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Preface

Over recent years, there have been great advances in the use of in silico tools
to predict toxicity. Significant drivers for this include legislative demands for
more information on chemicals to ensure their safe use and minimise toxicity
to both human health and the environment, combined with an emphasis on
the necessity to reduce and replace animal testing wherever possible.
The aim of this book was to provide a single ‘from start to finish’ guide to

cover all aspects of developing and using in silico models in predictive tox-
icology. Hence the book covers all aspects of modelling from data collation and
assessment of quality, to generating and interpreting physico-chemical
descriptors, selecting the most appropriate statistical methods for analysis,
consideration of applicability domain of the models and validation. Factors
that may modulate toxicity such as external and internal exposure are presented
and the use of expert systems, grouping and read-across approaches is dis-
cussed. In silico toxicology is becoming less of an academic exercise and
more of a practical approach to filling the gaps in our knowledge concerning
the toxicity of chemicals in use. The practical applications of these techniques in
risk assessment are also considered in terms of their use in overall weight-of-
evidence approaches and integrated testing strategies.
This book is intended to be a useful resource for those with experience in

modelling who require more detail of the individual steps within the process,
but should also provide the fundamental background information for those less
experienced in in silico toxicology who wish to investigate the use of the tech-
niques. Each chapter provides the reader with useful information on the indi-
vidual aspects of the modelling approaches and relevant literature references
are provided for those seeking more detail.
During the time of writing this book there are growing signs of change in

toxicology and attitudes towards alternatives. This has been stimulated as
much by the need to change in response to legislation as the vision to
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incorporate the new technologies emerging in molecular biology, high
throughput screening and toxicological pathways. The National Academy of
Science’s report, Toxicity Testing in the 21st Century, puts that vision into
words, encapsulating the deficiencies of the current paradigm and the possi-
bilities for a future without animal testing, but with real relevance for the effects
of long term and low exposure of chemicals to humans. In silico techniques are
a part of this process, whether it is in providing direct predictions of toxicity,
rationalising the results, grouping chemicals with relevance to pathways or
assessing the exposure to a chemical through toxicokinetic considerations. This
book represents the state-of-the-art of in silico toxicology. We hope it is
obvious to the reader that we have as many (if not more) tools and techniques
as the toxicological data will support. What is needed in the near future is an
illustration of how to use these in silicomodels. This includes integrating results
and methods together to obtain greater certainty. Methods need to be devel-
oped to demonstrate the power of computational workflows and how they can
provide estimates of the confidence in a prediction. In silico toxicology has an
important role to play in toxicity testing in the 21st century; it must stand up
and show the way to predicting effects.

Mark Cronin and Judith Madden
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CHAPTER 1

In Silico Toxicology—
An Introduction

M. T. D. CRONIN AND J. C. MADDEN

School of Pharmacy and Chemistry, Liverpool John Moores University,
Byrom Street, Liverpool L3 3AF, UK

1.1 Introduction

Chemistry is a vital part of everyday life. In order for our interactions with
chemicals to be safe, we must understand their properties. Traditional methods
to determine the safety of chemicals are centred around toxicological assess-
ment and testing, often using animals. There is, however, great interest and a
need to develop alternatives to the traditional testing regime. Given the breadth
and complexity of toxicological endpoints it is likely that, to ensure the safety
of all chemicals, a variety of techniques will be required. This will require a
paradigm shift in thinking, both in terms of acceptance of alternatives and the
recognition that these alternatives will seldom be ‘one for one’ replacements.
In silico toxicology is viewed as one of the alternatives to animal testing. It is

a broad term that is taken, in this book, to indicate a variety of computational
techniques which relate the structure of a chemical to its toxicity or fate. The
purpose of in silico toxicology is to provide techniques to retrieve relevant data
and/or make predictions regarding the fate and effects of chemicals. In this
sense the term ‘in silico’ is used in the same manner as in vitro and in vivo, with
‘silico’ relating to the computational nature of the work. There are, obviously,
many advantages to in silico techniques, including their cost-effectiveness, speed
compared with traditional testing, and reduction in animal use.
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The science of in silico toxicology encompasses many techniques. These include:

� Use of existing data. If suitable data exist for a compound, there should be
no requirement to initiate a new test or make a new prediction (unless
prediction is for the purposes of model validation). If data are lacking for
the chemical of interest, then other data can be used to develop (and
subsequently evaluate) a new predictive model. Data sources include the
ever increasing number of available databases as well as the open scientific
literature. In addition, those working in industry may be able to utilise
their own in-house data. More details on the retrieval and use of existing
data are given in Chapter 3.

� Structure–activity relationships (SARs) are qualitative and can be used to
demonstrate that a fragment of a molecule or a sub-structural feature is
associated with a particular event. SARs become particularly powerful if
they are formalised into structural alerts. A structural alert can be used to
associate a particular toxicity endpoint with a specific molecular fragment
such that, if the fragment is present in a new molecule, that molecule may
elicit the same toxicity. The use of SARs and structural fragments is dis-
cussed in more detail in Chapters 8, 13, 16 and 19.

� There is a strong theme in this book towards forming groups of similar
molecules. These groupings are also termed chemical categories. There are
a number of approaches to ‘categorise’ a molecule including mechanistic
profilers (structural alerts) and chemical similarity. Once a robust group of
structures has been formed, it can be populated with toxicity data for
those members of the group where experimental measurements are
available. This allows for a read-across approach to be used to predict the
toxicity of those members of the group for which no data are available.
Various strategies for category formation and read across are discussed in
Chapters 13–17.

� Quantitative structure–activity relationships (QSARs) provide a statistical
relationship between the effects (toxicity and fate) of a chemical and its
physico-chemical properties and structural characteristics. Linear regres-
sion analysis is often used but a variety of other multivariate statistical
techniques are also used. The generation and use of QSARs are discussed
in many chapters in this book.

� Expert systems (in the sense of in silico toxicology used in this book) are
formalised and computerised software packages intended to make the use of
SARs and QSARs easier. They usually provide an interface to enter a
molecular structure and a suitable means of displaying the prediction (i.e. the
result), in certain cases other supporting information is also given. Expert
systems may be distributed on a commercial basis, although some are freely
available. Increasingly they are integratable with other software. These types
of software are described in more detail in Chapters 16, 17 and 19.

� Some in silico models can be derived to extrapolate the toxic effect measured
in one species to predict toxicity in another species, thus reducing the
requirement for further testing. This is discussed in more detail in Chapter 18.
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� Models for other effects are increasingly becoming included under the
remit of in silico toxicology. For example, a number of pieces of software
can be used to estimate the likely exposure of an organism to a toxicant.
Models exist for both external exposure (i.e. determining the amount
present in the environment) and internal exposure (i.e. the amount taken
up and distributed within an organism). These will not, themselves predict
toxicity, but provide useful supplementary information for the overall risk
assessment process. External and internal exposure scenarios are described
in Chapters 20 and 21 respectively.

A variety of other tools and software also included within in silico toxicology
are considered within this book. These include numerous applications for
modelling the properties of chemicals (Chapters 5–8) defining the applicability
domains of models (Chapter 12) and assisting with weight-of-evidence pre-
dictions (Chapter 22).
A note on terminology: it is increasingly common to see the use of the abbre-

viation (Q)SAR, indicating both SAR and QSAR. Where possible, the term
(Q)SAR has been applied in this book and is intended to apply to both. A broad
description of the use of alternatives to animal testing is provided by Hester and
Harrison.1 Alternatives can be generalised into in vitro tests and in silico approa-
ches. In addition to activities such as optimising testing and reducing harm, these
approaches form a framework within the 3Rs philosophy (Replacement, Refine-
ment and Reduction) to replace animal tests. In vitro toxicology includes the use of
cellular systems, -omics, etc. and while it will support the in silico approaches
discussed in this book and is often referred to, it is not the main focus here.

1.2 Factors that Have Impacted on In Silico
Toxicology: the Current State-of-the-Art

Much has been written on the history of QSAR and related techniques, and it is
not the purpose to review much of it in this chapter.2,3 However, it is worth
considering some of the key factors to reach the current state-of-the-art. The
initial factors listed below (Sections 1.2.1–1.2.4) are the drivers for the search of
in silico toxicology; the remaining factors (Sections 1.2.5–1.2.7) have assisted in
progress to the current state-of-the-art.

1.2.1 Environmental and Human Health

There is a need to ensure that any species exposed to a chemical is at minimal or
no risk. The chemical cocktail to which man and environmental species is
exposed potentially comprises a vast number of different substances, with more
being added to that list annually. Whilst it is never the intention to allow
exposure to a hazardous chemical at a concentration that may harm (with the
exception of pesticides and pharmaceuticals etc.), for the vast majority of che-
micals there is little knowledge regarding their effects. Traditional testing of
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chemicals to assess toxicological properties has been heavily reliant on animal
testing. Such tests require specialist facilities, are time-consuming and costly—
even before animal welfare considerations are taken into account. It is widely
acknowledged that to assess all the chemicals that are commonly used, animal
testing will not solve the problem of ensuring that harmful chemicals are iden-
tified. Therefore, in silico alternatives that can make predictions from chemical
structure alone have the potential to be very powerful tools.

1.2.2 Legislation

The manufacture and release of chemicals is carefully regulated across the
world. The aim is to ensure safety through legislation. In addition, companies
consider it a corporate responsibility to ensure the safety of their workers and
consumers, and are highly aware of the possibility of litigation if they fail to do
so. Each country and geographical region has a raft of legislation allowing the
risk assessment and risk management of chemicals; it is beyond the scope of this
volume to discuss this further and readers are referred to the excellent ‘standard
text’ from van Leeuwen and Vermeire.4

No one single piece of legislation has promoted the use and development of
in silico approaches. However, many have included it implicitly or explicitly. At
the time of writing much work is being performed as a result of the European
Union’s Registration, Evaluation, Authorisation and restriction of Chemicals
(REACH) Regulation, not to mention the Cosmetics Regulation. Elsewhere
globally there has been similar legislation such as the Domestic Substances List
in Canada and the Chemical Substances Control List in Japan.5 Within all of
these pieces of legislation there is the expectation that in silico toxicology will be
applied. In each case new tools, methods and techniques have been developed
as a direct response to the legislative requirements.

1.2.3 Commercial—Product Development

Linked to the needs to comply with chemicals legislation, businesses have long
recognised the need to predict toxicological properties from structure. This
provides many competitive advantages including possibilities to identify toxic
compounds early on in the development pipeline, designing out toxicity in new
molecules, registration of products with the use of fewer animals and hence at
lower cost—in addition to the rationalisation of testing procedures. In silico
approaches are broadly applied across many industries with a particular
emphasis on the development of pharmaceuticals.6 Therefore, there is a com-
mercial need for reliable tools and approaches.

1.2.4 Societal

Not only does society desire safe chemicals, but it would prefer that animals were
not used in the assessment of the properties of molecules. Therefore, there is com-
mercial and consumer pressure to find and use alternatives. ‘Computer models’ are
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often cited as a method to replace animal tests. There is an opportunity here to
gain public support of this area of science. In so doing, this may improve the
perception of what science can provide to society. As often happens, public opi-
nion moves ahead of the science and what might be realistically achievable. Every-
one reading this book and considering using these methods should be encouraged
to promote their use and realistic expectations of what they can provide.

1.2.5 Commercial—Software

Sections 1.2.1–1.2.3 reveal a potentially huge marketplace for in silico approaches
to predict toxicity. This has been realised by a number of companies which have
developed commercial software systems; an overview of many of these is provided
in Chapter 19 and elsewhere in this book. These companies have helped to raise the
profile of in silico toxicology and make it more than an academic exercise. Many of
the software products are now considered ‘standard’ and, whilst they cannot be
considered the ‘finished product’ (the models will always need updating and
refining), the commercial impact on in silico toxicology should never be under-
estimated. A competitive marketplace is being developed; a number of commercial
companies are offering free ‘taster’ products with the assumption that the user may
want more from the company. While often incomplete, these free products can
provide invaluable training and educational tools, and allow the novice to famil-
iarise themselves with the concepts and practice of in silico toxicology.

1.2.6 Computational—Hardware and Software

Anyone reading this book will appreciate the exceptional advances in computa-
tional power, software and networking capabilities in their lifetime. Both authors
fondly remember performing early computational chemistry calculations by
building the classic ‘straw’ model of a molecule which was manipulated manually
to obtain a ‘visual’ optimum geometry before guessing at reasonable bond lengths
and angles. The computational input file for the three-dimensional (3-D) struc-
ture was then written by hand allowing for optimisation of a single bond that was
often an overnight calculation. Happy days indeed! The rapid progression of
technology has, however, meant that calculations can be performed at previously
unthought of rates and for vast inventories—millions of compounds very rapidly.
In silicomethods for computational chemistry and toxicology have been quick to
embrace the new, affordable computational power and also use the internet to
compile, organise and distribute information. Many of the tools described in this
book would not have been possible ten or even five years ago.

1.2.7 New and Better Solutions to Complex (Toxicological)

Problems

It is true to say that in silico models may be better able to predict certain
endpoints than others. This is a result of a number of factors, in particular, the
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Table 1.1 Summary of the different types of in silico model and software for the prediction of chemistry and toxicology.

In silico tools and resources Information retrieved or predicted Description
Chapter in this book for
further information

Databases Records of toxicological data and
information (existing data rather
than predictions)

Usually searchable by chemical
identifier, substructure or
similarity

3, 4

Calculation of physico-chemical
properties (descriptors) to be
used in models—may provide
implicit information

Various physico-chemical proper-
ties (descriptors)

Fundamental properties such as
log P, solubility, pKa, etc.

5

Calculation of chemical structure-
based properties—descriptors to
be used in model

2-D properties Various software calculates prop-
erties from 2-D structure, e.g.
molecular connectivities

6

Molecular orbital properties Quantum chemical calculations
requiring a 3-D optimised
structure

7

Calculation of toxicological
effects—direct prediction of
toxicity

Structural alert based expert
systems

Fragment systems relating a par-
ticular sub-structure in a mole-
cule to a toxic effect

16, 19

Multivariate and/or quantitative
expert systems

Systems automating the QSAR
approach to allow for seamless
prediction of toxicity

19

Grouping or category approaches Formation of groups of molecules
on the basis of rationally defined
similarity

14, 15, 16, 17
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Estimates of external exposure Complex models for various
exposure scenarios

May calculate potential for expo-
sure from a variety of routes, e.g.
inhalation, dermal, etc.

20

Predictions for internal exposure Absorption, distribution, metabo-
lism and elimination character-
istics of chemicals

Assessment of factors that may
modulate overall toxic potential
by considering extent of internal
exposure at site of action

21

Validation of models Applicability domain definition Various statistical methods for
defining the domain of a (Q)SAR

12

QSAR model reporting format Automated methods to compile
the details of a (Q)SAR suitable
for validation

11

Integration of models Pipelines for integration of models Automated methods to link toge-
ther algorithms into a predictive
workflow

24
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data available for modelling, the extent of knowledge concerning the
mechanisms involved and the complexity of the endpoint. The current real
challenge to find alternatives in toxicology is for the chronic, low-dose, long-
term effects to mammals (and understanding the effects on man in particular).
The most difficult endpoints to address with alternatives include develop-

mental toxicity and repeated dose toxicity. For these endpoints it is necessary to
move away from the direct replacement dogma that has driven in vitro tox-
icology. There are likely to be many alternatives proposed, but one way for-
ward is capturing the chemistry (i.e. structural attributes) of compounds
associated with particular pathways which lead to toxicological events; more
discussion is given in Chapter 14. In a related manner, this is (partially) the
vision of the report, Toxicity Testing in the 21st Century: A Vision and A
Strategy, published by the US National Research Council of the National
Academies,7 which has subsequently spawned the Tox21 collaboration between
the US National Institute of Health (NIH) institutes and the US Environ-
mental Protection Agency (EPA).8

1.3 Types of In Silico Models

There are many different types of models for computational chemistry and
in silico toxicology. Table 1.1 shows a broad distinction between the types of
models referred to in this book. As illustrated in Table 1.1, only some of the
available software can be used to predict toxicity directly. Other models provide
the building blocks to (Q)SAR formation and their application. How these may
all fit together is described in more detail in Chapter 2.

1.4 Uses of In Silico Models

As suggested in Section 1.2 and Table 1.1, there are likely to be many potential
uses of in silico models and related software. For the purposes of this book,
these uses can be summarised in terms of which aspects of the life of the che-
mical or product they relate to. These are summarised in Table 1.2—but
remember that this is only a small proportion of the possibilities for use.
With regards to the assessment of the toxicological properties of molecules,

there will be much greater emphasis in the future on so-called Integrated
Testing Strategies (ITS).9 These are initially being used in response to legislative
requirements, but future use will hopefully extend their application to provide
realistic frameworks to replace animal tests. These are described in more detail
in Chapter 23 and require a variety of in silico building blocks, e.g. use of
existing databases, (Q)SAR predictions, etc. A part of ITS will undoubtedly be
the combination of predictions from different methods.10 This will be an
important process, and whilst models are usually considered in isolation, it
must be remembered that greater confidence will be obtained if all possible
information is combined together.
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1.5 How to Use this Book

This brief chapter is not intended to do anything more than set the scene for the
reader. It is anticipated that readers will be users and/or developers of models.
Users of models will find the book a useful place to find basic definitions,
obtain in-depth details of models and assess the different approaches for the
in silico prediction of toxicity. Both novice and experienced modellers will find
Chapter 2 the ideal starting place for tackling the problems of creating a
meaningful workflow for in silico toxicology development. It is intended that
this book will lead developers through the process of identifying relevant data,
characterisation of molecules, development of significant (statistical) relation-
ships, the interpretation and documentation for regulatory purposes—and
allow them to be able to place the models in the context of current knowledge.
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CHAPTER 2

Introduction to QSAR and Other
In Silico Methods to Predict
Toxicity

J. C. MADDEN

School of Pharmacy and Chemistry, Liverpool John Moores University,
Byrom Street, Liverpool L3 3AF, UK

2.1 Introduction

Scientific analysis of the world around us is based on collecting information on
what is known, or can be measured, and structuring the information to enable
investigation of why systems behave the way in which they do. The information
must be organised into a framework from which the relationships between the
different aspects of complex systems can be determined and how they interact
to produce the effects observed. Scientifically, this current knowledge is used to
create theories or models from which predictions of unknown phenomena can
be made. As scientific knowledge advances and more information becomes
available, this can be used to test the theories or models that have been built.
In silico prediction of toxicity is based on such scientific principles. Initially,

information is gathered from previous observations such as collation of mea-
sured toxicities of a group of chemicals. The properties of these chemicals are
investigated to establish which features are responsible for their toxic activity,
i.e. to determine the relationship between the specific molecular properties of
the compound and its associated toxicity. This information can then be used to
build models that can explain why a given compound does (or does not) elicit a
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particular effect and to predict the effects likely to be elicited by compounds
for which the measured data are not available. As more data become available,
the validity of the models can be tested and adjustments made as necessary.
This is an iterative process allowing for continual refinement of predictive
models.
In silico models use computational methods to predict activity of compounds

based on knowledge of their chemical structure and selected properties. The
properties themselves (e.g. physico-chemical or structural properties) may be
computationally calculated using a range of software, or determined experi-
mentally. In silico methods include (quantitative) structure–activity relation-
ships [(Q)SARs], expert systems, grouping and read-across techniques. Each of
these techniques is introduced below and expanded upon in subsequent
chapters.
The basic tenet of quantitative structure–activity relationship (QSAR)

analysis is that a given biological activity can be correlated with the physico-
chemical properties of a compound using a quantitative mathematical
relationship. QSAR (and other in silico methods to predict toxicity) are
powerful and highly attractive tools in science. In part this is due to the
diversity of the knowledge base the techniques employ, drawing together
information from several disciplines. There are the chemical and physical
properties of compounds to consider in addition to knowledge of the chemical,
physiological or toxicological mechanisms that give rise to the effects.
There is an ever increasing array of techniques available from which to build

models employing the advances in mathematical and computational sciences.
Overall, the number of models available is rapidly expanding. All models are,
by definition, surrogates for real systems. The usefulness of models is deter-
mined by the extent to which they offer a greater understanding of the system
and enable predictions beyond current knowledge.
In silico methods in toxicology provide a framework for combining

knowledge from several disciplines, offer mechanistic insight into chemical and
biological processes, help to identify anomalous observations and promote
savings in time, money and animal use where estimations of toxicity are
required.
The philosophy of this book is to guide readers through the processes

involved in generating and using in silico techniques to make predictions for
toxicity. The aim of this chapter is to provide an overview of how the different
sections of the book link together to enable such predictions to be made. This
chapter serves as an overall introduction to QSAR and in silico techniques,
outlining how to go about generating and using the models. This general
overview is supplemented by subsequent chapters which provide a more
detailed analysis of each individual step in the model building process. This
chapter focuses on how to develop a QSAR for a toxicological endpoint.
However, the methods described are equally applicable to developing QSARs
for other endpoints such as predicting drug activity or pharmacokinetic/tox-
icokinetic properties. The use of other in silico techniques (e.g. category for-
mation and read-across) are also introduced in this chapter.
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2.1.1 Fundamentals of QSAR

The origins of QSAR date back to the 19th century when researchers including
Cros,1 Crum Brown and Fraser,2 and Richardson3 all identified a relationship
between the activity of a compound and its chemical properties. However, it was
the pioneering work of Hansch et al.4 which is most often quoted as the begin-
ning of modern QSAR. Equation 2.14 encapsulates the philosophy of QSAR, i.e.
that a given biological activity can be correlated with the physico-chemical
properties of a compound using a quantitative mathematical relationship.

log 1=C ¼ 4:08p� 2:14p2 þ 2:78sþ 3:36 ð2:1Þ

[statistics not given]
where:

C is the concentration to produce a herbicidal effect
p is an indicator of hydrophobicity
s a measure of electronic effects within the molecule (discussed below).

Many elegant descriptions concerning the chronological development of this
field have been published in the literature.5,6 Readers are referred to these
articles for a comprehensive review of QSAR from a historical perspective.
Here the emphasis is on the current state-of-the-art, with comment on the
future of QSAR and its potential utility in predictive toxicology.
QSAR and other in silico techniques have been widely used by the drug

industry for many years. However, new European legislation such as the
REACH Regulation7 and the Cosmetics Directive8 have led to increased
interest in these methods. This is because the legislation promotes the use of
alternatives to using laboratory animals to provide estimates of toxicity for risk
assessment purposes. QSAR enables the relationship between activity (toxicity)
and physico-chemical properties of molecules to be determined (Figure 2.1).
Although QSAR can be applied to diverse areas of science covering a range

of endpoints (drug activity, pharmacokinetics/toxicokinetics, pesticide toxicity,

Toxicological (or other) activity e.g.

• Effective concentration (EC50)
• Lethal concentration (LC50)
• Concentration to inhibit 

growth (IGC50) etc

Physico-chemical properties e.g.

• Size / shape parameters
• Lipophilicity
• Electronic properties
• Structural information 

QSAR: Derivation of a mathematical relationship that correlates activity with properties

Figure 2.1 Overview of QSAR.
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fragrance, etc.), the fundamental approach to developing, validating and using
QSARs is relatively consistent. A flow diagram indicating the steps involved in
this process is shown in Figure 2.2.
While this chapter is mostly concerned with the steps involved in generating a

new in silico model, existing models such as published (Q)SARs or expert

1. Select the endpoint of interest 

2. Gather available, relevant data on the endpoint 

3. Assess the quality of the data in terms of its suitability for modelling; 
hence select the data that can be used to build the model

4. Obtain relevant parameters that may be linked to activity. E.g. identify functional groups
associated with an effect; generate/obtain physico-chemical properties (where possible use 
mechanistic knowledge to inform the selection of parameters likely to influence activity). 

5. Generate an appropriate model using knowledge of the compounds and 
their activities. The type of model depends on the data available and the 
purpose of the model. Types of model include:

• rules of thumb 
• classification models
• SAR
• QSAR (local or global models)
• formation of categories / read-across

6. Assess the validity of the model (consider OECD Principles for Validation of QSARs)

7. Review and update the model; investigate outliers; incorporate new data / 
mechanistic information etc as it becomes available

8. Use the model in an appropriate manner for making predictions; consider

• the applicability domain of the model
• the purpose for which the model was designed (e.g. for screening / ranking or making

quantitative  predictions)
• the purpose for which the model will be used (prioritising compounds from large data 

inventories; making finite predictions in risk assessment; part of weight-of evidence etc)

9. Consider mitigating factors e.g. external or internal exposure, abiotic transformation, metabolism etc

10. Fully document process undertaken to ensure justification for use of model and predictions obtained  

Figure 2.2 Steps involved in generating and using in silico predictions.
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systems (see Chapter 19) can also provide useful information in terms of pre-
dicting activity, elucidating mechanisms or confirming the validity of newer
models.

2.2 Building an In Silico Model

2.2.1 Step 1: Selecting the Endpoint to Model

Selecting the endpoint for which a model is to be built determines the nature of
the data required to build the model. Although choosing the endpoint may
appear trivial at first, it may not be a trivial issue in practice. In some cases the
endpoint may be obvious, e.g. a mouse oral LD50 measured at a specific time
point. However, consider building a model for toxicity to fish, here a 96-hour
LD50 value measured in guppy is a different endpoint to a 96-hour LD50 in
fathead minnow. The question is this: is the endpoint of interest (and hence the
model to be built) toxicity to all fish species, an individual species or the most
sensitive species? For Daphnia toxicity, should a model to be generated for
LD50 at 24 hours or 48 hours, or can data from either endpoint be combined
into a single endpoint for LD50? In Ames testing for mutagenic effects, is the
endpoint mutagenic activity in the absence or presence of metabolising
enzymes? If enzymes are present, is this in the form of microsomes or the S9
fraction? Also consider the case of the human health endpoint skin sensitisa-
tion: to build a model for skin sensitisation there are several endpoints on which
data may be gathered including the guinea pig maximisation test, the occluded
patch (Beuhler test), Freund’s complete adjuvant test, mouse ear swelling test,
local lymph node assay, human repeat insult patch test, etc. The modeller needs
to determine which is the most relevant endpoint for their purpose. In many
cases, availability of data will influence the endpoint selected; however, it is
important to have a clear idea from the outset which is the specific endpoint to
be modelled and hence which data are relevant.

2.2.2 Step 2: Gathering the Data

Once the relevant endpoint has been identified, the next step is to gather
available data for that endpoint. There are many ways in which data can be
gathered for modelling purposes. Information can be retrieved based on sear-
ches for specific compounds of interest or for endpoints of interest. Sources
of data include both in-house and publicly available resources. In-house
data resources should be considered where available as these have several
advantages:

� details of specific experimental protocols and associated metadata can be
obtained and verified;

� the causes of anomalies in results are easier to investigate;
� the chemical space of in-house data sets is more likely to be representative

of the chemical space of the compounds for which a prediction is sought.
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Publicly available sources of data include:

� primary literature (for individual compounds and data sets);
� internet–based resources: ChemSpider;9 ChemIDplus Advanced;10 and

the Cheminformatics and QSAR Society’s web pages;11

� completed and ongoing efforts within EU projects such as CAESAR12 and
OSIRIS,13 which are releasing data sets that have been highly curated;

� global (meta) portals such as ACToR14 and the Organisation for Eco-
nomic Co-operation and Development (OECD) eChem portal.15

These are only a few examples of the extensive resources available; further
information on data resources is given in Chapter 3.

Once an endpoint has been selected and the search for data has begun,
availability of data should guide the refinement of the search criteria. It may be
pragmatic to expand the search criteria where data are scarce (e.g. to include
more species within the same taxa, additional time points or related effects) or to
limit the search criteria where data are plentiful (e.g. to a single species, study
duration or effect). The more stringent the criteria for including data in the
model, the more reliable the model should be as sources of variability are reduced.
As discussed in Chapter 3, there is a fine balance between making search

criteria so broad as to introduce too much variability and too narrow to obtain
a reasonably sized data set. Chapter 3 provides a detailed review of available
resources, along with recommendations for using these and example case stu-
dies in obtaining data for different purposes. When starting to search for
toxicity (or other) data, readers are referred to Chapter 3 for guidance in how to
go about finding relevant data. Note, however, this is a rapidly evolving area
and new sources of data with user-friendly interfaces are continually being
developed.
When acquiring data it is essential to capture all the relevant information and

ensure that the data storage system is reliable and portable. In many instances,
a simple spreadsheet (e.g. Microsofts Excel or Accelryss Accord for Excel)
will suffice and allows the flexibility to store required information that can be
read directly into a range of statistical analysis or model development software
packages.
It is essential to ensure that all transcriptions of data are correct as any errors

introduced in the data gathering stage will later translate into inaccurate
models being developed. It is crucial to ensure that the structure itself is correct
and that the data correlate to that specific compound. The validity and accu-
racy of the SMILES string/CAS number should be checked rigorously before
storing any associated data. Chapter 4 discusses, in more detail, issues to ensure
accuracy in data collection.
Gathering data can potentially be a very long process. A pragmatic approach

must therefore be taken to ensure a reasonable number of compounds and their
associated data are collected for analysis without spending an excessive amount
of time tracking down every last compound, as is often the case the law of
diminishing returns applies!
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2.2.3 Step 3: Assessing the Quality of the Data

Once the data have been acquired, the quality of the data and their suitability
for the purpose of modelling needs to be assessed before their inclusion in the
model building process can be justified.
Important issues in assessing the quality and/or suitability of data include:

� Can the data be unequivocally associated with the given compound?
Potential problems here include:
– incorrect nomenclature, CAS numbers or chemical structures;
– the use of salts in place of parent compounds;
– tautomeric and isomeric forms of the compound; and
– questions concerning purity of the tested compound.

� Has the stated quantity or concentration of the compound been verified?
Issues here include limited solubility in the test system or volatility of the
compound resulting in the actual amount present being lower than the
nominal (stated) concentration. Passive dosing systems or monitoring of
concentration throughout the time course of the experiment may provide
greater confidence in results.

� Are the data from a reliable source? For example was the result produced
in a laboratory with acknowledged expertise in the area by appropriately
trained staff performing work to standards commensurate with Good
Laboratory Practice?

Formal scoring methods (e.g. Klimisch criteria)16 for assessing data quality are
available and serve as a useful guide as to whether or not the data are ideal,
reasonable or should only be used with caution.
Chapter 4 deals with these issues and other aspects of assessing data quality

in much greater detail. Only data whose inclusion can be justified should be
incorporated into building or testing of models.

2.2.4 Step 4: Obtaining Parameters Potentially Related to the

Activity

The purpose of building a model for use in in silico prediction of activity
(toxicity) is to derive a relationship between the properties of the compounds
and their biological effects. Thus, if the relevant properties of a new compound
can be determined its biological effect can be predicted from these. (Note that
the ‘properties’ of molecules may be variously referred to as ‘parameters’,
‘variables’ or ‘descriptors’.)
Key to building a useful model is determining which properties of the

compounds are linked causally to their effects. While it is possible to obtain
properties from the literature, computationally generate or measure de novo
thousands of properties of molecules, the majority will not have a causal
relationship with effect. In some cases no correlation between the property and
biological effect will be demonstrated; in other cases, a superficial relationship
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may be determined but this apparent relationship will not withstand rigorous
statistical investigation. Statistical analysis and the problems of spurious cor-
relations are discussed further in Chapters 9 and 10.
In building a model it is more useful to incorporate only those properties of the

compounds for which a rationale for the relationship with effect can be justified.
Notwithstanding, in certain cases, so little is understood about the mechanisms
involved in the processes that it may be necessary to resort to the inclusion of less
readily defensible molecular properties. There are a myriad of one-, two- and
three-dimensional properties that can be obtained for individual chemicals. These
encompass steric, electronic, hydrophobic and topological properties in addition
to composite parameters produced from combinations of such properties, e.g. the
electrotopological indices which unite electronic and topological effects.17 Prop-
erties may relate to the whole molecule or, where structural analogues are
investigated, substituent parameters may be employed. Table 2.1 provides an
overview of some of the key molecular properties of compounds encountered in
in silicomodels for predicting activity and a rationale for their inclusion in models.
Chemical structure encodes all possible information of the nature of a che-

mical and how it will interact from whether it will be a solid, liquid or gas at
room temperature and pressure to how it may interact with biologically rele-
vant molecules such as enzymes or DNA. Although all of this information
exists within the chemical structure, our understanding of these systems and
ability to interpret the information is less than perfect.
In certain cases it is the presence of a particular structural feature or func-

tional group that influences or determines activity; hence identifying these
features may serve as useful ‘parameters’ in model building. Simple physico-
chemical properties such as the logarithm of the octanol/water partition coef-
ficient (log P) or logarithm of the aqueous solubility (log Saq), etc. can be
obtained from the literature, measured directly or estimated using a range of
software. The ability of a molecule to elicit a biological effect may be correlated
simply to such a property; for example, the narcotic effect of alcohols can be
related to their hydrophobicity as it involves a non-specific interaction per-
turbing the cell membrane. Chapter 5 provides more detail on simple physico-
chemical properties and their measurement.
Two-dimensional (2-D) properties relating to the chemical’s structure (i.e.

those determined from a graphical representation of the connectivity of atoms
within molecules) are discussed in Chapter 6. These allow for shape char-
acteristics, in terms of molecular topology, to be considered which can influence
the ability to reach a target site or to fit to a receptor.
Chapter 7 provides an in-depth analysis of electronic properties derived from

molecular orbital calculations. These are of particular significance for more
reactive compounds as they provide a quantitative indication of the reactivity
of chemicals and hence determine the likelihood and degree of interaction with
biologically important macromolecules such as DNA and proteins. The ability
of a molecule to elicit a biological effect may be related to relatively simple
physico-chemical properties. However, many biological effects are the result of
specific binding to individual receptors or biological targets (e.g. the binding of
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Table 2.1 Example descriptors used in (Q)SAR and the rationale for their
inclusion in models.

Descriptor Definition of descriptor and rationale for inclusion

Functional groups/ structural
alerts

Certain toxicities may be associated with specific
structural features, e.g. presence of nitroso groups
associated with carcinogenic potential or Michael
type acceptors associated with skin sensitisation.

Similarity indices or similarity
scores

Based on the concept that ‘similar’ molecules will
produce ‘similar’ effects. There are many ways in
which ‘similarity’ may be defined (e.g. similarity of
size, shape, spatial distribution of key atoms/func-
tional groups, reactive potential, etc.). What makes
one molecule ‘similar’ to another is a debatable issue.

Indicator variables These indicate the presence or absence (usually
denoted by 1 or 0 respectively) of specific structural
features (e.g. hydrogen bond donating/accepting
groups, presence of particular functional group,
etc.).

Hydrophobic/hydrophilic
descriptors

Indicate solubility in aqueous and/or organic medium
and relative partitioning between phases. Descrip-
tors may correlate with the ability of compounds to
cross biological membranes, accumulate within bio-
phases or relate to specific hydrophobic interactions
within receptor sites.

Log P Logarithm of the partition coefficient, i.e. the ratio of
concentrations of a compound between an organic
and an aqueous phase (usually 1-octanol/water).

Log D Logarithm of the distribution coefficient (or apparent
partition coefficient). Derived from log P but taking
into account the partitioning of ionised or associated
species.

Log k0 Logarithm of the high performance liquid chromato-
graphy (HPLC) capacity factor. Retention on an
HPLC column is correlated with log P. It can be
determined more rapidly and can be applied to
compounds for which standard methods of mea-
suring log P are not appropriate.

Log Saq Logarithm of the aqueous solubility.
Lipole Distribution of lipophilicity within a substituent or

whole molecule.
Molecular lipophilicity
potential (MLP)

Geometric distribution of lipophilicity within a
molecule.

p Substituent constant indicating the influence of indi-
vidual substituents on overall partitioning beha-
viour: p¼ log P(substituted derivative)� log P(parent).

Electronic descriptors These represent diverse properties which are asso-
ciated with many effects. Examples include the
ability to cross biological membranes or bind to
macromolecules (correlated with hydrogen bond
donating/accepting ability or dipole interactions)
and chemical reactivity associated with (covalent)
binding that may elicit DNA damage or immune
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Table 2.1 (Continued )

Descriptor Definition of descriptor and rationale for inclusion

responses (correlated with electronegativity, EHOMO,

ELUMO, etc.).
HD/HA Hydrogen bond donating/accepting ability. This may

be represented as an indicator variable for ability or
lack of ability to hydrogen bond or be quantified as
to strength of bonding ability.

EHOMO Energy of the highest occupied molecular orbital
(negative of the ionisation potential).

ELUMO Energy of the lowest unoccupied molecular orbital, (a
measure of the ability to accept electrons).

Electronegativity (x) Ability of an atom (or group) to attract electrons,
associated with reactivity.

Electrophilicity (o) Models the ability of a molecule to accept electron
density, associated with reactivity.

Superdelocalisability A measure of reactivity determined from:P
(charges of atoms in molecular oribtial) C(energy

of each molecular orbital).
Atomic charge (qn) Charge associated with atom ‘n’.
Dipole moment (d) Distribution of charge within a molecule.
s The Hammett substituent constant, indicating the

electron directing effects of aromatic substituents
(positive for electron attracting and negative for
electron donating groups).

Steric descriptors Associated with ability to reach target site (e.g. be
absorbed across relevant biological membranes) and
fit within specific receptors.

Molecular weight Relative molecular mass indicating general size of the
molecule.

Molecular volume This may be calculated using the sum of van der Waals
atomic volumes; indicates general size.

Molecular surface area/solvent
accessible surface area

Computationally, a probe molecule can be ‘rolled’
over the surface of a molecule to determine the area
that is accessible (to solvents or interacting molecules
such as receptors).

K The kappa index is a shape parameter based on the
degree of branching of the molecular graph.

Sterimol (L1, B1-B5) Shape descriptors that indicate the length (L) of a
substituent and its widths in different directions
(B1-B5).

Es The Taft steric constant indicates the size contribution
of substituents on a parent molecule.

Topological descriptors These are based on graph theory and relate to overall
topology, dictated by the way in which atoms are
connected to each other. Whilst many studies relate
topology to molecular properties, their use remains
controversial due to the difficulty in interpreting
some of these parameters.

nw Nth order connectivity index. Zero order connectivity
is obtained by counting the number of non-hydrogen
links to each atom and taking the reciprocal square
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drugs to enzymes inhibiting their activity or the binding of an oestrogen-mimic to
the oestrogen receptor, associated with endocrine disrupting effects). These pro-
cesses require specific interaction between a chemical and its target macro-
molecule. The correct orientation of the atoms and the distribution of their
electronic and hydrophobic features in space can only be accurately determined by
consideration of three-dimensional (3-D) descriptors. Three-dimensional interac-
tions between chemicals and biological targets are considered further in Chapter 8.
Clearly, it is beyond the scope of a single chapter to describe all potential

molecular properties of interest. Thus for further information on the use and
generation of one-, two- and three-dimensional properties as well as compar-
isons of the software that may be employed to generate such descriptors,
readers are referred to Chapters 5–8.

2.2.5 Step 5: Generating the Model

As Figure 2.2 shows, once the data on the endpoint have been gathered and
assessed and the appropriate parameters generated, the next stage is to generate
the model itself. This is the key step in the process and careful consideration
needs to be given as to how to approach model generation.
There are many different modelling approaches and statistical methods of

analysis from which to choose. Selection of the most appropriate method must
take into account:

� the nature of the endpoint to be modelled and the accuracy of the data for
the endpoint (i.e. accurately measured continuous data or categorical
classifications based on positive/negative indicators or rank ordering);

Table 2.1 (Continued )

Descriptor Definition of descriptor and rationale for inclusion

root. Higher order is obtained by summing across
different numbers of bonds.

nwv Valence corrected connectivity indices are used to
distinguish between heteroatoms.

3-D descriptors Three-dimensional representation of molecules pro-
vides a more accurate description of molecular
dimensionality. Such parameters are important in
terms of receptor fit and binding.

Composite parameters These represent combination effects and can provide
additional information reflective of more than one
feature.

Polar surface area;
hydrophobic surface area

Dividing the surface area of a molecule into regions of
polarity or hydrophobicity can provide useful
information for example in terms of specific receptor
binding interactions.

Electrotopological state
indices (S)

A combination of electronic features and topological
environment for given atoms.
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� the amount of data available (small or large data sets);
� the information available on the compounds (i.e. which parameters can be

reasonably obtained and what they can tell you about the molecule); and
� the purpose for which the model is being built (i.e. for general screening/

rank ordering purposes or for quantitative prediction).

The simplest models are those based on ‘rules of thumb’, which are broadly
applicable and useful for general screening purposes. A notable example
of this is Lipinski’s ‘rule-of-fives’18 which has gained broad acceptance
in drug development because of its simplicity and interpretability. The rule
states that for any given compound: log P45; molecular weight 4500;
number of hydrogen bond donors 45; number of hydrogen bond acceptors
410, are all factors associated with poor intestinal absorption. Similarly,
cut-off values for certain properties can be useful for classifying compounds
into broad categories. For example in toxicological assessment, compounds
with log P values 44.5 have been classified as having the potential to
bioaccumulate.19

Where specific structural features can be identified as being associated with a
particular activity, structure–activity relationship (SAR) models may be gen-
erated. For example the presence of nitroso groups has been associated with
carcinogenicity,20 glycol ethers have been associated with developmental toxi-
city,21 and Ashby and Tenant indicated a number of structural alerts associated
with carcinogenicity and mutagenicity endpoints.22 The identification of
structural alerts such as these can be formalised into knowledge-based pre-
diction methods; these form the basis (or rule-base) of many ‘expert systems’ to
predict toxicity. The methods employed by these systems, their use and appli-
cation, are discussed further in Chapter 19.
Moving beyond these simple and intuitive relationships, more mathematical

models can be derived providing quantitative estimates of potency, i.e. quan-
titative structure–activity relationships (QSARs). These models may be global
(i.e. covering large data sets of diverse molecules) or may be more local models
applicable to fewer compounds representing a narrower area of chemical space.
Global models have the advantage of being generally applicable (although
detailed information on interactions may be lost), whereas local models may
provide more insight into the mechanisms involved in the process (at the cost of
being applicable to fewer chemicals).
A QSAR may be developed using simple linear regression, i.e. where a single

parameter is correlated with biological activity. More commonly, more than
one parameter determines activity; hence multiple linear regression is necessary
to generate the model.
There are many statistical methods that can be used to generate QSAR

models; the most appropriate depends on the nature of the data set, the
descriptors available and the ratio between the numbers of compounds and
descriptors. Chapters 9 and 10 discuss in detail the most appropriate choice of
statistical methods for analysing continuous and categorical data, respectively,
and how to interpret the statistics generated for the models.
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Recently there has been a great deal of interest in category formation and
read-across methods as tools for in silico prediction of toxicity. These are based
on the premise that ‘similar’ molecules will possess ‘similar’ activity. Similarity
itself can be defined in many ways. For example compounds may be similar in
terms of parameter values (e.g. log P, log Saq), size, molecular shape, reactivity,
presence of structural features, etc.
Similarity in one respect does not mean that they will be similar in others (e.g.

compounds of the same molecular weight may have vastly different log P values).
Hence it is important to determine which property is related to the activity and look
for molecules that are similar in respect of that property. This allows for ‘groups’ of
chemicals to be formed; the common feature of the group should be associated
with the activity. If the activity of one (or preferably more) of the members of the
group is known, then the activity of other members of the same group can be
predicted. This can be done in either a qualitative or quantitative manner.
One useful way to group chemicals together is by mechanism of action. For

example, chemicals acting as Michael acceptors are known to react with skin
proteins resulting in skin sensitisation. This means that a category can be built
for chemicals that may act as Michael acceptors. If several members of the
category are known to be skin sensitisers, then the prediction could be made that
other category members are also likely to be skin sensitisers (note this is a sim-
plified example, further details of this example can be found in Enoch et al.23).
Chapter 13 discusses the role of the underlying mechanisms in toxicity,

information which could be useful in forming toxicologically meaningful
categories; this topic is developed further in Chapter 14.
An increasing number of tools are becoming available for category forma-

tion and read across. Chapter 15 provides a brief introduction to the principles
of read-across and the theme is developed further in Chapter 16, which dis-
cusses the use of the OECD (Q)SAR Application Toolbox for making pre-
dictions using read-across. Chapter 17 considers other tools that may be used to
investigate similarity of molecules which can be used to form categories.
Whilst there is a vast array of techniques available for generating models, the

data available and the purpose for which the model is being developed should
provide guidance on which is the most appropriate method to select for a given
query.

2.3 Assessing the Validity of the Model

Given sufficient data and a high number of descriptors, it is possible to generate
a large number of models; however, in order to be useful, the model needs to be
valid. Whilst there has been a great deal of interest lately in what constitutes a
‘valid’ model, key principles of developing a good model were formally pro-
posed more than 35 years ago. Unger and Hansch24 proposed five criteria for
selecting the ‘best equation’ to correlate activity, these were:

(i) selection of independent variables, i.e. those that are not inter-correlated
with other variables;
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(ii) justification of the choice of independent variables, i.e. these should be
validated by an appropriate statistical procedure;

(iii) principle of parsimony, i.e. to use the simplest model;
(iv) number of terms, i.e. to have sufficient data points available per

descriptor to avoid chance correlations. (The Topliss and Costello25 rule
recommends at least five data points to be incorporated per descriptor
added.);

(v) qualitative model, i.e. one which is consistent with the known physical-
organic and biomedicinal chemistry of the process involved (now gen-
erally referred to as ‘mechanistically interpretable’).

Moving forward to 2004, the OECD Principles for the Validation for Reg-
ulatory Purposes of (Q)SARs (which can be used also to guide assessment of
the validity of other in silico models) were proposed.26 These state that the
model should be associated with:

(i) a defined endpoint;
(ii) an unambiguous algorithm;
(iii) a defined domain of applicability;
(iv) appropriate measures of goodness-of-fit, robustness and predictivity;
(v) a mechanistic interpretation, if possible.

Sections 2.2.1 and 2.2.5 have dealt with selecting an appropriate endpoint
and method to generate the model (the algorithm). In terms of selecting an
unambiguous algorithm, more transparent models such as multiple linear
regression (MLR) are preferred to non-transparent models such as certain
neural network methods.
The domain of applicability is used to determine the chemical space for

which the model is applicable. This may be defined in terms of structural fea-
tures of the compounds, physico-chemical properties or mechanism of action
(or a combination of these). For example, if a model relating log P to toxicity
was built entirely using compounds with log P values between 2 and 5, then it
would be questionable to use the same model to predict the toxicity of a
compound with a log P value of 8, as this is beyond the scope of the parameters
used to generate the model (i.e. the compound falls outside of the applicability
domain of the model). There are many ways in which the applicability domain
of the model can be defined and these are presented in detail in Chapter 12.
In terms of assessing ‘appropriate measures of goodness-of-fit, robustness

and predictivity’, the method by which the performance of a model is judged is
dependent upon the type of model generated. For a classification model, a
measure of concordance (i.e. the percentage of compounds placed into the
correct category) gives a useful indication of overall model performance.
However, in terms of toxicity prediction, sensitivity and specificity may be more
important. Sensitivity is the proportion of compounds correctly classified
as ‘toxic’ (or active) relative to the total actual number of toxic (active)
compounds; specificity is the proportion of compounds correctly classified as
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‘non-toxic’ (or inactive) compared to the total number of actual non-toxic
(inactive) compounds. These are important in toxicity as potentially the
consequences of a false negative prediction (i.e. predicting a toxic compound to
be non-toxic) are much more serious than a false positive prediction (i.e.
predicting a non-toxic compound to be toxic). In the case of the former,
inadequate measures may be put in place to protect humans and the environ-
ment resulting in harm; in the latter case, excessive protective measures may be
put in place which could be costly to industry.
For linear and multi-linear regression based models, the proportion of

variability in the data accounted for by the model (r2 values) are often used to
determine model performance. Statistical measures should also include an
assessment of the predictivity of the model, i.e. how well it performs in pre-
dicting compounds that were not present as part of the training set. Appro-
priate statistical measures on which to judge model performance are given in
Chapters 9 and 10.
Considering point (v) of the Principles above, the model should be inter-

pretable, i.e. the parameters included in the model should ‘make sense’ in terms
of what is known about the process.
If the process is well understood, then it is generally easier to rationalise the

presence of readily interpretable parameters; where little is known of the
mechanisms of the process this may not be readily achievable. Chapter 11
discusses the validation of in silico models in more detail.

2.4 Reviewing and Updating the Model

Once the model has been generated and the validity assessed, this should not be
considered as the end of the process in terms of using in silico models for
toxicity prediction. The presence of outliers (i.e. compounds for which the
model poorly predicts toxicity/activity) can provide useful information which
can be used to revise the current model or generate new models. In some cases
the outlier may have the potential to act via a different mechanism to other
compounds used to generate the model. This can provide useful insight into
mechanisms of action involved in toxicity.
An outlier may be due to an erroneous experimental measurement (in which

case it should be omitted) or may provide information on the limitations of the
experimental procedure. For example, highly volatile compounds may be lost
from the experimental media before a true measure of their toxicity (at a given
concentration) could be measured. Similarly a compound may be metabolised
or abiotically transformed to another compound before it reaches its site of
action. Such compounds may also appear as outliers as the parent compound is
no longer present (or is present in much lower concentration) and the measured
effect may in fact be due to metabolite or other transformation product.
Acquisition of new information of this type or of further data for a given

endpoint should be used to re-develop models in an iterative manner. In this
way models are continually updated and improved. Within a given industry,
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the chemical space of compounds of interest may gradually evolve over time;
hence the applicability of a model developed in the ‘old’ chemical space may
not be predictive for compounds in the ‘new’ chemical space. Model develop-
ment should be a dynamic, ongoing concern utilising the most up-to-date
information and techniques.

2.5 Using the Model

Many in silico models already exist and there is the potential to generate infi-
nitely more. When electing to use a model whether obtained from the literature,
formalised in an expert system or generated in-house, very careful considera-
tion must be given to its appropriate use. Models developed have often been
highly criticised because they fail to perform well when tested with a given set of
compounds. However, such apparent ‘failures’ of models can often be traced
back to inappropriate use.27 To make a prediction for any compound it must be
determined as to whether or not it falls within the applicability domain.
Compounds that do not fall within the domain may be poorly predicted.
Models may be developed for very general purposes and be useful for these.

For example, models to predict intestinal absorption of drug candidates can be
used to screen large in-house virtual libraries in drug companies; however, these
may not be appropriate for predicting absorption of pollutants that enter into
the food chain. In this case more specific models giving a more accurate pre-
diction for compounds of a different chemistry are needed.
The confidence needed for a prediction also depends on the use to which it

will be put. A global model may be useful for prioritising testing of compounds
from a large inventory, where the in silico model is used to select which of the
compounds are more likely to be associated with a toxic effect. In Integrated
Testing Strategies (ITS), which are discussed further in Chapter 23, in silico
models may be used to select which of a group of compounds should be
selected, based on their predicted activities, for further testing. For example,
category formation can be used to assign chemicals to appropriate groups, one
or more members from each group can then be selected for testing to help fill
data gaps. Another use is in weight-of-evidence approaches in cases where
several models exist for the same endpoint. Whilst use of each individual model
may not result in a high confidence estimate, the use of several models in
combination may increase confidence, particularly where results from all
models are concordant. Hewitt et al. demonstrated an example of this for
reproductive toxicity endpoints.28 The weight-of-evidence concept is discussed
further in Chapter 22.

2.6 Consideration of Mitigating Factors

Although a good in silico model may be able to provide an accurate prediction
of inherent toxicity of a given compound, the ability of the compound to
actually elicit such an effect can be significantly modulated by other factors.
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