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When Dr. Erik Van de Kelft asked me to write
an introduction to his book Surgery of the
Spine and Spinal Cord. A Neurosurgical
Approach 1 immediately accepted because
the spine represents a very large part of our
activities besides brain surgery. I like the con-
cept of spine surgery and the idea to invite
orthopedic surgeons and neurosurgeons to
contribute to this book and to share their
opinions. In several pathologies, the expertise
of both neurosurgeons and orthopedic surgeons brings benefit to patients and
health care. Spine spectrum is growing year after year. Low back pain repre-
sents the first cause of work disabilities in patients less than 40 years old in
western countries.

When I look back to the past, I may say that imaging has revolutionized
diagnosis and quality of life after surgery in most pathologies from spondy-
lotic myelopathy to intramedullary tumors. New surgical approaches and
technologies have also tremendously improved our results.

The future is promising with disc repair, but we should invest more in
the prevention of low back pain. On the other hand, stem cells therapy
could drastically change our possibilities to approach many spinal cord
diseases.

Coming back to the book, I like to congratulate Dr. Erik Van de Kelft for
succeeding to get contributions from most well-known neuroradiologists,
neurosurgeons, and orthopedic surgeons. This book should be consulted/
read by every spine surgeon in the world. It offers the most important
insights, detailed descriptions of surgical techniques and accurate rec-
ommendations for good clinical practice today and in the near future.
Therefore, this book will soon become a classic on this topic and the refer-
ence for spine surgeons.

Jacques Brotchi, MD, PhD

Emeritus Professor of Neurosurgery
Erasme Hospital, Brussels, Belgium
Co-founder of World Neurosurgery
Honorary President of the World Federation
of Neurosurgical Societies
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Partl

General Considerations



Erik Van de Kelft

In this era of abundant digital information, where
most of us have the opportunity to travel around
the world and see colleagues at work, while spine
courses and congresses are organized in all parts
of our globe and in times where most of us read
regularly specialized journals, books seem to
become an anachronism. It is, however, my opin-
ion that they are not. Scientific books can bundle
reflections on one specific theme, in this case,
spine surgery. Although many books have already
been published in this field, it is my belief that
much more will come in the future. The informa-
tion we gather during our daily work is so over-
whelming that, at times, we seek a relaxing
moment for reflection and synthesis. This book
has been edited with this focus in mind.

I am convinced that we will live thrilling times,
when considering spine disorders and their surgi-
cal treatment. In the past, we all were able to
acquire surgical skills and knowledge regarding
techniques. This evolution of surgical skills and
techniques, however, is not always welcomed,
particularly by those who have to pay for it. They,
but we also, are looking for more value in what we
do. Health-care authorities, insurers and taxpayers are
forcing us to change from a volume to a value-based

E. Van de Kelft, MD, PhD

Department of Neurosurgery, AZ Nikolaas,
Sint Niklaas, Belgium

e-mail: erik.vandekelft@aznikolaas.be;
Erik.vandekelft @telenet.be

© Springer International Publishing Switzerland 2016

decision-making process. Today, we reach the
point that if no evidence exists about a surgical
treatment for a given spinal disorder, the reim-
bursement might become troublesome. While
training our surgical skills, we (most of us) forgot
to measure the outcomes of our work. While
focusing on the surgical work, there was not suffi-
cient interest in refining the diagnostic procedures
for chronic (low) back pain. To improve the bene-
fits patients experience from our work, we will
have to invest in other things than just surgical
skills; innovation, research, evidence and educa-
tion will all be key factors for a healthy future.

This book starts with innovation. I was very
excited when reading the chapter on tissue engi-
neering. It is amazing what this technology might
offer in the near future! We as spine surgeons
know about spinal disorders and know our
patients. Therefore, we should get involved in
this emerging technology. During the next few
years, innovation may rather focus on the preven-
tion of degeneration of the spine, rather than its
restoration. The innovation should be directed
towards the patient’s individual needs. At pres-
ent, the ability to make patient-specific tissue
engineered scaffolds to replace the nucleus pulp-
osus, the annulus fibrosus or even the whole
intervertebral disk does exist. Further in this
book, there is a chapter dedicated to the innova-
tive technique of manufacturing individualized
patient-specific rods to restore the sagittal bal-
ance of the spine.

E. Van de Kelft (ed.), Surgery of the Spine and Spinal Cord. A Neurosurgical Approach.

DOI 10.1007/978-3-319-27613-7_1


mailto:Erik.vandekelft@telenet.be
mailto:erik.vandekelft@aznikolaas.be
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In the chapter on chronic low back pain, we
learn that after all these years of research, we still
have a knowledge gap of over 80 % concerning
the correct diagnosis. More research in the differ-
ent pain mechanisms and the diagnostic proce-
dures is mandatory to understand the different
pathophysiological processes. If we do not under-
stand the pain mechanism and cannot identify the
pain generator, surgical treatment should not be
an option. Different pain mechanisms and the
appropriate use of advanced imaging techniques
are well described in these chapters. These will
be important tools to help us as surgeons better
diagnose our patients.

In this book, the authors and myself made a
great deal of efforts to summarize the amount of
evidence for some surgical treatments. It is hard
to admit, but, for most indications, evidence does
not exist (sometimes it has never been measured)
or is rather weak. Since evidence will be one of
the key points when evaluating the effectiveness
of our surgery, I added two splendid chapters on
this theme. We, spine surgeons, should be armed
with the knowledge of what evidence-based
medicine means, why it sometimes is not evident
to demonstrate evidence and why, without evi-
dence, some treatments might be valuable. In the
‘blue boxes’, at the end of some chapters, I tried
to summarize the evidence, if it exists.

Education does not mean that we are able to
absorb all new data the ‘spine treatment commu-
nity’ worldwide continues to develop and publish
every day. Education means the continued self-
development of ourselves as surgeons, and we
need to be able to easily access the information
that brings valuable knowledge and skill sets.
This book, therefore, can be considered as
another educational brick to build further on the
temple of science, in which the spine pathology
and its treatment should reside.

To end with, why a ‘neurosurgical approach’?
Because the publisher, Springer, asked me to edit
a book on spine surgery with a neurosurgical
scope. As you will notice when looking at the list

of the many contributors working in four differ-
ent continents, besides neurosurgeons, there are
also many orthopaedic surgeons. While editing
this book, I was amazed how spine surgery is so
multifaceted. And this book is only a selection of
pathologies; we excluded trauma, infection and
paediatric spine problems. The knowledge of
spine disorders, the surgical skills and the chal-
lenges I mentioned earlier are so demanding for
one person that the evolution will probably make
us work more in teams, where orthopaedic and
neurosurgeons work together. It furthermore
becomes hard to accept that one is excellent in
spine surgery, besides other skills. For all these
reasons, I used the word ‘spine surgeon’ through-
out this book.

This book has been edited for the spine sur-
geon who wants to accept the challenges of today
and those of the future!




Kristiaan D'Ao(t
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2.1 Introduction

The human vertebral column (or the spine)
serves two main functions: a biomechanical one
and a protective one. The spine gives the body
longitudinal support (while retaining a degree of
mobility), connects the head and limbs, offers
muscle attachment sites and protects the spinal
cord. In this chapter, we will explore how these
functions have developed during evolution and
have led to the very specific structure that is
unique to the only habitual striding biped among
mammals: man.

2.2  The Origin of the Basic
Mammalian Vertebral

Structure

Many aquatic animals do not need a structural
support of the body, e.g. jellyfish, which are neu-
trally buoyant and move by jet propulsion. Other
animals, e.g. many molluscs and insects, use
some type of exoskeleton. Vertebrates, however,
are named after their endoskeleton with a seg-
mented vertebral column. If we want to under-
stand its origins, we have to go back to the
parental group of the vertebrates: the chordates.
In the most primitive members of this group, lon-
gitudinal body support is provided by the noto-
chord, an unsegmented structure consisting of
fibrous connective tissue around a core of fluid.
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This ‘hydrostatic skeleton’, which can be seen in
extant hagfishes and lancelets, allows for longitu-
dinal stiffness but provides no muscular attach-
ment sites. The notochord can still be seen during
embryonic development in all vertebrates and
defines the axis of the body, around which the
axial skeleton forms. It is also seen in the adult
stages of some vertebrates (e.g. lungfish), and it
persists as the nucleus pulposus in mammals,
including humans.

Segmented vertebrae first showed as ventral
(haemal) and dorsal (neural) arches. They served
to protect, respectively, blood vessels and the
neural tube. The supportive function of the spine
only came later.

The next evolutionary stage was the develop-
ment of two centra (the pleurocentrum and the
intercentrum), which supported the ventral arches
but did not surround he notochord completely.
Such arrangement can be seen in primitive gna-
thostomes [1], and it fundamentally persists in all
of the vertebrae we can see to date — all consist-
ing of arches and centra (Fig. 2.1). Evolution has
acted upon these structures; some have enlarged,
while others have reduced, explaining for a large
part the vertebral diversity we can observe today.

neural spine

e

neural arch

pleurocentrum
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During the course of evolution, the vertebrae
became strong units (particularly because of the
enlarged centra) replacing the notochord as the
fundamental support structure. They also became
regionally differentiated. Fish have two regions
(trunk and caudal), while amniotes (amphibians,
reptiles, birds and mammals) have up to five
regions: cervical, thoracic, lumbar, sacral and
caudal, with varying vertebral numbers in these
regions.

In amniotes, the pleurocentrum dominates and
forms the body of each vertebra. The intercentra
initially form the cartilaginous intervertebral
disks but in mammals, they only remain present
as the rib’s capitulum. The centra link up into an
axial vertebral column assisted by interspinal
ligaments. The articular shape defines the inter-
vertebral articular surfaces and thus largely deter-
mines in which plane movement is allowed.
Articular shapes strongly differ between animal
groups and even within a single body, while
many show high intervertebral mobility due to
their biconcave or concave/convex joint shapes;
in mammals, the centra have flat articulations,
which have reduced mobility but can withstand
high compressive forces.

myoseptum

A

Q neural tube
- interneural arch
notochord
?Tgﬁintercentrum
\. : dorsal aorta

Fig.2.1 Schematic
representation of the
primitive vertebral
structure, here in a
gnathostome [1]
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4

interhaemal arch

one vertebral segment
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In fish, lizards and snakes, the movement of
the spine is characterised by a lateral undulation.
In crocodiles, the spine can, in addition, move
dorsoventrally as can be seen in mammals.
Dolphins, reflecting their mammalian heritage,
move in the water with a dorsoventral movement
of their spine in contrast to fish.

During evolution, the ventral arch decreases in
importance or disappears (e.g. in mammals, it is
only occasionally found in the tail), while the
dorsal arch dominates. The dorsal arch persists in
mammals, including humans, as the vertebral
arch. It serves to protect the spinal cord, it pro-
vides attachment sites for both hypaxial and
epaxial musculature and it provides attachment
for numerous processes.

In addition to the centrum and arches, vertebrae
can develop a number of processes — apophyses.
Some of these (the pre- and postzygapophyses)
provide resistance to twisting.

Other apophyses carry ribs, which serve loco-
motor, respiratory and protective functions.
Basapophyses are paired remnants of the haemal
arch bases, which may articulate with the ventral
ribs of fish (which are probably homologous to
the haemal arches). Tetrapods only retain dorsal
ribs (termed the trunk ribs), which have a bicapi-
tal articulation. The ventral head (capitulum)
articulates with the pleurocentrum (in most rep-
tiles and birds) or, in mammals, between the cen-
tra. The dorsal head (tuberculum) articulates with
the diapophysis, a process on the neural arch.

Processes also change between species and
between regions, e.g. in mammals, where pro-
cesses disappear towards the end of the tail and
only centra remain.

In mammals, the vertebral column is highly
regionalised, and vertebral numbers are much
more conservative than in other groups.

Typically (with very few exceptions), there
are seven cervical vertebrae, of which the first
two (as in other amniotes), the atlas and the axis,
are highly specialised in order to support the head
while allowing for great range of motion. There
are typically 15-20 thoracic and lumbar verte-
brae (combined) and 2-3 sacral vertebrae (5 in
humans). The number of caudal vertebrae is
highly variable [2]. The basic structure of the

human vertebrae is similar to that of other
mammals.

At this point, it should be clear that the evolu-
tion of the vertebrae is complex, with specific
components gaining importance while others are
reduced, depending on the phylogenetic history
and locomotor demands of the animal. We will
therefore outline first some of the most important
differences between the human spine and the
non-human primate spine and subsequently focus
on the evolution of the spine in hominins.

2.3  ThePrimate Spine
Humans are hominoid primates (apes), and it is
instructive to consider the extant primate spine as
a model or analogue to understand our ancestral
spine structure, which later became adapted to
our specific life style and, most importantly, our
unique form of locomotion — habitual striding
bipedalism (for details on the evolution of pri-
mate morphology, we refer to the literature [3]).

The generalised primate vertebra consists of a
well-developed body with a neural (also named
dorsal or vertebral) arch. The base of this arch is
formed by the paired pedicles, joining into the
paired laminae onto which the spinal process sits
(which is unpaired but might end in double tuber-
cles; [4]). The spinous process can vary in its
length, strength and direction.

Laterally, the neural arch possesses transverse
processes and articular processes (zygapophyses).

The intervertebral disks are important, and the
makeup is approximately one fourth of the presa-
cral spine length in humans, but they vary in
thickness and shape.

Vertebral Structure Varies
Across the Regions in All
Primates

2.3.1

In the cervical (C) region, the vertebral foramen is
at its largest, and there is a transverse foramen
through the transverse processes. The two first ver-
tebrae, the atlas (C1) and the axis (C2), are atypi-
cal: they are much derived, and there is no



intervertebral disk between them. The atlas has no
body or spinous process and transmits the weight
of the head from the two occipital condyles (allow-
ing movement in the sagittal plane, as in nodding
‘yes’) onto the axis. The axis has cranially oriented
dens, which articulate firmly with what is left of
the ventral arch of the atlas. Movement between
the atlas and the axis is rotation along the longitu-
dinal axis (as in ‘no’). The orientation of the dens
differs among primates. It is retroflexed in typical
pronograde quadrupeds, which (together with the
position of the foramen magnum) positions the
head rather in line with the vertebral column.
The dens is slightly bent in knuckle walkers
(African great apes who have much longer fore-
limbs than hind limbs) and completely along the
longitudinal axis in the orthograde habitual bipeds
(humans), helping to balance the head vertically
into the vertebral column.

The typical cervical vertebrae (C3—-C6) have
kidney-shaped bodies in a cross-sectional view
and possess uncinate processes, which are facing
cranially and articulate with the previous verte-
bra’s body.

C7 is atypical and has a very long spinous pro-
cess (which is not bifid, unlike in the typical cer-
vical vertebrae). All primates, like all mammals,
possess seven cervical vertebrae.

The thoracic (T) vertebrae are typically heart
shaped in cross section and bear ribs. In order to
do so, they have facets on the body (two demifac-
ets per side, one cranially and one caudally) and
on the transverse processes. A rib typically artic-
ulates with a demifacet of its vertebra a demifacet
of the vertebra above, and its tubercle articulates
with the transverse process. However, the ribs of
the first thoracic vertebra, in humans, and the last
two thoracic vertebrae, in humans as well as apes,
articulate only via a single facet, not two demi-
facets (Fig. 2.2).

Caudally, the thoracic vertebral bodies become
bigger (longer and wider), the rate at which var-
ies between species. Neural arch size often (but
not always) decreases.

The shape of the superior and inferior articular
process is of great interest because of its func-
tional meaning. While oriented almost in the fron-
tal plane cranially, then there is a sudden change
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to the lumbar arrangement (i.e. angled steeply)
at the transitional (or diaphragmatic) vertebra
[5, 6], making the subregions very stable. The
pre-diaphragmatic region allows for rotational
movements, whereas the post-diaphragmatic
region does not.

Usually, the functional region of the thoracic
region is shorter than the rib-bearing region. The
ribs are very interesting from a comparative point
of view but fall outside the scope of this chapter.
The spinous processes are usually oriented cau-
dally, to varying degrees (e.g. in humans more
steeply than in non-human primates).

The lumbar (L) region possesses vertebrae
with laterally projecting transverse processes and
facet joints which interlock tightly between two
vertebrae. This arrangement increases stability
and limits rotational motion (but allowing flexion
and extension). Some primates have accessory
processes on the posterior articular processes,
locking with the anterior articular process of the
next (more caudal) vertebra. Spinous processes
in the lumbar region are usually well developed
and oriented cranially (not caudally, as in the tho-
racic region).

It should be noted that the lumbar vertebral
bodies are more robust in primates than in other
mammals, which has been related to their more
upright postures (if not habitual) [7].

In the sacral (S) region, the vertebral bodies,
the articulations between the neural arches and
the neural spines (partly or completely) are fused,
and there are no intervertebral disks. Therefore,
the sacrum is a rigid region.

The caudal region is highly variable in pri-
mates. Only the first few caudal vertebrae have a
fully developed neural arch, but most also have
ventral arches (connected to the body by liga-
ments) that protect the caudal artery.

While the basic anatomy and function of the
regions, outlined here, holds for all primates,
substantial variation exists within primate taxa,
and we will here outline some of this variation in
hominoids (apes, including humans), stating how
they differ from other primates.

One main point of variation is in the number of
vertebrae per region, which differs inter- (and
sometimes intra-) specifically. We will focus on
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Fig. 2.2 Schematic drawing of the sixth thoracic vertebra (T6) of a chimpanzee and a human. Top, axial view; bottom,

lateral view (After Aiello and Dean [8])

the thoracic, lumbar and sacral regions, since the
cervical region is highly conservative, even across
mammals, with seven vertebrae, and the caudal
region is very variable (e.g. ranging from no cau-
dal vertebrae in some gibbons to more than 30 in
the robust prehensile tail of spider monkeys) but
less relevant for humans. Interestingly, the total
number of thoracic, lumbar and sacral vertebrae is
usually 22 across apes and even monkeys [9], and
it is the distribution between regions that differs
(Table 2.1, adapted from after Schultz [10]).
Apes, as well as other non-human primates,
usually have more than 12 thoracic vertebrae

(e.g. up to 14 in chimpanzees, Pan, and up to
16 in the New World monkeys Alouatta). For the
lumbar region, it is interesting that the apes, our
closest relatives, have less vertebrae than humans
(typically three or four), which increased stiff-
ness is associated with the demands of climbing,
but primates in general often have more than five
lumbar vertebrae (e.g. up to nine in the Old World
monkeys Presbytis). A long lumbar region may
thus be the primitive primate condition, with an
independent reduction in vertebral numbers in
apes (see [10-12]). It has been stated in the past
that early hominins had six lumbar vertebrae but
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Table 2.1 Vertebral numbers per region in some primates

Thoracic Lumbar
Human (Homo) 12.0 5.0
(11-13) (4-6)
Chimpanzee (Pan) 13.2 3.6
(12-14) (34)
Gorilla (Gorilla) 13.0 3.6
(12-14) (3-5)
Orang-utan (Pongo) 11.9 4.0
(11-13) (3-5)
Gibbon (Hylobates) 13.1 5.1
(12-14) (4-6)
Macaque (Macaca) 12.1 6.9
(12-13) (6-8)
Spider monkey (Ateles) 13.8 4.2
(13-15) (4-5)

After Schultz [10]

[6] have shown that they had five, still one more
than typical for great apes.

The number of sacral vertebrae within apes is
somewhat variable but usually 5-6. Thus, com-
pared to the other apes, humans typically have an
extended lumbar region (+1 or 2 vertebrae) but a
shorter thoracic (—1 vertebra) and sometimes
sacral (-1 vertebra) region.

The hominoids deviate from the generalised
primate pattern in some other ways.

In the cervical region, the dorsal processes are
very large, especially in the largest individuals
(male gorillas and orang-utans), with the seventh
being the longest, as in humans.

In contrast to non-hominoid primates, the vol-
ume increase from cranial to caudal in the tho-
racic and (especially) lumbar region is mostly due
to widening but not lengthening of the vertebrae.
This is often regarded as an adaptation to the more
frequent use of upright (orthograde) postures and
is associated also with a broad thorax.

The lumbar articulation with the sacrum is
strongly enlarged, especially in humans (Fig. 2.3).

Non-human primates, including apes, have
relatively straight vertebral columns, with typi-
cally very moderate lumbar lordosis and tho-
racic kyphosis compared to the situation in
adult humans, as seen in our closest relatives,
chimpanzees (Pan). However, it should be
noted that the spine can show some lordosis and
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Sacral Caudal TL total TLS total
5.2 4.0 17 22.2
4-7) (2-5)
5.7 33 16.8 22.5
(4-8) (2-5)
5.7 3 16.6 22.3
(4-8) (1-5)
54 2.6 159 21.3
4-7) (1-5)
4.6 2.7 18.2 22.8
(3-6) (0-6)
3.0 17.0 19 22.0
24 (5-28)
3.0 31.1 18 21.0
24 (28-35)

a long lumbar region, as seen in, for example,
macaques [13].

24 The Hominin Spine

The previous section dealt with extant species; now
we will focus on extinct hominins (humans and
their direct ancestors) in an attempt to illustrate
how the typically human spine anatomy evolved
within our lineage. The fossil record of the human
spine is, however, very scarce and fragmentary. We
have vertebral fossils for five Plio-Pleistocene
hominins, excluding the relatively recent and in the
framework of spine evolution, less interesting spe-
cies such as H. neanderthalensis and H. sapiens.
Out of the five species, Australopithecus africanus
and Homo erectus, and recently Australopithecus
sediba, are best documented and have adequately
preserved detail [5], although for all of these spe-
cies, we lack a complete vertebral column.

All fossil vertebrae for Plio-Pleistocene homi-
nins we know have relatively long (compared to
modern humans) spinal and transverse processes.

Australopithecus afarensis (approx. 4-3 mil-
lion years ago, mya) is a key species for our
understanding of hominin evolution in general.
Fifteen vertebral elements are known for the AL
288-1 subject ‘Lucy’ and nine for the AL 333
sample ‘the first family’. They show long cervical
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Chimpanzee
(Pan troglodytes)

Fig. 2.3 Schematic drawing of the vertebral column, rib
cage and pelvis in a chimpanzee and a human (frontal
view). Note the higher pelvis, shorter lumbar region and

and probably also upper thoracic spinous pro-
cesses, which have been suggested that the
erector spinae, thomboids and trapezius muscles
were particularly well developed [14].
Australopithecus africanus (approx. 3—2 mya)
vertebral fossils are from Sts 14 (15 elements) and
Stw 431 (12 elements) [15] subjects, plus one each
for Sts 65 and Sts 73. The species possessed very
long transverse processes (Fig. 2.4) in the lumbar
region (esp. L3) and L3 and L4 very upwardly
curved [16]. Sts 14 had five lumbar vertebrae [15].
Paranthropus fossil vertebrae number only
three, from Swartkrans in South Africa (SK
3981b; [17], approx. 1.9 mya), and they are in
poor state. As in Australopithecus, they also pos-
sess long processes. The last lumbar vertebra has

b7
i

o
=

Human
(Homo sapiens)

narrow gap between the rib cage and the iliac crests in the
chimpanzee as compared to the human (After Schultz

(10D

transverse processes, which are up curved (as in
Australopithecus africanus) but very long com-
pared to both Australopithecus africanus and
modern humans; however, Paranthropus is con-
sidered not to be a direct ancestor to the latter.
Homo erectus vertebrae are best known from
KNM-WT 15000 ‘Turkana boy’ (approx.
1.5 mya), and the sample consists of 14 presacral
vertebrae. Haeusler et al. [18] describe the spine
as an overall rather modern human-like structure,
with five lumbar vertebraec and a human-like
mobility and capacity for lordosis (notably, with
even stronger lumbar wedging than in modern
humans and in australopithecines).
Australopithecus sediba (approx. 2.0 mya)
vertebral fossils have been recently described for
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Fig. 2.4 Schematic
drawing of the second
lumbar vertebra (L2) in an
axial view for an
australopithecine and a
modern human (After
Robinson [16])

Australopithecus africanus (Sts 14)

two individuals: MHI1 (a juvenile male) and MH
2 (an adult female) [19]. They show very strong
lumbar wedging (and thus lordosis), comparable
to Homo erectus.

The picture of hominin vertebral evolution is
still quite fragmentary, but some features are seen
in all hominins for which sufficient fossils are
available: lordosis [20-22], a pyramidal configura-
tion of articular facets with descent through the
lower lumbar column, and a wide curved sacrum.
In some species (but not in Australopithecus afa-
rensis and Australopithecus africanus), a large rel-
ative lumbosacral body size is observed [19].
Overall, key features linked to habitual bipedalism,
detailed below, can be seen in all fossil hominins.

2.5 The Human Spine:

Characteristics and Function

We have described the basic anatomy of the human
spine, how it has evolved, and outlined some
unique features in humans. In this final section, we
will try to relate some of the most striking features
to function. This is not always straightforward,
since anatomy is not exclusively determined by
function but also by evolutionary constraints. Even
the functional requirements are multiple, and espe-
cially the requirement for a large birth canal in
humans strongly dictates pelvic shape and, sec-
ondarily, spinal architecture (see ‘spinal curva-
ture’). However, in the case of the human spine,
there is a very large consensus that habitual upright
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Modern human

locomotion is the major driver (in evolutionary
and developmental terms) and that the require-
ments of stability and mobility are both important
(and potentially conflicting).

2.5.1 Spinal Curvature

For efficient, straight-legged, upright locomotion
as seen in humans, the trunk needs to be fully erect
with its centre of mass directly above the base of
support. This is achieved in two ways. Firstly, by
having ischio-iliac lordosis (which is outside the
scope of this chapter, but see [23]) and, secondly,
by having lumbar lordosis (Fig. 2.5).

Lumbar lordosis (a forward-facing convexity)
in humans is, for a great part, a phenotypically
plastic feature that develops as a result of upright
walking. This is shown, firstly, because it is not
seen in babies. Prior to the ability to walk, all sec-
tions of the vertebral column show a dorsal con-
vex curvature [24], and it is also not seen in
permanent bed-bound adults. Secondly, non-
human primates can develop human-like spinal
curvature during development, as seen, for exam-
ple, in Japanese monkeys trained for bipedal
walking (although the lordosis is largely the
result of the intervertebral disk rather than the
result of vertebral wedging; e.g. see [25].

Apart from pronounced lumbar lordosis,
the human spine displays thoracic kyphosis
(backward-facing convexity), as well as cervi-
cal lordosis and sacral kyphosis. The combined



2 Evolution of the Vertebral Column

Fig. 2.5 Note the lumbar lordosis in humans (right fig-
ure), necessary to keep upright position of the spine, as
compared to the general kyphosis of the spine in homi-
noids (left figure)

curvature of the spine also helps (with the inter-
vertebral disks) to absorb shocks. Interestingly,
an average lumbar lordosis is women seems to
be most attractive in men (see Chap. 39).

Anatomically, lumbar lordosis is a result of
dorsal wedging in L4 and LS5 (in males) and L3—
L5 (in females, [26]) and of the deformable,
intervertebral disks. Furthermore, these disks are
higher ventrally than dorsally. This is an impor-
tant finding when considering lumbar spine
reconstruction.

2.5.2 Spinal Mobility

The second fundamental difference between the
ape and the human spine lies in its overall
increased mobility. This is a result of mobility of
the spine itself, combined with the shape of the
rib cage and the pelvis, which are also very dif-
ferent in humans and apes.

13

The increased mobility in humans is caused
by the increased number of lumbar vertebra, out-
lined higher, but further enhanced by a number of
other features. The pelvis of great apes is much
higher than that of humans, and the iliac blades
virtually enclose the lowest lumbar vertebrae.
This iliac structure combined with the extended
rib cage (which further reduces flexion and exten-
sion movements in the thorax) also means that
the gap between these is very small, sometimes
only a few centimetres (Fig. 2.3). This further
limits overall trunk mobility in apes but not in
humans, where the lumbar region is the most
mobile one, after the cervical region. Since all the
great apes, with which we share a common ances-
tor, had such a stiff trunk (suited for arboreal
locomotion), it has been argued that hominins
started with a similarly short trunk; however, it
has also been proposed that they did not and that
the short lumbar regions of apes have evolved
independently from a longer primitive primate
lumbar region [11].

Motion is also to a great extent explained by
articular processes. Humans have relatively short
transverse and spinous processes (the latter
angles downwards more steeply than in apes),
which provides shorter leverage for the muscles
but enhances mobility. Moreover, the surfaces of
the articular processes are oriented in order to
allow movement, being curved and sagittally ori-
ented in the lumbar region, allowing for flexion
and extension, but flat and coronally oriented in
the thoracic region, allowing primarily lateral
bending and rotation, but much less flexion and
extension.

2.5.3 A Strong Lumbosacral Region

Lumbar vertebrae increase in size caudally; in
humans (but not in apes) the left-to-right dis-
tance between the facets of the paired articular
processes (which are, moreover, very well devel-
oped) also increases [8]. This is necessary for the
articulation with the wide sacrum (see below). At
lumbosacral joint, the inferior facet joints are
reoriented to prevent the entire spine sliding off
the highly angled sacrum (further helped by the
enlarged sacrospinous ligament).
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The human sacrum is absolutely and relatively
enlarged (notably in width) compared to the ape
sacrum; it is more curved and has a larger articu-
lation (the auricular surface) with the pelvis.
Compared to apes, humans display less partial
sacralisation of lumbar vertebrae [9].

Human bipedal walking requires both an
increased stability (due to the important loads
involved) and an increased mobility. These are
conflicting demands, which (with some other,
notably obstetric factors) have shaped the human
spine throughout the course of hominin evolu-
tion. This has led to a compromise anatomy (see
Putz et al. [27]), which together with the rela-
tively poorly developed erector spinae might help
explain the predisposition for lower back injuries
in humans [28].
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3.1 Introduction

3.1.1 Problem Statement

Low back pain is one of the most common com-
plaints throughout the modern western society
[1-5]. It can lead to a chronic disability for 10 %
of the patients resulting in a huge economic bur-
den for society and often an incapacitating life
for the patient. As low back pain often goes con-
comitant with intervertebral disk (IVD) degener-
ation [3, 4, 6], tissue engineering solutions for
IVD gained increasing attention during the last
decade.

The spinal column is one of the largest compo-
nents of the human skeleton. It serves a dual role
as it provides trunk flexibility while supporting
the upper body weight [7, 8]. In addition, it has to
function as an armor for the spinal cord and the
nerve roots that pass through [9]. In humans, the
spine is composed of 33 stacked vertebrae, most
of which sandwich an IVD. Twenty-four of these
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vertebrae form a flexible part, while nine verte-
brae form a rigid part inside the pelvis [7].

The IVDs act as a joint between the separate
spinal column vertebral bodies. They are
supported in this task by two zygapophyseal
joints (facet joints) located at the backside of the
spinal column and forming a three-joint complex
[10]. This three-joint complex is responsible for
the flexibility and load transmission throughout
the spine [5]. When the IVDs degenerate, they
lose height, which can affect the entire spinal col-
umn resulting in back pain and/or a loss of spinal
mobility and/or development of segmental insta-
bility. In the long term, major instability and sub-
sequently spinal stenosis, which is the main cause
of neurogenic claudication for the elderly, can
ensue [2]. This chapter will mainly deal with the
pathophysiology of the (lumbar) disk and the
theoretical tissue engineering solutions.

The cause of IVD degeneration is not fully
defined, yet it is anticipated to be the result of a
combination of factors including natural aging,
mechanical compression, genetic factors, inade-
quate metabolite transport, altered levels of
enzyme activity, smoking, load history, etc. [4, 5,
11-17]. IVD degeneration typically occurs in an
earlier stage when compared to the degeneration
of other musculoskeletal tissues. The first signs
of degeneration can already be observed in about
20 % of youngsters aging from 11 to 16 years
old [2, 6].

body

End plates

disk

wee \/ertebral
body

Fig. 3.1 Schematic overview of the anatomy of the
intervertebral disk with its characteristic regions
(Reprinted with permission from [13]). Note that in the

(— Vertebral

} = Intervertebral
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3.2  Anatomy and Physiology
of the Intervertebral Disk
3.2.1 Anatomy

of the Intervertebral Disks

An IVD is a rather avascular system [8], consist-
ing of three main regions including the nucleus
pulposus (NP), the annulus fibrosus (AF), and the
cartilaginous end plates [2] (Fig. 3.1, left).

The NP is the gelatinous core of the IVD [3],
with the major component being water (65-85 %
of its total weight) [2, 5, 18]. It contains randomly
organized collagen fibers and radially aligned
elastin fibers embedded in a highly hydrated pro-
teoglycan (PG) gel. The main PG present is
aggrecan, which generates an osmotic pressure.
This pressure originates from the presence of
chondroitin sulfate and keratan sulfate chains
which are responsible for hydration [2, 11, 14].
In addition, the NP consists of a low density of
chondrocyte-like cells embedded in a disorga-
nized matrix mainly consisting of type II colla-
gen fibers. It shows fluid-like behavior yet acts as
an elastic solid upon mechanical loading [19].
The shear modulus G* ranges from 7 to 21 kPa
[20], while its compressive elastic modulus var-
ies between 3 and 15 kPa [21].

The AF is more fibrous-like and consists of
15-20 concentric lamellae. These lamellae con-
tain parallel-aligned collagen fibers, primarily

b

Posterior AF

NP |

L4
L ‘/-' M
\\ ST 07 :
©  Anterior
Spine axis

lumbar spine especially, the height of the anterior AF
exceeds the one of the posterior AF, creating the lumbar
lordosis
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type I, which are oriented at an angle of 62° rela-
tive to the spinal axis at the edges of the AF. The
center of the AF mainly consists of collagen type
II fibers oriented at an angle of about 45° relative
to the spinal axis [3, 7, 18, 22]. The angle of the
fibers of one lamella layer is rotated over 180° in
comparison to the fibers of the previous layer
(Fig. 3.1) [19]. Furthermore, the AF contains
proteoglycans and elastin fibers which connect
the different lamellae thereby generating a high
axial strength [22]. In addition to collagen and
elastin fibers, the AF contains elongated,
fibroblast-like cells which are aligned parallel
with the collagen fibers [2, 14]. The cells main-
tain the complex extracellular matrix (ECM)
structure to preserve the biomechanical proper-
ties of the AF [5]. The AF is characterized by a
shear modulus G* of 540 kPa [23].

Finally, the cartilaginous end plates are thin
horizontal layers consisting of an outer osseous
component and an inner hyaline cartilage region
[8]. The central region consists of a hydrated PG
gel which is reinforced by collagen fibrils [8]. It
enables diffusion of nutrients and waste to and
away from the disk [19]. The end plates act as an
interface between the IVD and the vertebral body
and prevent the NP from bulging into the verte-
bral body [8]. Similar to the other IVD compo-
nents, they mainly consist of collagen fibers
aligned parallel with the vertebral bodies [2]. The
end plates are characterized by a shear modulus
G* of 440 kPa [23].

Collagen is the major component of the IVD as
it accounts for 90 % of its dry weight. It serves
important mechanical properties as it absorbs
water. This protein, alongside the PGs, creates a
swelling pressure, which is large enough to main-
tain a distance between the loaded vertebrae.
Compressive loads are supported mostly by pres-
surization of the NP, in combination with the mini-
mal hydraulic permeability of the AF, which
prevents the NP to burst. The bending and shear
stresses on the spine are borne mostly by the
mechanically robust AF [5]. In addition, the colla-
gen fibers inside the end plates serve an anchoring
function for the IVD to the vertebral bones [2].

Various interesting features can be distin-
guished when considering IVD tissue:
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» Firstly, the presence of long, thin cytoplasmic
cell projections can be observed, which are
typically absent in cells of any other articular
cartilage. It can be anticipated that they serve
as sensors and communication devices for
mechanical strain within the tissue [2].

e Secondly, in the native not degenerated disk,
there is an almost complete absence of blood
vessels and nerves. If present, they are only
observed in the outer lamellae [2, 8]. This fea-
ture causes a poor nutrient supply throughout
the IVD. This leads to poor regeneration
capacities as the cells are completely depen-
dent on passive diffusion of nutrients through
the end plates and subsequently the extracel-
lular matrix (ECM) [11, 24]. The nutrient
transport is consequently very dependent on
the composition of the ECM [2].

* Finally, the IVD contains a higher amount of
PG compared to articular cartilage.

3.2.2 Pathophysiology
of the Intervertebral Disk

Degenerative disk disease (DDD) has significant
consequences on the three parts of the
IVD. However, since this degeneration occurs in
every individual and no correlation exists
between the degree of disk degeneration and
symptoms, the word “disease” does not seem to
be appropriate for this normal degeneration pro-
cess. During skeletal maturation, the boundaries
between the NP and the AF start to fade and the
NP loses some of its elasticity as it becomes
gradually more fibrotic and less gel-like [27, 28].
The latter results in a drastic reduction of the bio-
mechanical properties of the IVD [3]. Another
important aspect in DDD is an increase in end-
plate calcification and associated decrease in
nutrient transfer to the IVD [29].

The origin of these phenomena can be traced
back to a series of changes occurring inside the
IVD. At an early age, notochordal cells are pres-
ent in IVDs [12, 13] (see also Chap. 1).
Interestingly, these cells can generate large
amounts of ECM. However, upon maturation,
these cells gradually disappear, thereby reducing
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Normal IVD

Severity

Degenerative IVD

-~

Grade | Grade Il

Fig.3.2 (Top) Overview of several stages occurring dur-
ing IVD degeneration: (1) healthy disk; (2) depressurized
NP, NP repressurization/replacement necessary; (3) AF
disruption, AF replacement necessary; (4) both NP and AF
are degraded, end plates have calcified, and severe loss in

ECM (re)generation [14]. In addition, enzymatic
breakdown of the proteoglycans results in a
reduction of hydration in the NP [14]. The end-
plate calcification, in combination with a reduced
blood supply during early childhood, reduces
nutrient flow to the NP and the AF which results
in necrosis of the ECM synthesizing chondro-
cytes [14]. The abovementioned processes give
rise to a decreased ECM regeneration. As a result,
the PG degradation is further accelerated [2, 29—
31]. Finally, a drop in type II collagen content is
observed, while an increase in type I collagen is
observed inside the NP [20, 30].

The degradation of IVDs can result in several
types of IVD failure including the occurrence of
tears in the AF which can result in bulging (the
outer layers of the AF remain intact; however, as

Grade lll

Grade IV Grade V

disk height, full IVD replacement required (Reprinted
from Chan et al. [25] with permission from Elsevier).
(Bottom) Macroscopical appearance and micro-CT images
of IVDs in several stages of degeneration (Reprinted from
Rutges JPHJ et al. [26] with permission from Elsevier)

a consequence of damage to the inner layers, the
NP will exert pressure on the weakened AF and
bulging of the IVD ensues), herniation (the
outer layers of the AF are not intact anymore;
upon pressure, the NP will partially protrude or
extrude) (see also Chap. 21), and loss of disk
height (chemical changes inside the NP cause it
to dry out. The associated drop in hydraulic
pressure results in a thinning of the disk) [5]
(Figs. 3.2 and 3.3).

The loss in water content due to a reduction of
the PG present in the NP reduces the ability to
maintain osmotic pressure upon mechanical load.
The latter further increases the loss of fluid and
the stress exerted on the AF leading to compres-
sion of the IVD. In addition, a reduction in NP
pressure hampers proteoglycan synthesis, which
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Annulus
Fibrosus

Nucleus
Pulposus

Tears in Annulus
Fibrosus

Fig. 3.3 Most common types of annulus tears: concen-
tric tears or AF delamination (a). Radial tears (b, ¢) with-
out complete disruption of the AF (d). Image (b) and (c)

results in a further reduction of hydration and,
consequently, the inability to auto-repair the
damaged tissue [32]. Moreover, a height reduc-
tion in one IVD generates increased levels of
stress on other parts of the spine, resulting in a
synergistic effect of spinal complications (cfr.
adjacent level disease after arthrodesis surgery)
[2]. These spinal complications can include,
among other, degenerative effects on other [VDs
as well as on the lumbar zygapophyseal joints
(facet joints) [33]. These joints also serve a load-
bearing function (especially in the cervical spine)
and partially take over this function from the
degenerated IVD. In the presence of a healthy
IVD, they support up to 33 % of the compressive
forces, while this number can go up to 70 % in
the presence of a degenerated IVD [33].
Consequently, an increase in density of the sub-
chondral facet joint bone is observed alongside
osteophyte formation [34]. This process can
induce a cascade of problems related to the spinal
system including full-thickness cartilage necro-
sis, ulceration, fibrillation, eburnation, abnormal
joint motion, bony hypertrophy, and, finally, spi-
nal stenosis and/or major segmental instability
[33]. Spinal stenosis may be the result of facet
joint osteophyte formation, disk herniation, yel-
low ligament hypertrophy, segmental instability,
and changes in the spinal contour [10].
Furthermore, the presence of aggrecan, the main
PG present, prevents vascular and neural ingrowth
[35, 36]. As aresult, the degradation of PGs gives
rise to an increase of vascular and neural
ingrowth, which is anticipated to be an attempt of
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Spinal Cord
Nerves

depict bulging of the IVD as a consequence of radial tears
in the AF; image D depicts IVD herniation which exerts
pressure on the spinal nerves

the body to increase nutrient supply in order to
restore the IVD [8, 37]. However, the presence of
nociceptive nerves in a load-bearing system
causes additional initially nociceptive back pain
as these nerves experience compressive forces [2,
14, 38, 39] (see also Chap. 22).

Another important aspect of DDD is the
reduced organization of the collagen fibers inside
the AF, which affects the biomechanical proper-
ties to a great extent [2]. The drop in biomechani-
cal properties of the AF can result in the formation
of concentric tears (cfr. disk delaminations) and
radial tears upon load [2, 14, 40] (Fig. 3.3).
Through these tears, the NP can (partially) influ-
ence the contours of the AF, leading to bulges and
disk herniation (protrusion/extrusion) [30], result-
ing in acute and chronic pain as a consequence of
the exerted pressure on adjacent nerves [2, 41].

Finally, end-plate damage can cause the NP to
herniate into the end plate. As a consequence, the
AF can collapse into the NP area upon mechanical
load as a result of the reduced NP pressure [14].

Conventional Clinical
Therapies

3.3

Current conservative treatments for low back pain
associated with IVD degeneration are aiming at
reducing discomfort and treating the symptoms
rather than repairing the mechanical function of the
IVD [2, 3]. They typically do not address the loss
of disk height nor the mechanical functions associ-
ated with IVD degeneration [3, 13]. They can even
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further induce the degeneration due to alterations in
biomechanics [3] which result in a necessity for
additional surgical interventions [42].

The first set of treatments are conventional,
noninvasive techniques consisting of oral analge-
sics, nonsteroidal anti-inflammatory drugs, and
physical therapies. However, these treatments
tend to focus more on pain relief rather than
addressing the cause of the problem. Furthermore,
it typically takes months before ‘“‘satisfactory”
results are obtained, and no evidence exists that
these treatments are beneficial [2].

Secondly, some minimally invasive tech-
niques aim at reducing the pressure exerted on
the nerves which is caused by bulging and herni-
ation of the disk. These techniques are referred to
as nucleotomy, (micro)diskectomy, and annulo-
plasty and imply that part of the IVD, generally
part of the NP, is removed to reduce the pressure
exerted on the nerves [2, 30, 38, 43]. Although
instant pain relief can be observed in the short
term, these techniques can lose their benefits
because of the poor regeneration properties of the
IVD and the possible occurrence of additional
degeneration during longer timeframes [22].

Alternatively to these minimally invasive treat-
ments, there are two major invasive approaches to
treat intervertebral defects [42]. First, spinal
arthrodesis [19] can be carried out in order to fuse
two or more adjacent vertebral bodies around the
damaged IVD(s). The ultimate goal of this sur-
gery is to become a bony fusion. Therefore, this
type of intervention should be called “arthrode-
sis” (literally the fixation of a joint) rather than
“fusion” surgery. Fusion is, in the optimal condi-
tion, the result of arthrodesis. Furthermore, it is
not so easy to demonstrate fusion, and fusion is
not associated with a good postoperative result as
nonunion is not associated with a bad postopera-
tive result. Although this technique is currently
considered as the standard treatment for degener-
ative disk disease, there is no evidence that it is in
the long term more beneficial than conservative
treatment (see also Chaps. 23 and 24) [9]. It
increases stress on areas surrounding the spinal
column which can lead to additional problems as
stated above; adjacent segment disease does exists
[34, 44]. A second technique includes a complete
surgical removal of the traumatized IVD and its

J.Van Hoorick et al.

replacement by an artificial one or arthroplasty,
referred to as total disk replacement (TDR) [4, 9,
32, 43-47]. This technique has emerged as an
alternative for spinal fusion to address a possible
loss of biomechanical properties. The postopera-
tive results can be compared with the ones after
fusion. In the cervical spine, the postoperative
results even look better than after cervical arthrod-
esis. Recently, progress has already been realized
in this field by applying rapid manufacturing/pro-
totyping (commonly referred to as 3D printing) as
a tool to construct patient-specific implants [48].
Although this technique offers some theoretical
benefits over spinal fusion, it still exhibits signifi-
cant drawbacks including a limited biocompati-
bility (depending on the material applied),
inconsistent mechanical behavior which induces
additional stress on the column [45], a poor fixa-
tion which could lead to subluxation of the
implant or the opposite, fusion [46, 49], and the
production of wear debris (often polyethylene
(PE)) upon repetitive mechanical loads which can
induce inflammatory responses (see Table 3.1) [5,
22,47,49-51].

3.4 Tissue Engineering

Treatments

Tissue engineering is a scientific research field,
which aims at the development of novel technol-
ogies to address the numerous challenges faced
when dealing with tissue repair. On the one hand,
it aims at suitable alternatives for conventional
organ transplants and all of its associated hurdles.
On the other hand, alternative treatments are also
targeted for currently unsatisfying treatments
including IVD degeneration [64]. Today, no
evidence exists that these treatment options yield
better long-term results than seen during the nat-
ural history of IVD or after its conservative treat-
ment. A promising approach however, in this
respect, is the use of biomaterials as starting
compounds for functional scaffolds. Ideally, the
scaffolds developed should closely resemble the
natural ECM while showing a predetermined
macroscopic shape. They can be introduced at
the site of a tissue defect [30] to act as a support
for stem cell adhesion, differentiation, and
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Fig.3.4 Scheme demonstrating the principle of tissue engineering

proliferation, in order to finally result in the gen-
eration of new tissue (Fig. 3.4) [64—68].

As a result to the lack of fundamental treat-
ment, alongside poor evidence supporting con-
servative as well as surgical treatments, recently,
increasing attention has been paid to alternative,
more sustainable treatments which focus on
restoring disk height and biomechanical func-
tions by introducing tissue engineering
approaches [2, 19, 30, 69, 70].

The first aspect to engineered IVDs is the
whole-organ culture [71]. The focus thereby lays
on understanding the mechanisms behind IVD
degeneration and the factors that enhance disk
regeneration ex vivo. Several factors are studied
in that respect including the effect of mechanical
stresses exerted and nutrient supply on the cell
viability [24], areas of the IVD which show
increased or decreased cell proliferation, etc. The
abovementioned studies are key to realize the
regeneration of IVDs [5].

Three methods are currently under investiga-
tion for IVD regeneration including AF repair,
NP repair or replacement, and total IVD replace-
ment. The selection and the success rate of the

different approaches are often depending on
timing and the nature of the observed degenera-
tion [5] (Fig. 3.2).

Overview of Available Cell
Sources

3.4.1

Tissue engineering (TE) of IVD requires a high
number of clinically suitable cells [3] which
forms one of the main obstacles to date [3, 27, 30,
42] since even healthy IVDs and especially the
NP are characterized by a low cellular density. In
addition, extracting cells from healthy IVDs to
repair degenerative IVDs can result in an
increased degeneration of the healthy disk [27].
As successful regeneration requires more cells
than can be harvested from a single IVD, differ-
ent cell sources have to be addressed [3, 6, 72].
At present, different cell sources are under con-
sideration to enable TE of IVD. Firstly, autologous
chondrocytes can be obtained from non-spinal
sites [27, 42], while autologous disk chondrocytes
are typically harvested through a diskectomy or
percutaneous biopsy [73]. The benefits of these
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cells include their similarity with IVD chondro-
cytes [27]. Furthermore, the use of autologous
cells excludes immunogenic body responses [73].
Secondly, some researchers address the use of
allogeneic IVD cells (i.e., cells from a different
individual), but this method raises questions con-
cerning immunological reactions, difficulties
related to cell culture and preservation, and poten-
tial disease transmission [74]. Furthermore, this
procedure can cause IVD degeneration in the
donor [74]. Finally, mesenchymal stem -cells
(MSCs) [3, 6, 11, 31, 43, 75-78] or bone marrow
stromal cells (BMSCs) can be applied as they are
not yet differentiated and multipotent (cfr. able to
differentiate into a large variety of cell types) [11,
72]. The application of MSCs for IVD regenera-
tion holds several advantages including [3, 11, 31]:

* Relatively easy to be harvested from bone
marrow

» Straightforward in vitro culture

* Self-renewal and expansion behavior

e Low immunogenicity ruling out tissue rejec-
tion post-implantation

» Differentiation possible into a variety of
cells including cell types present in the AF
and the NP

Unfortunately, the application of MSCs also
holds some risk as these cells exhibit the ability
to transform into a large variety of cells. The lat-
ter can become troublesome upon leaking from
the implant site and the formation of osteophytes
[42]. The in vitro manipulation of the cells prior
to the implantation (cfr. coculture with NP cells)
forms a viable alternative to generate large popu-
lations of the appropriate cells to realize TE of
the NP [3, 6].

3.4.2 Nucleus Pulposus
Replacement

As the early symptoms of IVD degeneration can
be attributed to transformations occurring inside
the NP, a lot of research has been focused on aug-
menting or regenerating the NP [27, 42, 79, 80].
In general, the studies aim at increasing the PG

27

content to restore the hydraulic pressure inside
the NP, which is crucial for its mechanical func-
tion [5, 70]. The regeneration of the NP can be
extremely useful in the early stages of DDD prior
to AF degradation (Fig. 3.2) [81].

Two approaches exist to realize an increase
in PG content. First, the cells present in the
NP can be stimulated to upregulate their ECM
production by administering growth factors
such as TGF-p and BMP-2 [3, 6, 31, 68, 70].
Unfortunately, although these growth factors
result in an increase of the major ECM compo-
nents, collagen and glycosaminoglycans (GAGs)
[6, 31, 68, 70], they can also lead to ossification
of the AF [82]. Furthermore, the successful intro-
duction of growth factors in the NP has proven to
be quite challenging, as a straightforward injec-
tion only generates short-term effects [22, 70].
The optimal approach is to introduce the growth
factors in a more permanent way by, for instance,
gene transfer therapy [6]. Applying this approach
implies the introduction of a gene responsible for
growth factor production into the target cells
which ideally results in a continuous production
of the growth factor [2]. Alternatively, the intro-
duction of new cellular material might be essen-
tial as IVD tissue is characterized by a very low
cellular density and DDD decreases this density
even further. As a result, a stimulation of the
ECM production in the native cells will not yield
sufficient ECM [3]. To address this cellular short-
age, research is also performed to investigate the
possibilities to introduce new cellular tissue into
the IVD [73]. A dual approach combining growth
factors with the introduction of new cellular tis-
sue is anticipated to give the best result [27, 31].

In order to introduce cells, injectable biomate-
rials or cell-seeded scaffolds can be applied. The
former are generally in situ cross-linkable hydro-
gels showing similar biomechanics compared to
the native NP [29, 81, 83]. Alternatively, a cell-
seeded scaffold can be useful for more extensive
injuries [5]. A non-exhaustive overview of the
materials and cell sources applied is shown in
Table 3.2.

Injectable procedures show some benefits
compared to methods, which require surgical
implantation. First, injectable procedures are
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