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Preface

In the present volume, Biomarkers in Cancer, we have over 40 chapters covering a
wide range of conditions, body locations, and cancer types. Their allocations to a

traditional grouping presents some difficulty as this may mean having only one

chapter in a particular section. Instead, we have adopted a pragmatic approach for

ease of navigation and so have the following sections:

• General Aspects: Techniques and Overviews

• Bladder, Kidney, Liver, and Lung

• Brain

• Breast and Prostate

• Cervix and Uterus

• Colorectum

• Head and Neck

• Leukemia and Hodgkin Lymphoma

• Further Knowledge

While the Editors recognize the difficulties in assigning particular chapters to

particular sections, the book has enormously wide coverage and includes the

following areas, analytes, and platforms: omics, circulating tumor cells,

oncoproteomics, cardiotoxicity, DNA methylation, kallikreins, MAP17, CA 19-9,

PTTG (Securin), small nuclear RNA, centrosome amplification, cytological spec-

imens, microarrays, cell death markers, epigenetics, molecular markers, maspin,

LGR5, 2D-DIGE-MS, imaging, TPS, CD133, mitosis targets, HER2, immunohis-

tochemistry, visceral adipocytes, expression profiling, telomerase,

carcinoembryonic antigen family cell adhesion molecules, human papillomavirus

(HPV), the NeoMark European project, matrix metalloproteinases, tissue

microarrays, FGFR4, whole blood transcriptome, nuclear BMI-1, immunophe-

notyping, and CD163 and TARC. Tissues and conditions include cancers in gen-

eral, cancers of the bladder, renal cell, liver, lung, brain, breast, prostate, cervix,

endometrium, colorectum, head and neck cancers including the oral cavity, salivary

gland, oropharynx, nasopharynx, larynx, leukemia, and Hodgkin lymphoma.

Finally, the last chapter is devoted to locating resource material for biomarker
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discovery and applications. The chapters are written by national or international

experts and specialists.

This book is specifically designed for clinical biochemists, oncologists, scien-

tists, epidemiologists, doctors, and nurses, from students to practitioners at the

higher level. It is also designed to be suitable for lecturers and teachers in health

care and libraries as a reference guide.

April 2015

London

Victor R. Preedy

Vinood B. Patel
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Series Preface

In the past decade, there has been a sea change in the way disease is diagnosed and

investigated due to the advent of high-throughput technologies and advances in

chemistry and physics, leading to the development of microarrays, lab on a chip,

proteomics, genomics, lipomics, metabolomics, etc. These advances have enabled

the discovery of new and novel markers of disease relating to autoimmune disor-

ders, cancers, endocrine diseases, genetic disorders, sensory damage, intestinal

diseases, and many other conditions too numerous to list here. In many instances,

these developments have gone hand in hand with the discovery of biomarkers

elucidated via traditional or conventional methods, such as histopathology, immu-

noassays, or clinical biochemistry. Together with microprocessor-based data anal-

ysis, advanced statistics, and bioinformatics, these markers have been used to

identify individuals with active disease as well as those who are refractory or

have distinguishing pathologies.

Unfortunately, techniques and methods have not been readily transferable to other

disease states, and sometimes, diagnosis still relies on a single analyte rather than a

cohort of markers. Furthermore, the discovery of many new markers has not been put

into clinical practice partly because of their cost and partly because some scientists are

unaware of their existence or the evidence is still at the preclinical stage. There is thus

a demand for a comprehensive and focused evidence-based text and scientific litera-

ture that addresses these issues. Hence, the book series Biomarkers in Disease:
Methods, Discoveries and Applications. It imparts holistic information on the scien-

tific basis of health and biomarkers and covers the latest knowledge, trends, and

treatments. It links conventional approaches with new platforms. The ability to

transcend the intellectual divide is aided by the fact that each chapter has

• Key Facts (areas of focus explained for the lay person)

• Definitions of Words and Terms
• Potential Applications to Prognosis, Other Diseases, or Conditions
• Summary Points

The material in Potential Applications to Prognosis, Other Diseases, or Con-
ditions pertains to speculative or proposed areas of research, cross-transference to
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other diseases or stages of the disease, translational issues, and other areas of wide

applicability.

The series is expected to prove useful for clinicians, scientists, epidemiologists,

doctors and nurses, and also academicians and students at an advanced level.

April 2015

London

Victor R. Preedy
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Azienda Ospedaliero-Universitaria, Ospedali Riuniti Umberto I – GM Lancisi – G

Salesi, Ancona, Italy

Jeong-Yeol Park Department of Obstetrics and Gynecology, University of Ulsan

College of Medicine, Asan Medical Center, Seoul, South Korea

Vinood B. Patel Department of Biomedical Sciences, Faculty of Science and

Technology, University of Westminster, London, UK

Gabriela Tonini Peterle Programa de Pós-graduação em Biotecnologia, Núcleo
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Vitória, ES, Brazil

Emma Phillips Division of Molecular Genetics (B060), German Cancer Research

Center (DKFZ), Heidelberg, Germany

Marco Picone Department of Information Engineering, University of Parma,

MultiMed s.r.l., Cremona, Italy

Tito Poli Maxillofacial Surgery, University-Hospital of Parma, Parma, Italy

Contributors xxv



Victor R. Preedy Department of Nutrition and Dietetics, Division of Diabetes and

Nutritional Sciences, Faculty of Life Sciences and Medicine, King’s College

London, London, UK

Mikhail Pyatnitsky Department of Bioinformatics, Orekhovich Institute of Bio-

medical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia

Rajkumar Rajendram Department of General Medicine and Intensive Care, John

Radcliffe Hospital, Oxford, UK

Diabetes and Nutritional Sciences Research Division, School of Medicine, King’s

College London, London, UK

Roshanna Rajendram School of Medicine, University of Birmingham,

Edgbaston, Birmingham, UK

Dana Marie Roque Division of Gynecologic Oncology, Greenebaum Cancer

Center, University of Maryland-Baltimore, Baltimore, MD, USA

Michela Salvatici Division of Laboratory Medicine, European Institute of Oncol-

ogy, Milan, Italy

Francesco Salvatore CEINGE-Biotecnologie avanzate, s.c.a r.l, Naples, Italy

Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di
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Abstract

OMICS generally refers to a study of some gene expression products, either

direct, such as RNA and proteins, or indirect, such as metabolites, and is usually

based on genome information. Main sections of OMICS sciences include

transcriptomics, proteomics, and metabolomics, powerful research instruments

capable of high-throughput detection of biomolecules differentially expressed

between tumor and non-tumor samples, including excised tissues or biopsies,

blood plasma, saliva, and urine. Consequently, thousands of species of RNAs,

proteins, and metabolites were suggested as candidate tumor biomarkers alone

or as constituents of multiplex signatures. Despite many difficulties encountered

by OMICS panels with an intended use in population screening programs, some

of the multiplex panels already have found their applications in the field of

theranostics. If the patient is already diagnosed with a certain cancer, RNA or

protein biomarker signatures may help to select a specific therapy or to predict

the probability of a relapse. A number of clinically relevant, validated, and

approved signatures of RNA and protein analytes successfully emerged from

OMICS pipelines. It is important to remember that an implementation of these

clinical tests took the safety of reliable laboratory techniques, such as polymer-

ase chain reaction and immunoassay.

List of Abbreviations

AUC Area Under the Curve

DNA Deoxyribonucleic Acid

ENCODE Encyclopedia of DNA Elements

ESI Electrospray Ionization

FDA US Food and Drug Administration

HPLC High-Performance Liquid Chromatography

IVDMIA In Vitro Diagnostic Multivariate Index Assay

LC-MS/MS Liquid Chromatography-Tandem Mass Spectrometry

LDT Laboratory-Developed Tests

LOOCV Leave-One-Out Cross Validation

MALDI-TOF Matrix-Assisted Laser Desorption/Ionization Time-of-Flight

Mass Spectrometry

MRM Multiple Reaction Monitoring

MS Mass Spectrometry

MS/MS Tandem Mass Spectrometry

m/z Molecular Mass/Charge Ratio

mRNA Matrix Ribonucleic Acid

miRNA Micro-Ribonucleic Acid

NMR Nuclear Magnetic Resonance

PCR Polymerase Chain Reaction

PPV Positive Predictive Value

qRT-PCR Quantitative Real-Time Polymerase Chain Reaction

RNA Ribonucleic Acid
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RNAseq High-Throughput Sequencing of Ribonucleic Acid

ROC Receiver Operator Characteristics

SELDI Surface-Enhanced Laser Desorption/Ionization

SRM Selected Reaction Monitoring

Key Facts of OMICS Sciences

OMICS sciences are focused on the inventory of multiple molecular species in

living organisms or their parts.

Each OMICS discipline is designated using the name of molecular species

studied plus the “-omics” suffix, such as proteomics for proteins, lipidomics for

lipids, glycomics for glycans, etc.

OMICS sciences for medicine have become possible after human genome

sequencing.

Some OMICS sciences, such as transcriptomics and proteomics, are directly

based on genome sequence, whereas others are indirectly related to genome, e.g.,

metabolomics.

OMICS sciences are used to compare levels of multiple molecular species

between diseased and healthy control tissues or cells to discover differential

molecules, i.e., biomarkers.

Today, transcriptomics, proteomics, and metabolomics are most widely used for

biomarker discovery.

Transcriptomics uses nucleic acid microarrays and high-throughput nucleic acid

sequencing to catalog RNA molecules.

Proteomics uses mass spectrometry and affinity reagents, such as antibodies, on

protein microarrays, for protein inventory.

Metabolomics detects low-molecular metabolites by mass spectrometry or

nucleic magnetic resonance spectroscopy.

Definitions of Words and Terms

Transcriptome Transcriptome is a whole of genome transcripts, i.e., RNAs,

which are contained in a cell, tissue, or organism. The high-throughput detection

and quantitation of multiple RNAs based on genome sequence information is

transcriptomics.

Proteome Proteome is a whole of proteins, which are contained in a cell, tissue, or

organism. High-throughput detection and quantitation of multiple proteins based on

gene sequence information is proteomics.

Metabolome Metabolome is a whole of low-molecular substances, i.e., metabo-

lites, which are contained in a cell, tissue, or organism. High-throughput detection

1 OMICS for Tumor Biomarker Research 5



and quantitation of multiple metabolites based on their physical and chemical

properties is metabolomics.

Liquid Chromatography-Tandem Mass-Spectrometry (LC-MS/MS) LC-MS/

MS is an analytical method, where molecules of interest are separated by high-

performance liquid chromatography which is coupled with mass spectrometer with

electrospray ionization. Such mass spectrometer performs tandem mass spectrom-

etry. It measures the molecular mass/charge ratio (m/z) of original ions which may

be further fragmented in mass spectrometer and analyzed for more structural

information. LC-MS/MS is widely used in shotgun and targeted proteomics and

metabolomics. Detectors used for tandem mass spectrometry include, but not

limited to, ion trap, quadrupole time of flight (Q-TOF), triple quadrupole (QQQ),

Orbitrap, etc.

Electrospray Ionization (ESI) ESI is a method for ionization of molecules based

on the application of electrical field to the molecules which are sprayed in small

drops of liquid. It is a mild method of ionization which preserves the structure of

biomolecules for detection by mass spectrometry. ESI is widely used in proteomics.

Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrom-

etry (MALDI-TOF MS) MALDI-TOF MS is a specific method of mass spec-

trometry. It uses ionization of solid substances co-crystallized with a laser-sensitive

“matrix” compound. After laser shot, a molecule analyzed is ionized and desorbed

from the crystal state and then analyzed by time-of-flight detector. MALDI-TOF

MS is a fast and easy method to analyze proteins and peptides.

Multiple Reaction Monitoring (MRM) Multiple reaction monitoring or selected

reaction monitoring (SRM) is a method of targeted tandem mass spectrometry.

In the MRM mode, a mass spectrometer can detect only molecules with expected

narrow range of m/z and its expected fragments. ESI and a triple quadrupole

detector are widely used for MRM. This method was originally used for quantita-

tion of small molecules, such as drugs and chemicals. Since 2005, it was suggested

for use to quantify peptides in proteomics. An isotope synthetic standard is required

for proper measurement quality.

Introduction: A Role of OMICS in Cancer Biomarker Research

OMICS is a recently generated word that was coined by molecular biologists that

figured how to analyze molecular entities in a high-throughput manner. In the late

1990s, the genomics became the very first “OMICS” field assessed in this manner.

Respectively, the term “genomics” was derived from “genome,” yet another recent

addition to the dictionaries (Winkler 1920).

Each “OMICS” discipline is focused on its own “-ome.” After the genome, a

proteome concept was suggested (Wilkins et al. 1996) to represent a sum of proteins

6 S. Moshkovskii et al.



within the cell, tissue, or organism of interest. Simultaneously, many other classes

of biomolecules got their own “-omes” and “OMICS” – transcriptomics for RNAs,

metabolomics for metabolites, and lipidomics for lipids. In addition to “OMICS”-

based inventories of various molecular entities, some “OMICS” disciplines are

focused on the inventories of events, such as interactomics that systematically

analyze interactions between various macromolecules (Cesareni et al. 2005).

It is important to note that the genomics stands apart from other OMICS disciplines

as it serves as a background for others. In this context, transcriptomics and proteomics

are usually referred to as postgenome technologies. Indeed, deciphering the genome of

given species makes it possible for other OMICS sciences to emerge. In this chapter,

we will not focus on cancer genomics due to the heaps of information already

available. Here, OMICS will generally refer to a study of some gene expression

products, either direct, such as RNA and proteins, or indirect, such as metabolites.

A majority of sporadic cancers are due to random somatic mutagenesis by way of

environmental exposures and endogenous stress that lead to epigenetic deregulation

of expression patterns within the cell (Amin et al. 2009). That is why high-throughput

versions of mRNA expression analysis are widely used as means for cancer bio-

marker discovery. An accumulation of somatic or germ line mutations in chromo-

somal DNA is recognized as major reason for the proliferative features of cancer

phenotype. These crucial genomic events are usually designated as driver mutations

(Bignell et al. 2010) that may be caused by viral genome insertions, radiation,

chemical mutagens, and other environmental carcinogens. How many driver muta-

tions are exactly necessary and/or sufficient to make a viable cancer cell is a topic of

hot discussion. As evident from the studies of transgenic and knockout mice, in most

cases these numbers are minimal. However, naturally developed tumors are

represented by a mix of competing clones varying in their malignant potential and

genomic structure. Hence, the DNA extracted from a piece of tumor tissue may

harbor thousands of mutations. Indeed, recent efforts in tumor exome sequencing

confirmed these findings (Cancer Genome Atlas Research Network 2012; Stephens

et al. 2009) and created solid grounds for generation of cancer-type specific genome

atlases that provide a knowledge base for modern biomarker discovery.

The primary difficulty with the biomarker-guided detection of the tumors in

general population is due to the multiclonal composition of individual tumors and

the resultant variation in the levels and the spectrum of biological molecules

expressed by tumors that originated within the same tissue. That is why, with a

few notable exceptions, single molecular biomarkers, such as mRNA, miRNA,

protein, or metabolite, are rarely successful as population screening tools. Hence, a

molecular signature concept was developed for both diagnostic and theranostic

applications (Subramanian and Simon 2010; Zimmer et al. 2006). These molecular

signatures are often derived from OMICS data. In case of tumor detection, the

prevalence of the somatic component makes the OMICS-based approaches espe-

cially suitable (Fig. 1). The cancers located within the same organ display substan-

tially different proteome profiles that accurately reflect morphological subtype of

the tumor (Kobel et al. 2008). Profiling-based studies may focus on any type of

molecular biomarkers and may include somatic cancer mutations within coding
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transcripts (Hawkins et al. 2010), miRNAs (Ferracin et al. 2010), proteins (Kim

et al. 2009), or metabolites (Aboud and Weiss 2013).

Measured together, molecular variables of the signature ensure higher diagnostic

accuracy or more efficient risk prediction as compared to single biomarkers

(Yurkovetsky et al. 2010). The techniques for discerning diagnostic molecular

signatures depend on the type of the molecules to be detected. For protein signatures,

immunoassays (Edgell et al. 2010) or mass spectrometry (Rodriguez et al. 2010) may

be used, while for the detection of mRNA levels, one may use a qRT-PCR,

microarrays, or RNAseq. However, the use of “mixed” panels, for example, ones

that include both mRNA and protein biomarkers, is limited by substantial increase in

costs of performing an assay. The conversion of a series of experimentally quantified

values into clinically relevant test is a long journey. The multiplexed signatures

require application of the complex statistical techniques, including pattern recogni-

tion approaches (Alonzo and Pepe 2007; Hamacher et al. 2009).

An Analysis Pathway for Multiplex Biomarker Panels

A typical clinical classification and risk prediction framework is implemented as

follows. Experimental data are collected for samples representing two classes, for

example, healthy individuals versus patients with a disease, or two cohorts of

Fig. 1 Outline of main OMICS technologies used for tumor biomarker discovery: from cancer

genome to diagnostic and theranostic signature

8 S. Moshkovskii et al.



patients, one with poor and one with good prognosis as measured post hoc, by

disease outcomes. Variables may represent gene expression, peak intensities from

proteomic or metabolomic spectra, results of genotyping, blood biochemistry

values, or demographics. These variables require intensive preprocessing, including

imputation of missing values, normalization, smoothing out of the noise, and

removing of outliers. A distinctive feature of OMICS data is that the number of

samples (N) is orders of magnitude smaller than the available number of variables

(P). In this context, a variable is often called a feature and refers to a specific gene or

protein among the many thousands of molecules assayed in parallel. This “small n,

large p” issue greatly complicates the statistical analysis of OMICS experiments

and has many consequences. When the volume of the data grows exponentially, the

information needed to describe the feature space with the same sampling density

also should grow exponentially (so-called curse of dimensionality). In practical

sense, this situation described as sparseness of the data may substantially compli-

cate the building of classification models; good separation of the classes may be

achieved even for sets of classifiers chosen randomly (Venet et al. 2011) (Fig. 2).

The obvious solution to “dimensionality curse” is to remove a majority of

variables, i.e., perform feature selection (Saeys et al. 2007). Indeed, elimination

of the features that carry no association with the disease or its outcome aids the

discrimination of the sample classes and increases the classification power.

Fig. 2 Illustration of model overfitting and generalization. (a) Model with many adjustable

parameters is capable of error-free classification of training set but performs poorly on novel data.

(b) Too simple model does not allow discrimination of training data. (c) The model with optimum

balance between overfitting and generalization
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Additionally, it makes sense to eliminate variables that are highly correlated with

each other, for example, co-regulated genes, or mass spectrometry peaks that

represent modified forms of the same protein (Pyatnitskiy et al. 2010). Leaving

only one “best-in-class” feature for every co-correlated group also aids in the

interpretation of the results, as these features are more likely to represent highly

interacting genes that correspond to the hubs in regulatory networks. Another

possible way to attack dimensionality is identify and interpret a pattern within the

data. For that, a number of visualization approaches were developed, for example,

principal components analysis, clustering, or multidimensional scaling. It is impor-

tant to note that the visualization of the data is not a required component of

multiplexed biomarker test; rather, it serves as a foothold that helps a researcher

to gain confidence with massive dataset.

The Holy Grail of biomarker discovery is the building of a decent classification

model. This process includes two major steps: the learning step that extracts

information contained in training dataset and model evaluation using validation

dataset. The ultimate goal is to develop a model that withstands validation step, i.e.,

shows required accuracy when tested on independent set of samples set and, thus,

deemed suitable for real-world applications. To develop the model that is more

likely to pass validation, the model’s parameters are fine-tuned to optimize its

performance on the training set. An accurate guess whether the model will survive

validation is impossible. Perfect classification of training samples does not guaran-

tee good performance in independently collected samples; when good-looking

model does perform, we call this model “overfitted” to the training set. When

high-dimensional data are inputted in models with many adjustable parameters,

the “overfitting” is commonplace. On the other hand, an oversimplified model may

not be able to discriminate the samples at all. Thus, the development of the

biomarker panel is always a trade-off between overfitting and over simplification.

A great number of classification algorithms have been utilized in the analysis of

OMICS data. The most frequently used classifiers include support vector machines

(SVM), artificial neural networks, decision trees and random forests, logistic

regression, and many others. Comparative studies of various approaches to improve

discrimination power of the multidimensional models in terms of prediction accu-

racy, specificity, and sensitivity had been performed and published earlier. The

results of comparisons contradict to each other – in certain cases more sophisticated

algorithms like support vector machines outperform others, while in some cases

relatively simple techniques show comparable classification accuracy.

It is also important to note that the importance of standard performance metrics

is often overestimated (such as area under ROC curve or AUC). As we already

mentioned above, overfitted models are unlikely to survive validation in indepen-

dent cohorts, while underperforming models that rely on solid biological knowl-

edge may actually improve their sensitivity and specificity when validated in larger

cohorts. For example, the models generated by neural networks often show superior

performance, but, in essence, they remain “black boxes” unavailable for meaning-

ful interpretation. On the other side, the decision trees or the logistic regression
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models allow easy derivation of relationships between feature values and prediction

outcomes, thus contributing to the understanding of the molecular mechanisms

underlying a disease or condition. Furthermore, one should keep in mind that the

model cannot perform better than the benchmark comparison test. In practical

terms, that means that we have to be absolutely sure in the absolute accuracy of

the clinician-assisted diagnosis in order to use it as sensitivity and specificity

measure for novel test, which creates a self-perpetuating problem.

From statistics viewpoint, the most important limitation of OMICS-based bio-

marker discovery is a relatively small number of available samples that impose

difficulties in assessing the performance of the model. In ideal world, the training

and the validation sets of sample must not overlap. Additionally, both of these sets

should be as large as possible. In practice, the size of the sets is limited by the

availability of the samples, the factor especially important for relatively rare

cancers, and the cost of OMICS profiling per sample. The standard way to solve

this problem is to use cross validation, a partitioning of the whole dataset into two

parts, where one part is used for model training and another is used to test the

trained model. For example, leave-one-out cross validation (LOOCV) involves

using a single sample from the original set for the validation of the model obtained

by using the remaining samples that comprise the training set. This procedure is

repeated until each sample is utilized for the validation. The prediction errors

obtained at each run are averaged to estimate the final prediction error of the

classification model. Other more powerful methods of cross validation are also

available.

Both feature selection and cross validation are vital for building the proper

model. The selection of features occurs at each step of the cross validation. Since

training set is resampled at each step of cross validation, iterations of this process

would yield different feature sets. However, in many studies, the feature selection is

performed using the whole dataset, upstream of the cross-validation cycle. This

simplified procedure may lead to serious underestimation of the prediction error

(Ambroise and McLachlan 2002). Additionally, there are ways to learn from cross-

validation procedure that should not be discarded. For example, some samples may

be misclassified more often than others; they might be outliers, or genuinely

misclassified samples, or other interesting cases that do not fit the typical two-bin

output of the model. Studying specific properties of these samples may give

additional clues on how to improve the classification model.

The main expected outcome of the OMICS data analysis is the development of

multivariate biomarker panels that can be integrated in clinical practice for screen-

ing, diagnostic, and prognostic purposes. Hence, final validation of multivariate

biomarker panel must be performed on samples that were not previously used

during classifier learning or cross validation. In fact, to field test the model, these

samples shall be collected independently, in some other medical center, and tested

in a different lab. However, the large proportion of multivariate biomarkers devel-

oped from OMICS data have not been confirmed in independently collected sets of

samples (Gerszten et al. 2008; Sung et al. 2012).

1 OMICS for Tumor Biomarker Research 11



Transcriptome Profiling Approaches and Multiplexed Panels
Based on mRNA Levels

Transcriptomics was the first non-DNA-based OMICS. In more than two decades of

its development, a plethora of transcriptomics studies were done with a purpose of

cancer biomarker discovery. In the early 1990s, when the microarray technique

evolved from Southern blotting, first attempts of high-throughput expression pro-

filing were done on colon carcinoma samples (Augenlicht et al. 1991). Since that,

much technical advancements were made, but key limitation of expression profiling

remained firm – the gene expression profiling methods have to deal with either cell

and tissue material. This condition restricts application of expression profiling to

biofluids except the assaying of circulating cancer cells. Thus, analysis of expres-

sion by microarrays has been mostly used to predict cancer outcome from biopsy

tissue specimens (Pusztai et al. 2003) or to post hoc analysis of archived tissue

blocks (Waldron et al. 2012). Typically, data from microarrays containing thou-

sands of nucleic acid probes were used to select mRNA candidates with an advent

of bioinformatics tools and gimmicks, and the reduced set of candidates was further

tested on larger specimen cohort using quantitative real-time PCR or a different

platform which was more easy to use than the genome-wide microarray. However,

in most cases, the number of profiled specimens was not more than 100, and the

resultant predictive models rarely survived validation (Ntzani and Ioannidis 2003).

Nowadays, the transcriptomics drastically changed its technological approach

toward RNAseq, the “next-generation” sequencing-based estimation of transcript

levels (Ding et al. 2010). In a nutshell, the RNAseq approach provides a global

survey of transcriptome activity through en masse generation of short sequence

reads from random locations along each of profiled RNAs followed by their

mapping to appropriate reference genome. A number of reads that map to a

particular gene are proportional to the level of its mRNA level. The RNAseq

technique requires lesser amount of RNA than typical microarray (Mutz

et al. 2013). However, similar to other high-throughput OMICS analyses, RNAseq

results should be validated by qRT-PCR.

Another novel hot field within transcriptomics is an analysis of noncoding

RNAs. The results of ENCODE project removed all the doubts about the wide-

spread expression of eukaryotic genomes, with current estimates that more than

62 % of human genome participates in transcription events (Bernstein et al. 2012),

in drastic contrast to mere 2 % occupied by protein-coding RNAs. So far, in human

genome, ENCODE annotated more that 8,800 small RNAs and 9,600 long non-

coding RNA, most of which do not have any attributed function but capable of RNA

interference. Abundance of these RNAs, especially small RNAs, stimulated

attempts to their potential utility as biomarkers. Recent studies showed that small

RNAs, especially microRNAs (miRNAs), remain stable in circulation (Weiland

et al. 2012). Vast majority of these circulating miRNAmolecules originate from the

blood and endothelial cells; however, some tissue-specific miRNAs, for example,

from the liver and gut, are represented as well, indicating a broad source of tissue

contribution to the total circulating miRNAs (Williams et al. 2013). Hence, miRNA
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profile “fingerprints” were suggested as possible biomarkers of developing tumors.

A flood of papers and patents about miRNA in cancer increases exponentially and

cannot be reviewed in this chapter.

Herein, we will omit gene expression studies as such and further discuss only

examples of successful translation of mRNA-based multi-analyte profiles to clinical

practice. To evaluate these tests, the US Food and Drug Administration (FDA)

designated a novel group identifier IVDMIA (in vitro diagnostic multivariate index

assay). In 2004, before IVDMIA, in frame of broader category of laboratory-

developed tests (LDTs), the RNA-based prognostic test Oncotype Dx for breast

cancer was approved. Later, this test was reclassified as IVDMIA. Other tests

already approved through IVDMIA procedure include MammaPrint (2007), Tissue

of Origin (2008), as well as Oncotype Dx for colon cancer (2010) and prostate

cancer (2013).

Both Oncotype Dx for breast cancer and the MammaPrint determine the risk of

breast cancer metastasis, i.e., its relapse after surgery. Based on the assay result, as

well as on other clinical features, a medical practitioner would whether assign to the

patient a course of adjuvant chemotherapy or not. Both assays quantify the levels of

multiple mRNAs in a biopsy sample of excised primary tumor.

MammaPrint assay (Agendia Inc., Netherlands) includes quantitative measure-

ments of expression for 70 genes in mRNA samples extracted from frozen breast

carcinoma biopsies. The test intends to estimate the probability of metastatic

progression of previously nonmetastatic breast cancer less than 5 cm in size, in

women younger than 61. Technically, the assay is based on custom oligonucleotide

hybridization microchip (Agilent Technologies) that includes the probes to the set

of mRNAs that corresponds to the signature discovered in the microarray study of

112 relatively young breast cancer patients with known outcomes (Van’t Veer

et al. 2002). The test assigns each patient to the high-risk or low-risk groups. In

the first group, chemotherapy would be of benefit. However, some technology

problems were identified after the test approval, including 15 % risk overstatement.

As a result, the test was retracted from the US markets but remains available in

Europe.

Oncotype Dx breast cancer assay (Genomic Health, USA) intends to identify

patients with previously diagnosed estrogen receptor (ER)-positive breast carci-

noma who should receive adjuvant chemotherapy on top of conventional treatment

with tamoxifen. Substantial technical advantage of this assay is its applicability to

paraffinized blocks of fixed tissue. Oncotype Dx breast cancer assay is based on

21-gene signature (Dowsett et al. 2010), 16 of which being cancer biomarkers and

5 serve as reference transcripts. This test is based on quantitative real-time PCR.

Expression levels for each of these mRNAs are inputted into proprietary algorithm

which calculates so-called Recurrence Score (RS), a predictor of chemotherapy

benefit that reflects the probabilistic estimate of possible cancer recurrence in

10 years after diagnosis. Recurrence Score is a number between 0 and 100. This

value itself does not provide clinically useful information but denotes a risk

category for the given patient. RS values less than 11 correspond to a low risk,

while RS values between 11 and 25 and more than 25 are recognized as
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intermediate and high risk, respectively. Along with other biomarkers, the Recur-

rence Score guides the decision whether the adjuvant chemotherapy should be

administered. Interestingly, low versus high RS patients are significantly more

likely to follow the chemotherapy-related recommendation of the test, suggesting

a tendency toward less aggressive treatment in high RS that decreases utility of the

test (Carlson and Roth 2013).

Both MammaPrint and Oncotype Dx breast cancer assays test for the relative

risk of breast carcinoma relapse. Surprisingly, there is only one gene that is

common for both signatures, 70-plex in MammaPrint and 21-plex for Oncotype

Dx for breast cancer. In one study, both tests were compared side by side using a

cohort of 295 patients (Fan et al. 2006). In these settings, the concordance of tests

results was at about 80 %. However, 15 of 33 patients classified as intermediate risk

by Oncotype Dx were assigned to high-risk group by 70-plex assay. Hence, the

intermediate-risk group was the most vulnerable to misclassification. Importantly,

OMICS-based molecular tests are especially in demand for this group, as either

high- or low-risk patients may be as well ascertained by conventional clinical

approach.

A certain contributor to the relative success of the Oncotype Dx is its techno-

logical solution to substitute gene expression microarrays by the multiplexed

qRT-PCR. Similar platforms are used in Oncotype Dx tests for the colon and

prostate cancer. Twelve-plex Oncotype Dx colon cancer assay aims to predict the

recurrence for stage II or III of the disease (Venook et al. 2013), while the 17-plex

Oncotype Dx prostate cancer assay is developed to provide an opportunity for

low-risk patients to avoid invasive treatments such as radical prostatectomy or

radiation (Cooperberg et al. 2013). Importantly, only 7 out of 12 colon cancer

and 12 out of 17 prostatic carcinoma genes that comprise Oncotype Dx classifiers

are target genes; the rest of them are normalization references.

We do not intend to discuss here clinical aspects of the Oncotype Dx test

performance, because they are widely described elsewhere (Azim et al. 2013).

However, for the biomarker development standpoint, it is important to note that

three sets of genes used as signatures for three different cancers do overlap. There

are two common transcripts between the colon and the breast tests, one for putative

cell cycle protein MKI67 and cell cycle-related transcription factor MYBL2.

Additionally, glutathione S-transferase Mu 1 (GSTM1) transcript of breast cancer

signature could be paired up with its close homologue and chromosomal locus

neighbor GSTM2 in prostate cancer signature. Finally, the colon cancer and the

prostate cancer signatures also share one gene, X-chromosome-encoded biglycan

(BGN). Moreover, protein-coding genes that comprise Oncotype Dx signatures are

closely tied to each other by their functions assessed as protein interaction map

(Fig. 3). Note that the hubs of this network are represented by other well-known

cancer-associated proteins, such as ERBB2 (HER2) receptor protein kinase that

serves as a target for breast cancer drug rituximab and BCL2 proto-oncogene.

Oncotype Dx gene sets are also enriched in cluster of neighboring genes

co-localized within the same chromosome segments (Table 1). More than one

third of the segments share two signature hits. This fact may indicate that the
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recurrence of human tumors may be associated with specific epigenetic events that

require further functional dissection.

The Affymetrix-based transcriptome profiling microchips yielded a practical

embodiment in a clinic that is known as a Tissue of Origin test (Pathwork Diag-

nostics, USA). This test is intended for the determination of tissue type for

unassigned metastatic tumors with no lost clear differentiation signs. Tissue of

Origin evaluates expression levels for 1,668 genes; these numbers are plugged in

the algorithm that assigns the origin of metastatic tumor to one of 15 tissue types.

The accuracy of the Tissue of Origin is estimated to be in range of 72–88.5 % for

gastric cancer and up to 96.5 % for breast adenocarcinoma. Some modified versions

of Tissue of Origin tests are available, such as a 316-plex test for ovary and uterine

cancer classification (Lal et al. 2012).

In summary, the main output of gene expression-based signatures is in the field

of cancer theranostics, i.e., the personalized management of cancer, rather in its

diagnostics.

Fig. 3 Functional interactions of Oncomine Dx signature genes. Interaction map of proteins

encoded by genes contained in Oncomine Dx breast, colon, and prostate cancer signatures (gene

names are shown). The knowledge about protein-protein interactions for bait proteins was received

from STRING database (Szklarczyk et al. 2011) with interaction score >0.7 being considered

reliable for interaction. Top 10 hub interactors are shown in the network using CytoHubba plug-in

(Lin et al. 2008) for Cytoscape software (Shannon et al. 2003). Top hub proteins were specified by

Maximal Clique Centrality method. Predicted direct interactions are shown by solid line, and
indirect connections are shown by dotted line with a number of intermediators indicated. Note the

well-known cancer-associated proteins, such as ERBB2 (HER2) receptor protein kinase, a target

of rituximab drug, and BCL2 proto-oncogene among network hubs
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Proteomics: From MALDI-TOF Through Shotgun Techniques
to Targeted Approach

The proteomics is technology-driven field that aims at high-throughput inventory of

individual proteomes. The basics of protein separation, such as two-dimensional gel

electrophoresis, which could visualize whole proteomes or at least their subsets were

developed in the 1970s (O’Farrell 1975). At that time, proteome studies were limited

by difficulties of identification of proteins within the bands or spots on electrophoretic

gels. Availability of genome sequence made possible an identification of proteins by

mass spectrometry that deduces the identities of proteins and peptide fragments

from mass-to-charge ratios (m/z) being compared to all possible m/z predicted by

comparison to the genome parsed into open reading frames (Aebersold 2003).

Table 1 Protein-coding human genes contained in Oncomine Dx breast, colon, and prostate

cancer signatures used to determine the recurrence score of these cancers (Cooperberg et al. 2013;

Dowsett et al. 2010; Venook et al. 2013) and the genome location of the genes. Gene names are

used according to the NextProt knowledge base (www.nextprot.org). Chromosome locations are

filled and shown by italic where more than one signature gene is situated. Genes which are

contained in more than one cancer signature are highlighted in the same manner

Genome location

Type of cancer

Breast (16 genes) Colon (7 genes) Prostate (12 genes)

1p13 GSTM1 – GSTM2

2p23-24 – FAP SRD5A2

5q13 CCNB1 – –

6q25 ESR1 – –

7p14 – INHBA SFRP4

9p13 BAG1 – TPM2

9q22 CTSL2 – –

9q32-33 – – ORM1, GSN

10q21 – – FAM13C

10q26 MKI67 MKI67 –

11p15 SCUBE2 – –

11q22 PGR, MMP11 – –

15q22 – DENND4A (C-MYC) –

17p13 CD68 – –

17q12 GRB1, ERBB2 (HER2) – –

17q21 – – COL1A1

17q25 BIRC5 – –

18q21 BCL2

19p13 – GADD45B KLK2

20q11 – – TPX2

20q13 MYBL2, AURKA MYBL2 –

Xq28 – BGN BGN
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This process allows one to calculate a probability that theoretically predicted peptide

of protein actually exists in the given sample. It is important to note that mass

spectrometry provides probabilistic identification of the given protein or peptide

but does not sequence this protein de novo. An introduction of the protein sequencing

into the routine of the lab would be welcomed, but these techniques are not gaining

any traction yet (Hughes et al. 2010).

In mass spectrometry, the accuracy of m/z and, correspondingly, molecular

weight quantification is inversely related to the size of analyzed molecule. That is

why many proteomics studies start with whole proteome digestion by trypsin and

the analysis of resultant mixture. This approach is known as bottom-up or shotgun
proteomics (Washburn et al. 2001). Its main advantage is in ease of separation and

identification of short peptides, and its main drawback is the significant loss of

information due to the destruction of protein integrity. Conventional pipelines of

bottom-up LC-MS/MS proteomics workflow include (i) digestion by isolated

protein fraction by trypsin, (ii) separation of resultant peptides by nanoflow

HPLC, (iii) electrospray ionization (ESI) of peptides in the flux from HPLC column

and tandem mass spectrometry (MS/MS) of peptides and their fragments generated

in the mass spectrometer, and (iv) probabilistic identification of peptides from

tandem mass spectra by various search algorithms based on genome sequence

(Chalkley 2010). Modern bottom-up proteomics pipelines may identify from

1,000 to 10,000 proteins in one sample depending on the workflow and the

specimen nature (Zubarev 2013).

Alternative proteomics approach is a “top down,” where proteins are analyzed

by mass spectrometry in their intact form. Due to their large molecular weights,

native protein identification remains far from being routine. The pioneering mod-

ifications to tandem mass spectrometry recently demonstrated its power to correctly

discern hundreds of proteins in one sample (Tran et al. 2011). However, the

complicated, time-consuming procedure of intact proteomics cannot be yet adapted

for biomarker discovery. Luckily, in the early 2000s, a relatively simple top-down

approach was developed specifically for that purpose, a time-of-flight mass spec-

trometry with matrix-assisted laser desorption ionization (MALDI-TOF) that could

be used for direct profiling of biological fluids, for example, plasma or urine. In this

technique, the sample is subjected to fast separation or desalting and applied to the

metallic chip (Karpova et al. 2010). In this approach, small proteins and peptides

are registered in its intact form but remain unidentified unless downstream exper-

iments are performed.

General experiment design for the MALDI-TOF profiling of the body fluid

samples includes the following steps: (i) diseased and control sample preparation

with fast separation, (ii) mass-spectra acquisition, (iii) mass-spectra processing to

ascertain the intensities for each m/z peak as set of features present in each sample,

and (iv) selection of m/z peaks capable of discriminating samples collected from

patients with tumors from matched controls and development of multi-peak diag-

nostic model. Many early papers reported high levels of diagnostic accuracy of

MALDI-TOF spectra, some in range of above 90 % (Petricoin et al. 2002). Unfor-

tunately, the MALDI profiles strongly depend on the choice of suitable solvents and
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