder or Asperger 
syndrome, but rather includes all of them under the 
same definition. The common features encountered in 
ASD are abnormal social interactions, impaired com-
munication, and stereotyped or repetitive behaviors. 
There is evidence of genetic predisposition to ASD 
mainly derived from twin studies (Folstein and Rosen-
Sheidley, 2001). However, it is believed that autistic phe-
notypes are attributed to interactions involving not only 
genetic factors but also environmental factors, such as 
chemicals, viral infections, and stress (Geier et al., 2009; 
Gillott and Standen, 2007; Libbey et al., 2005; Tordjman 
et al., 2014).

Although extensive research in the field of ASD has 
been performed during the past two decades, the full 
mechanistic understanding of ASD and the development 
of appropriate treatments remains limited. Currently, 
applied behavioral therapies and antipsychotic medica-
tions to ASD individuals are not considered effective 
or safe (Bobo et al., 2013). Due to these limitations, the 
use of nutraceuticals in ASD management is steadily 
increasing and a significant number of companies pro-
duce various compositions of nutraceuticals available 
over the counter (Alanazi, 2013). Despite the initial use 
of nutraceuticals that relied exclusively on anecdotal and 
empirical evidence, a substantial amount of animal and 
human data has been generated to provide some sup-
port and justification for the beneficial administration 
of nutraceuticals in ASD treatment protocols (Table 2.3). 
This section aims to review the metabolic or physiological 
abnormalities found in ASD patients that form the basis 
for the development of treatments with nutraceutical 
origin. The presented data derive from: (i) epidemiologi-
cal studies in which levels of micronutrients and specific 
biomarkers associated with ASD phenotype have been 
measured; (ii) clinical trials in which nutraceuticals have 
been administered to ASD individuals; and (iii) animal 
models of ASD that illustrate the mechanisms by which 
nutraceuticals prevent, ameliorate, or cure neurodevel-
opmental disorders of this spectrum.

In general, multivitamin intake during periconcep-
tion has been associated with a lower incidence of ASD 
in children. A recent study demonstrates that mothers 
of ASD individuals are less likely to receive vitamin 
supplements 3 months before and 1 month after concep-
tion than mothers with healthy children (Schmidt et al., 
2011). Multivitamin and mineral supplementation to 
ASD patients up to 3 months leads to improvements in 
sleep, reduction of autistic symptoms, and amelioration 
in biomarkers of energy production as well as oxida-
tive stress, suggesting that the effectiveness of multivita-
mins is partially related to better mitochondrial function 
(Adams et al., 2011). Similarly, a case control study com-
paring autistic children using conventional medication 
and micronutrient supplementation that included not 
only a multivitamin but also minerals, amino acids, and 
antioxidants has revealed greater improvement in micro-
nutrient-treated group (Mehl-Madrona et al., 2010).

Besides the studies that followed the administration 
of cocktails containing vitamins in combination with 
cofactors, some other experimental approaches have 
been focused on providing evidence through human or 
animal studies by using individual vitamins or nutra-
ceuticals. The reason behind this is that the levels of only 
certain vitamins or certain biomarkers have been found 
to be altered in ASD children.

Vitamin B2 is significantly elevated in children with 
autism and their siblings compared with controls, but 
there is no difference in other B vitamins or homocyste-
ine (Main et al., 2015). This study included 35 children 
with autism, 27 of their siblings without autism, and 
25 age- and gender-matched community controls (Main 
et al., 2015).

Folic acid or folate (Vitamin B9) supplementation dur-
ing pregnancy has been accused of higher incidence of 
ASD, whereas it is well-recognized to protect against 
neural tube defects. However, after reviewing the lim-
ited and contradictory studies, Castro et al. (2014) have 
concluded that further studies are required to determine 
the critical role of gestational folic acid supplementa-
tion in relation to ASD occurrence (Castro et al., 2014). 
Recently, it has been found that several transcription fac-
tors, imprinted genes, neurodevelopmental genes, and 
genes associated with ASD exhibit altered expression 
levels in the brain of mice pups that have been exposed 
to high concentrations of folic acid during gestation 
(Barua et  al., 2015). Folate levels in patients with ASD 
are lower compared to controls (Ali et al., 2011; Castro 
et al., 2014). In addition, a number of genetic polymor-
phisms in enzymes involved in the folate pathway have 
been identified in ASD individuals (Frye and Rossignol, 
2014). These abnormalities result in the impairment of 
folate transport across the blood–brain barrier (BBB) and 
into neuronal cells. The most studied abnormality in 
folate metabolism related to ASD is the formation of 
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TABLE 2.3 summary of Nutrients and Nutraceuticals and their relevance to asD

Nutrient or nutraceutical Elicited effects References

Multivitamin and mineral 
supplements

During periconception promote lower incidence of ASD children
Improve sleep, reduce autistic symptoms
Ameliorate biomarkers of energy production and oxidative stress, 
improving mitochondrial function

Adams et al. (2011), Mehl-
Madrona et al. (2010), Schmidt 
et al. (2011)

Vitamin B2 Significantly elevated in children with autism Main et al. (2015)

Folic acid, folinic acid Supplementation during pregnancy has been associated with higher 
incidence of ASD
Promotes altered expression of transcription factors, imprinted genes, 
neurodevelopmental genes, and genes associated with ASD when 
administered during pregnancy in mice
Folate levels in patients with ASD are lower compared to controls
Impairment of folate transport across the BBB and into neuronal cells
Folinic acid can cross the BBB, ameliorating ASD and CFD

Ali et al. (2011), Barua et al. 
(2015), Castro et al. (2014), Frye 
and Rossignol (2014)

Vitamin B12 When combined with GSH and special low-fructose and organic diet,  
it improves social interaction, concentration, spoken and written  
language, and behavior

Patel and Curtis (2007)

Propionic (propanoic) acid Together with enteric short-chain fatty acids (SCFAs), it is correlated to 
some forms of ASD

Macfabe (2013)

n-3 PUFAs Their levels are decreased in ASD
Supplementation of n-3 PUFAs in ASD children improves or does not 
affect main ASD symptoms

Amminger et al. (2007), Bent 
et al. (2011), Vancassel et al. 
(2001), Wilczynski-Kwaitek 
et al. (2009)

Biopterin, tetrahydrobiopterin, 
sapropterin

Highly concentrated in urine samples and at low levels in CSF of ASD 
children
Supplementation with tetrahydrobiopterin improves language skills,  
eye contact, communication, and repetitive behavior
Sapropterin improves tetrahydrobiopterin metabolism in ASD  
individuals and ameliorates NO metabolism

Danfors et al. (2005); Frye et al. 
(2010, 2013), Tani et al. (1994)

Probiotics (e.g., Bacteroides 
fragilis)

Alleviate MIA, anxiety, and stereotyped behaviors, improve GI  
function and restore serum metabolite levels related to autism  
(i.e., 4-EPS and indolepyruvate); ameliorate the detoxification  
capability of ASD individuals and consequently provide protection  
from environmental chemicals

Alanazi (2013), Hsiao (2014), 
Parracho et al. (2010)

Flavonoids (e.g., luteolin, 
quercetin, and rutin)

Antioxidant, anti-inflammatory, and neuroprotective properties;  
improve ASD symptoms by targeting JAK2/STAT3 signaling
Improve GI and allergy symptoms, eye contact, and social interaction  
in ASD children

Parker-Athill et al. (2009), 
Taliou et al. (2013), Theoharides 
et al. (2012)

Ginseng (red and white) Red ginseng extract improves sociability and social preference  
paradigms in an ASD mouse model

Kim et al. (2013)

N-acetyl-l-cysteine, 
methylcobolamine, folic 
acid, vitamin C, and other 
antioxidants

Positively modulate GSH levels and metabolism Frye and Rossignol (2014), 
Hardan et al. (2012)

autoantibodies to the folate receptor alpha, which leads 
to cerebral folate deficiency (CFD). A limited number of 
studies has investigated the beneficial effects of folinic 
acid, which is a reduced form of folate that can cross the 
BBB in children with ASD and CFD, revealing prom-
ising results (Castro et  al., 2014; Frye and Rossignol, 
2014). However, two recent reviews concluded that the 
effects of folate-enhancing interventions on the clinical 

symptoms of ASD have not been fully explored yet, 
because only one reduced form of folate has been inves-
tigated so far and only with respect to CFD (Castro et al., 
2014; Frye and Rossignol, 2014).

The levels of vitamin B12 have been found decreased 
in a cohort of autistic children (Ali et  al., 2011). 
Improvements in social interaction, concentration, spo-
ken and written language, and behavior have been 
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recorded after vitamin B12 administration for 3–6 months 
in combination with GSH and special low-fructose and 
organic diets in a small group of autistic children (4–10 
years old) (Patel and Curtis, 2007).

Enteric short-chain fatty acids and, more specifically, 
propionic (propanoic) acid seem to be produced from 
ASD-related gastrointestinal (GI) bacteria, and there is 
evidence suggesting that they may be the cause behind 
some forms of ASD (Macfabe, 2013). Propionic acid-
exposed rats demonstrate repetitive and antisocial behav-
iors and similar neurochemical and neuropathological 
alterations as ASD patients (Macfabe, 2013). The levels 
of phospholipid fatty acids in the plasma of a population 
of autistic subjects show a marked reduction that reflects 
the decrease in the levels of total n-3 PUFAs but not of 
n-6 PUFAs (Vancassel et al., 2001).

Two studies that have followed omega-3 fatty acid 
supplementation in ASD children revealed contradicting 
results. One study shows improvement in main ASD 
symptoms (Amminger et  al., 2007), whereas the other 
demonstrates no beneficial effect after omega-3 fatty 
acid treatment (Bent et  al., 2011). However, both stud-
ies have failed to include a sufficient number of ASD 
individuals and to provide data that can be analyzed 
statistically with confidence. Future assessments that 
would include not only behavioral performance indexes 
but also biological indicators and, more specifically, the 
omega 6/3 ratios could improve the understanding 
of the role of fatty acids in the management of ASD 
(Wilczynski-Kwaitek et al., 2009).

Biopterins, which are considered important cofactors 
of catecholaminergic and several critical metabolic path-
ways, have been found to be highly concentrated in 
urine samples and at low levels in CSF of ASD children 
(Tani et al., 1994). These findings are more pronounced 
in ASD individuals who are younger than 6 years old. 
Studies targeting this age group have shown that tetra-
hydrobiopterin treatment can be beneficial in language 
skills, eye contact, communication, and repetitive behav-
ior (Danfors et al., 2005). In these controlled and other 
open-label clinical trials (Frye et al., 2010, 2013), saprop-
terin, which is a synthetic form of tetrahydrobiopterin, 
has been administered to ASD children. Interestingly, 
sapropterin has been found not only to improve tetrahy-
drobiopterin metabolism in ASD individuals, but also to 
ameliorate nitric oxide (NO) metabolism because serum 
biomarkers related to NO have been suggested to have 
predictive value for ASD children’s response to saprop-
terin (Frye et al., 2013).

GI symptoms, abnormal food cravings, and unique 
intestinal bacterial populations have been proposed to 
be implicated in the development and severity of ASD 
symptoms. More specifically, certain beneficial bacteria 
are not present in the microbiota of ASD patients (Kang 
et al., 2013a). Some ASD cases are connected to maternal 

viral or bacterial infection during pregnancy, also known 
as maternal immune activation (MIA). It has been sug-
gested that MIA leads to a decrease of gut barrier integrity 
and an increase of the presence of bacteria metabolites in 
the blood of embryos. Recently, it has been shown that 
the treatment of MIA with probiotics alleviates some of 
the ASD clinical symptoms in a mouse model of ASD, 
such as anxiety and stereotyped behaviors (Hsiao, 2014; 
Hsiao et al., 2013). Interestingly, these MIA offspring mice 
that received Bacteroides fragilis show improved GI func-
tion and restored the levels of serum metabolites that 
are considered human autism biomarkers, like 4-ethyl-
phenylsulfate (4-EPS) and indole pyruvate (Hsiao, 2014). 
Regarding clinical trials assessing the beneficial role of 
probiotics in ASD children, only one is available that 
demonstrates significant improvement in behavioral 
scores, despite the limitations of the study due to high 
interindividual variability and the high dropout rate of 
participants (Parracho et  al., 2010). Moreover, probiot-
ics improve GI function, and it has also been suggested 
that they ameliorate the detoxification capability of ASD 
individuals and consequently provide protection from 
environmental chemicals, such as mercurial compounds 
that can be more hazardous to these patients compared 
to typical developing children (Alanazi, 2013).

Accumulating evidence suggests that inflammation 
in brain regions related to cognitive function is a hall-
mark of ASD. The natural flavonoid luteolin possesses 
antioxidant, anti-inflammatory, and neuroprotective 
properties. Despite their antithyroid properties, which 
might possibly impact brain development, flavonoids 
have been shown to improve ASD symptoms in ani-
mal models and humans. In a MIA mouse model of 
ASD, luteolin inhibits autism-like behaviors by tar-
geting Janus kinase 2 (JAK2)/Signal Transducer and 
Activator of Transcription 3 (STAT3) signaling (Parker-
Athill et  al., 2009). A mixture of flavonoids composed 
of luteolin, quercetin, and the quercetin glycoside rutin 
has been shown to improve GI and allergy symptoms, 
eye contact, and social interaction when administered 
to a group of ASD children (Theoharides et  al., 2012). 
Accordingly, the same formulation has been given to 
40 children and seems to be effective in reducing ASD 
symptoms without causing any major adverse effect 
(Taliou et al., 2013).

Ginseng is one of the most widely used medicinal 
plants. Red ginseng compared to white is considered 
to provide superior pharmacological effects with lim-
ited adverse effects. Making use of the prenatal valproic 
acid-injection rat model of ASD, which produces social 
impairment and similar neuropathological changes 
monitored in ASD patients, it has been shown that the 
chronic administration of red ginseng extract improves 
sociability and social preference paradigms in a dose-
dependent manner (Kim et al., 2013).
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Abnormal GSH metabolism is a common finding in 
ASD children (Frye and Rossignol, 2014). The reduced 
levels of this major intracellular antioxidant lead to oxi-
dative damage that is usually detected in the cortex of 
ASD individuals. A supplement that provides a precur-
sor to GSH named N-acetyl-l-cysteine has been admin-
istered with success to ASD individuals, but the levels 
of GSH have not been measured (Hardan et  al., 2012). 
Besides N-acetyl-l-cysteine, other novel ASD interven-
tions that address oxidative stress are methyl cobalamin 
in combination with or without folic acid, vitamin C, and 
other antioxidants (Frye and Rossignol, 2014).

Although the etiology of ASD remains elusive, con-
verging lines of research indicate that mitochondrial 
dysfunction may play a substantive role in disease 
pathophysiology. Some of the nutraceuticals presented 
here target this cellular compartment and appear to be 
promising ASD treatment approaches. However, without 
an established causal link, the generation of therapeutic 
targets for ASD has been relatively unsuccessful and has 
been focused solely on the amelioration of individual 
symptoms by certain nutraceuticals without providing 
mechanistic understanding or reliable clinical data.

CONCLUDING REMARKS AND  
FUTURE DIRECTIONS

In recent years, nutraceuticals have been proven ben-
eficial for the prevention or amelioration of cognitive 
impairments in degenerative diseases such as AD and 
PD, and manifestations of ASD. Some clinical stud-
ies have tried to address the role and the molecular 
mechanisms underlying the effects elicited by bioac-
tive compound supplementations in human subjects; 
however, the data obtained in these studies are some-
times controversial and often are obtained using small 
cohorts of subjects and/or for interventions with lim-
ited times. Moreover, scientific research on the role of 
nutraceuticals in relation to neurodegenerative diseases 
often has been based on observations derived from in 
vitro and/or on animal models reproducing neurode-
generative diseases. These models have often yielded 
contradictory results, given the immutable interspecies 
differences (Jucker, 2010) and the obvious limitation of 
in vitro cellular models. Animal models have been use-
ful for improving the understanding of the etiology of 
these neurodegenerative diseases and for assessing the 
effects of new treatments. Nevertheless, available animal 
models often do not resemble the actual pathophysi-
ology of idiopathic diseases such as PD, thus limiting 
data translatability into clinical practice (Potashkin et al., 
2011). Future research will be required to consider the 
multifaceted nature of neurodegenerative diseases and 
to assess, through human-based epidemiological and 

clinical studies, the effectiveness and utility of nutri-
tional multivitamin, mineral, and plant-based mixtures 
to slow the neurodegenerative progression and their 
protective/preventive effects (Arab and Sabbagh, 2010). 
Even though human-based interventional/clinical stud-
ies are still scarce, the adoption of a “precautionary 
principle” in relation to food choices should be highly 
recommended to prevent cognitive impairment and also 
MetS and cancer risk. Among the “precautions,” limiting 
or avoiding alcohol, high-fat dairy products, red meat, 
processed meat, and meat cooked at high temperatures 
and also increasing the intake of soy products and fruits 
and vegetables enriched in bioactive phytonutraceuti-
cals should be advised (Gonzales et al., 2014).
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