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Prologue

�e Rob & Smith’s Operative Surgery series established a 
legacy of texts focusing on the critical element of all surgical 
�elds — the operative procedure itself. Specialization and 
even sub-specialization of surgery practice has led to growing 
number of editions in the Operative Surgery series, resulting 
in a broad dissemination of texts from experienced surgeon-
leaders sharing their surgical skills by demonstrating how 
they perform the subject operation. �is central goal con-
tinues to be the focus of Operative Surgery texts: thoroughly 
described and carefully illustrated major surgical procedures. 

Even in the current multi-media environment with access 
to videos of surgical procedures, the unique value of these 
Operative Surgery texts persist. Individual chapters on all 
major operations performed in the particular specialty area 
provide the reader with exposure to leading surgeons’ full 
clinical and technical skills and experience. �is expert com-
mentary combined with precise and detailed illustrations 
maintain the special relevance of Operative Surgery texts.

This 6th Edition of Operative Cardiac Surgery, being 
published only 14 years a�er the previous edition, re�ects 
the continued swi� re�nement and evolution of adult and 
congenital heart surgery. Progress, improvement and the 

development of new procedures in cardiac surgery are 
marked by single decades. �e rapid progress that challenges 
cardiac surgeons to learn, enhance and re�ne their surgical 
skills has been incorporated in this 6th Edition.

While the role of the surgeon encompasses the full span 
of the encounter with the patient, including diagnostic, peri- 
and post-operative management, the singular essential role 
he or she plays is in the performance of the operation. How to 
carry out the operation safely and e�ectively is the essential 
element of the surgeon’s responsibility. �is new Operative 
Cardiac Surgery textbook is an invaluable volume by expert 
surgeons for the bene�t of other surgeons. It is intended for 
surgeons who aspire to the best surgical outcomes for their 
patients, based on the most current and successful surgical 
techniques. Congratulations to the Editors, Michael Acker 
and �omas Spray, for this updated 6th Edition. �e many 
contributors deserve special acknowledgement and thanks 
for their e�orts and expertise. �e entire cardiac surgery 
community, and our patients, are the bene�ciaries of this 
outstanding text.

Timothy J. Gardner
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Preface

It has been 14 years since the publication of the 5th Edition 
of Operative Cardiac Surgery by Gardner and Spray. �e 5th 
Edition contained 60 separate chapters dealing with the full 
spectrum of adult and pediatric cardiac surgery techniques 
and procedures that encompassed the specialty in the early 
2000s. In order to encompass the entire range of adult and 
pediatric cardiac surgery today, the 6th Edition contains 68 
chapters re�ecting the progress of cardiac surgery in multiple 
areas over the past 14 years.

�e section on surgery for ischemic heart disease now 
includes a new chapter on robotic total endoscopic coronary 
artery gra�ing (TECAB). �e section on valvular heart dis-
ease has been expanded to include new chapters on TAVR, 
valve sparing aortic root replacement and tricuspid valve 
surgery. �e section on heart failure has been expanded to 
include a new chapter on temporary mechanical assistance, 
including ECMO for the treatment of cardiogenic shock, 
and surgery for hypertrophic cardiomyopathy. We have also 
decided to include a chapter on lung transplantation since 
lung transplantation is done largely by cardiothoracic sur-
geons today. �e section on thoracic aortic disease has been 
expanded to include new chapters on thoracic endovascular 
aortic repair (TEVAR), hybrid aortic arch repair, as well as 
including a discussion on Type B aortic dissections. Finally, 
the section on cardiac rhythm disorders now includes a 
separate chapter on the Maze procedure for the treatment of 

atrial �brillation. In addition to these many new chapters, all 
our chapters have been largely rewritten with new illustra-
tions and by a new set of authors who are currently experts 
in the �eld.

In the section on congenital heart disease, the previous 
chapters from the 5th Edition have remained and new chap-
ters have been added on aortic pulmonary window; cardiac 
transplantation for congenital heart disease; lung and heart/
lung transplantation for congenital heart disease; ventricular 
assist devices for congenital heart disease; congenital mitral 
valve repair and aortic valve repair.

�e new edition continues to distinguish itself in its out-
standing illustrations that accompany every chapter with 
detailed descriptions of the operative procedures. �is addi-
tion continues the tradition of utilizing brilliant art work and 
illustrations that clearly re�ect the anatomic and technical 
features of each operative procedure.

Dr. Spray and I are honored to have had the opportunity 
to edit the 6th Edition with such a renowned and respected 
group of authors. We thank all our editors and contributors 
to this work knowing that it has been a long time in coming. 
I speci�cally want to thank Miranda Bromage for her superb 
leadership in shepherding this large project to the �nish line.

�omas L Spray, md
Michael Acker, md
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1
Echocardiography for cardiac surgery

JARED W. FEINMAN, BONNIE L. MILAS, AND JOSEPH S. SAVINO

HISTORY

The ability to perform real-time cardiovascular imaging in 
the operating room using transesophageal echocardiography 
(TEE) has been the most important diagnostic advancement 
in cardiac surgery over the past 30 years. TEE was developed 
in the mid 1970s but did not enter widespread use until the 
early 1980s when flexible TEE probes with manipulatable 
tips became available. The early probes were only capable 
of imaging along a single plane (monoplane), which some-
what limited their utility. The technology behind ultrasound 
image acquisition has moved forward rapidly, however, to 
the point that modern TEE probes can image along a 180 
degree axis, display multiple imaging planes simultaneously 
(x plane imaging) and acquire large pyramids of data that 
allow real-time, three-dimensional (3D) rendering of cardiac 
structures. As intraoperative TEE use has become com-
monplace, there has been a joint effort by the American 
Society of Echocardiography (ASE) and the Society of 
Cardiovascular Anesthesiologists (SCA) to standardize the 
perioperative TEE examination through the issuance of joint 
guideline statements as well as the establishment of a board 
certification process administered by the non-profit National 
Board of Echocardiography. The first set of guidelines on 
performing a comprehensive TEE exam was issued in 1999, 
and consisted of 20 standard echocardiographic views. This 
was expanded to 28 two-dimensional (2D) views and a 
focused 3D exam in the most recent 2013 update. Current 
recommendations state that an intraoperative TEE should 
be performed (barring a contraindication) in all patients 
undergoing open heart, thoracic aorta, or catheter-based car-
diac surgery, in most patients having coronary artery bypass 
grafting (CABG), and in any patients having non-cardiac 
surgery with known or suspected cardiac pathology that may 
impact outcomes. 

PRINCIPLES AND JUSTIFICATION

A few general principles regarding image generation, inter-
pretation of data, and limitations of the ultrasound system 
are useful in understanding TEE in the operating room. In 
basic terms, the ultrasound transducer uses piezoelectric 
crystals to convert electrical energy into high-frequency 
acoustic energy (ultrasound waves) and vice versa. The 
ultrasound waves that are emitted from the transducer travel 
through tissue planes where they can be absorbed (con-
verted into heat), refracted (if crossing between objects with 
different propagation speeds), or reflected (if adjacent media 
have different acoustic impedances) back towards the probe 
where they are converted by the ultrasound system into an 
image. Since reflection occurs best at a 90-degree angle, 2D 
imaging will be most effective when the ultrasound beam 
is orthogonal to the tissue being imaged. Also, any mate-
rial that causes a lot of reflection (e.g. prosthetic valves and 
calcium deposits) will not allow the ultrasound beam to pass 
beyond it, impairing the ability to image more distant struc-
tures. The data being reflected back to the ultrasound probe 
can be expressed in two different imaging formats. The 
most common is 2D B-mode imaging, where a line of echo 
data is moved back and forth in an arc through a section of 
tissue and displayed so that a continuous 2D image is gener-
ated. Alternatively, in M-mode imaging a single scan line is 
displayed over time, which allows for a very high frame rate 
and accuracy of linear measurements. Modern, full matrix 
array transducers have about 3000 independent piezoelectric 
elements that can be fired in a phased manner to generate a 
radially propagating scan line. The scan line can be steered 
in three planes to generate a true 3D volume of data, which 
can either be displayed in real time or stitched together with 
adjected volumes using ECG-gating to produce an even 
larger volume of 3D data. 
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Doppler ultrasound can be used to assess the velocity of 
blood flow or tissue movement within the heart and vascular 
structures. Since this form of imaging relies on the Doppler 
shift equation:

Doppler shift = 

(2 × velocity of object × incident  
frequency × cosine θ)

Propagation speed of ultrasound

a calculated velocity will be most accurate when the ultra-
sound beam is perfectly aligned with the blood flow being 
assessed (cosine 0° = 1), and should only be used if θ is 
<20 degrees. This stands in contrast to the aforementioned 
2D imaging, which will achieve the best resolution when 
the structure being imaged is orthogonal to the ultrasound 
beam. Doppler imaging is used in three common modes: 
pulsed-wave Doppler, continuous-wave Doppler, and color-
flow Doppler. Pulsed-wave and continuous-wave Doppler 
imaging both assess the velocity of the object being imaged 
over time, but differ in that the former is limited in the 
maximum velocity that can be assessed (Nyquist limit) 
but has range specificity, while the latter is not limited by a 
maximum velocity but has range ambiguity. Thus, pulsed-
wave Doppler is used to assess low-velocity flow in a specific 
location (e.g. pulmonary vein flow, transmitral inflow in 
a non-stenotic valve) while continuous-wave Doppler is 
useful in assessing high-velocity flow through a stenotic 
or regurgitant valve. Color-flow Doppler imaging overlays 
pulsed-wave Doppler data on a standard 2D image to gener-
ate a color map that provides information on the direction 
of blood flow as well as semi-quantitative information on the 
mean velocities of flow. Traditionally, blue denotes move-
ment away from the ultrasound probe and red movement 
towards the probe.

The TEE probe itself is essentially a modified gastroscope 
with a matrix array of piezoelectric crystals at the tip in 
place of a camera. Probe insertion and manipulation may 
lead to significant injury, and precautions are necessary to 
minimize the risk. Most perioperative TEEs are performed 
in anesthetized and intubated patients who cannot respond 
to pain or discomfort caused by excessive probe impingement 
of soft tissue. Before insertion, the TEE probe is inspected 
for damage or any break in the encasement. Then the probe 
is lubricated, inserted into the mouth, and passed poste-
riorly into the esophagus, and most imaging occurs at the 
level of the midesophagus, upper esophagus, or stomach. 
Manufacturers’ recommendations for probe cleaning and 
maintenance should be followed with a systematic approach 
to instrument processing. Complications from probe inser-
tion are uncommon (0.2% in one case series of 7200 patients 

reported by Kallmeyer et al.), and range from minor trauma 
to the teeth or pharynx to esophageal perforation, which car-
ries with it a high risk of mortality. 

Contraindications to TEE are disorders of the mouth, 
esophagus, or stomach that could preclude safe passage of 
the probe. These include esophageal strictures, diverticula, or 
webs, cancerous masses, or an active esophageal perforation 
or bleed. Abnormal displacement of the esophagus, such as 
may occur with a large aortic aneurysm, is not a contrain-
dication, but is associated with increased risk. In patients 
where there is a question of esophageal disease, the risks and 
benefits of TEE for that specific procedure must be weighed. 
If TEE is to be performed, it may be prudent to first have an 
esophagogastroduodenoscopy (EGD) done in the operating 
room to make sure that placement is safe, and/or to use a 
pediatric TEE probe, which is much smaller in diameter than 
a standard adult probe but comes with significant imaging 
limitations. 

COMPREHENSIVE TEE EXAMINATION

The current ASE/SCA guideline statement on performing 
a comprehensive TEE examination lists 28  standard views 
with additional 2D and 3D imaging performed as needed 
(see Figure 1.1). The TEE probe is initially inserted to a 
depth of approximately 30 cm and the entirety of the exam-
ination is performed by adjusting the rotation of the beam 
within the probe (omniplane angle), rotating the probe itself 
to the left or right, or moving the probe farther into or out 
of the esophagus/stomach. The views and the correspond-
ing approximate omniplane angle (between 0° and 180°) for 
each view are illustrated in the figure. The order in which a 
TEE exam is conducted varies between individual providers. 
While there is no “ideal” order of imaging, it is important 
for an echocardiographer to choose a protocol and follow 
it in every case, as this will prevent any unanticipated find-
ings from being missed. When discussing standard TEE 
views, the nomenclature is such that each view is named 
for the location of the probe in space (e.g. upper esophageal 
(UE), midesophageal (ME), or transgastric (TG)) followed 
by what is being imaged (four-chamber, two-chamber, etc.). 
Figure 1.1 has been reproduced with permission from Hahn 
RT, Abraham T, Adams MS, et al. Guidelines for perform-
ing a comprehensive transesophageal echocardiographic 
examination: recommendations from the American Society 
of Echocardiography and the Society of Cardiovascular 
Anesthesiologists. J Am Soc Echocardiogr. 2013; 26: 921–64.
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1.1 TEE examination standard views.
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a. ME four-chamber view b. ME two-chamber view

d. TG mid-short-axis view

e. TG basal short-axis view

c. ME long-axis view

Basal segments
1 = Basal anteroseptal
2 = Basal anterior
3 = Basal anterolateral
4 = Basal inferolateral
5 = Basal inferior
6 = Basal inferoseptal

Key
Mid segments
  7 = Mid anteroseptal
  8 = Mid anterior
  9 = Mid anterolateral
10 = Mid inferolateral
11 = Mid inferior
12 = Mid inferoseptal

Apical segments
13 = Apical anterior
14 = Apical lateral
15 = Apical inferior
16 = Apical septal

1.2a–e

Left ventricle

The left ventricle (LV) can be divided into a series of seg-
ments that allows correlation of regional wall motion with 
abnormalities in coronary blood flow. There are currently 
two commonly used models of left ventricular anatomy: the 
16-segment model and the 17-segment model. The only dif-
ference between the two is that the former divides the apex 
of the heart into anterior, lateral, inferior, and septal regions, 
while the latter adds a fifth segment, the apical cap, made up 
of the myocardium beyond the end of the LV cavity. 

The longitudinal axis of the LV is described as basal, mid, 
or apical. The midesophageal four-chamber view shows 
the three inferoseptal and three anterolateral segments 
(Figure 1.2a). Midesophageal two-chamber views show the 
three anterior and three inferior segments (Figure 1.2b) 

and midesophageal long-axis (LAX) views show the two 
anteroseptal and two inferolateral segments (Figure 1.2c). 
TG short-axis (SAX) views show all six segments at the 
mid (Figure 1.2d) and basal (Figure 1.2e) levels, and all 
four segments at the apical level. These figures have been 
reproduced with permission from Shanewise JS, Cheung AT, 
Aronson S, et al. ASE/SCA guidelines for performing a 
comprehensive intraoperative multiplane transesopha-
geal echocardiography examination: recommendations 
of the American Society of Echocardiography Council 
for Intraoperative Echocardiography and the Society of 
Cardiovascular Anesthesiologists Task Force for Certification 
in Perioperative Transesophageal Echo cardiography. Anesth 
Analg. 1999; 89: 870–84, and J Am Soc Echocardiogr. 1999; 
12: 884–900. 

See also Figures 1.3–1.7.
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1.3 LV midesophageal four-chamber view.

1.4 LV midesophageal two-chamber view.

1.5 LV midesophageal long-axis view.

1.6a–c LV transgastric short-axis views: (a) basal, (b) mid 
papillary, and (c) apical.

(a)

(b)

(c)
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1.7 Coronary perfusion pattern of the LV. This figure has been 
reproduced with permission from Lang RM, Badano LP, Mor-Avi 
V, et al. Recommendations for cardiac chamber quantification in 
adults: an update from the ASE and EACVI. J Am Soc Echocardiogr. 
2015; 28: 1–39.

1.8 3D LV analysis using the QLab software from Philips, Inc.

Left ventricular wall motion is scored based on wall thick-
ening and the degree of endocardial excursion using the 
following scale: normal (wall thickening greater than 30%), 
mild hypokinesis (10–30%), severe hypokinesis (<10%), aki-
nesis (no thickening), and dyskinesis (paradoxical motion). 
Wall motion can be abnormal globally (as in dilated car-
diomyopathy) or regionally. The latter is usually related to 
myocardial ischemia or infarction, but may accompany less 
common diagnoses such as sarcoidosis, myocarditis, and 
takotsubo cardiomyopathy. Over time, ischemic segments 

may become thinned and echogenic due to fibrosis and 
scarring and can even progress to aneurysm formation. In 
addition to regional function, the global function of the LV 
is assessed, most commonly by ejection fraction (EF), which 
is equivalent to: 

(LV end-diastolic volme − LV end-systolic volume) / (LV 
end-diastolic volume) × 100% 

An EF of <50% is considered abnormal, although a normal 
EF does not exclude reduced cardiac function in the setting 
of significant mitral regurgitation (MR) or isolated regional 
wall motion abnormalities. LV global function is frequently 
assessed qualitatively via “eye-balling” an EF, but quantitative 
measurements of LV function are possible. These include 
simple 2D measurements such as fractional area change 
(FAC) (end diastolic area - end systolic area / end diastolic 
area) or more complex volumetric assessments like the 
Simpson’s method of disks, in which the endocardial border 
of the LV is traced in systole and diastole and the volume of 
blood in the LV and EF are calculated automatically by divid-
ing the LV into a bullet-shaped stack of disks whose volumes 
are summed. 

Three-dimensional echocardiography (3D TEE) (Figure 1.8) 
has allowed for increasingly accurate calculations of LV 
volumes and EF compared with 2D TEE, as well as made 
detecting regional wall motion abnormalities more quantita-
tive. The use of global longitudinal strain also shows promise 
as a quantitative measure of LV function and may even have 
a role in unmasking problems with LV function before there 
is a decrement in EF. However, more studies are still neces-
sary to understand when strain measurement is most useful, 
especially in TEE as opposed to transthoracic echocardiog-
raphy (TTE).
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1.9 Midesophageal RV inflow–outflow view.

1.10 Long-axis view of the aortic valve.

1.11 Short-axis view of the aortic valve.

Right ventricle

The right ventricle (RV) has a crescentic shape and is located 
anteriorly (farther from the imaging probe in TEE), which 
makes both qualitative and quantitative assessments of 
its function difficult. Standard TEE views for interrogat-
ing the RV include the midesophageal four-chamber view 
(see Figure  1.3), the midesophageal RV inflow–outflow 
view (Figure 1.9), the transgastric RV basal view, and the 
transgastric RV inflow view. RV function is commonly 
assessed qualitatively as normal or mildly, moderately, or 
severely hypokinetic based on looking at the motion of the 
RV free wall, the RV outflow tract, the RV septal wall, and 
the movement of the tricuspid annulus during the cardiac 
cycle. There are a few quantitative measurements that can 
be made to assess RV contractility, including RV FAC and 
the tricuspid annular plane systolic excursion (TAPSE), 
but these have not been well studied in TEE. 3D echocar-
diographic assessment of the RV is possible using offline 
software that allows recreation of the crescentic shape of 
the RV and semi-automates calculation of RV EF, which has 
been shown in a few studies to correlate well with cardiac 
MRI imaging, but this software is not yet widely available 
in the operating room. In a similar way to the LV, RV strain 
has been looked at in some TTE studies and demonstrated 
good reproducibility and predictive ability, but much more 
work remains to be done before this methodology is widely 
adopted. 

Doppler in all patients. This allows the echocardiographer to 
visualize all three cusps and determine if any aortic regurgita-
tion (AR) or aortic stenosis (AS) is present. While most AVs 
are trileaflet, bicuspid valves are present in about 2% of the 
population, and unicuspid and quadricuspid valves are possi-
ble. From the long-axis view, the diameter of the AV annulus, 
the sinuses of Valsalva, the sinotubular junction (STJ), and 
the left ventricular outflow tract (LVOT) are measured. These 
are helpful for surgical planning and sizing of the AV pros-
thesis during aortic valve replacement (AVR). The deep TG 
view permits the echocardiographer to align the ultrasound 
Doppler beam with the flow of blood through the AV and 
LVOT so that velocities, and thus peak and mean gradients, 
can be calculated to grade the severity of AS. 

Aortic valve, aortic root, and left ventricular 
outflow tract

The aortic valve (AV) is examined in long-axis (Figure 1.10) 
and short-axis (Figure 1.11) views with and without color 
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1.14 3D planimetry of a stenotic aortic valve area. 1.13 Continuous-wave Doppler through a stenotic AV.

AORTIC STENOSIS
Echocardiographic imaging in AS typically reveals areas 
of increased echogenicity representing leaflet calcification, 
immobile leaflets, and a small systolic orifice. Congenitally 
bicuspid valves develop stenosis at a higher rate and earlier 
in life than trileaflet valves, so are frequently seen in the OR 
(Figure 1.12). These valves have an elliptical, “fish-mouth” 
pattern appearance during systole in short axis. Patients may 
also have an “acquired” bicuspid valve, where one of the com-
missures has become calcified and fused, appearing similar 
to a raphae. Senile calcific AS and rheumatic AS appear 
similarly on TEE, and cannot be differentiated easily based 
on imaging alone. A close examination must also be made of 
the LVOT to rule out subaortic stenosis from a subvalvular 
membrane, systolic anterior motion (SAM) of the mitral 
valve, other congenital anomaly. 

The severity of valvular stenosis (Figure 1.13) is deter-
mined by measurement of the transvalvular gradient and 
calculation of an aortic valve area. The maximum transaortic 

1.12 Midesophageal AV short-axis view of a stenotic bicuspid 
valve.

pressure gradient is calculated from the modified Bernoulli 
equation: 

Maximum gradient = 4v2 

where v is the maximum velocity through the valve. This 
formula assumes that there is no flow acceleration in the 
LVOT from obstruction, SAM, or other etiology. If this is 
not the case, then the maximum velocity through the LVOT, 
obtained via pulsed-wave Doppler in the LVOT, must be 
factored into the equation. The presence of LVOT obstruc-
tion will also change the waveform of the continuous-wave 
velocity curve through the valve, giving it a dagger shape. 
The mean gradient is calculated by tracing the spectral enve-
lope of the velocity curve and averaging the instantaneous 
gradients over the whole systolic ejection period. Pressure 
gradients are flow-dependent, and will be elevated when 
stroke volume is increased (e.g. pregnancy, exercise, AR) and 
reduced when stroke volume is decreased (e.g. hypovolemia, 
LV dysfunction, under general anesthesia).

The AV area (AVA) can also be calculated from Doppler 
measurements using the continuity equation: 

AVA = (AreaLVOT × VTILVOT) / (VTIAV) 

Error can easily be introduced into this calculation by mis-
alignment of the Doppler flow with blood flow across the AV 
or LVOT, as well as in measurement of the LVOT diameter, 
where small errors will become large errors once squared to 
obtain the LVOT cross-sectional area. To overcome this, the 
LVOT area can be measured directly using 3D TEE. The AVA 
can also be directly measured using planimetry of the valve 
orifice in the midesophageal AV short-axis view, but this is 
not a very accurate measurement due to the elliptical nature 
of the AV. 3D planimetry of the AV orifice has been shown 
to be more accurate and reproducible than 2D planimetry 
(Figure 1.14). 
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(a)

(b)

1.15a, b Transcatheter aortic valve replacement (TAVR).

1.16 3D sizing of the aortic annulus.

Traditionally, AS has been treated surgically by open 
AVR. This is rapidly changing, however, as more and more 
patients are treated endovascularly using trans catheter aortic 
valve replacement (TAVR). A wire is placed across the AV 
(Figure 1.15a), most commonly retrograde via the femoral 
artery (although transapical, transaxillary, and transaortic 
approaches are also used), and a valve is moved into posi-
tion within the native, stenotic AV along this wire and finally 
deployed (Figure 1.15b), crushing the native leaflets between 
the new valve and the aortic wall. Paravalvular leaks are 
relatively common following TAVR, and must be assessed 
echocardiographically in the operating room via TTE or 
TEE.

Preoperative annular sizing is also essential in TAVR, as 
direct valve sizing during the procedure is impossible. This 
is often done using either 3D echocardiography or contrast-
enhanced CT (Figure 1.16).
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1.19 Midesophageal AV long-axis view demonstrating AR 
owing to aortic dilation.

1.20 Midesophageal AV long-axis view of AR in the setting of 
a Type A aortic dissection.

AORTIC REGURGITATION
The echocardiographic assessment of aortic regurgitation 
(AR) includes determination of the severity and etiology 
of the regurgitation, the effect of the regurgitant lesion on 
ventricular size and function, and the presence of associated 
findings. AR may be due to abnormalities of the aortic root, 
ascending aorta, or the valve cusps. AR is often seen in the 
setting of AS, as calcified, restricted leaflets have difficulty 
coapting during diastole. 

Myxomatous AV disease produces redundant, often pro-
lapsing, cusps (Figure 1.17). Endocarditis produces AR 
through cusp or annular destruction and may be accompa-
nied by vegetations and/or root abscesses (Figure 1.18).

Dilation of the aortic root and/or ascending aorta with 
normal cusp morphology can lead to AR owing to a lack 

of normal supporting structures (Figure 1.19). Causes of 
aortic root dilation include hypertension, collagen vascular 
disorders (e.g. Marfan syndrome, Ehlers–Danlos syndrome, 
Loeys–Dietz syndrome), rheumatoid arthritis, syphilitic aor-
titis, and poststenotic dilation associated with AS. 

Aortic dissection produces an intimal flap in the lumen of 
the aorta and may produce AR by dilation of the aortic root, 
interruption of normal coaptation of the cusps by the inti-
mal flap, or separation of one or more cusps from the aortic 
wall if the valve is involved in the dissection (Figure 1.20). 
In chronic AR, the LV responds to the volume load by slow, 
progressive dilation that eventually leads to a decrement in 
LV function. In acute AR (aortic dissection or AV endocardi-
tis) the LV size may be normal but LV end-diastolic pressure 
may be elevated.

1.17 Midesophageal AV long-axis view demonstrating a 
prolapsing AV with vegetation (arrow).

1.18 Midesophageal AV long-axis view demonstrating severe 
AR (arrow).
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1.22 Transgastric long-axis view with continuous-wave 
Doppler producing high-velocity diastolic flow signal.

1.23 Midesophageal four-chamber view showing posterior 
(P2) leaflet flail and severe MR.

1.21 M-mode of the AR jet in the LVOT.

AR severity is assessed in several ways, the simplest 
being the use of color Doppler across the LVOT and AV 
(Figure 1.21). The width of the AR jet can be compared to 
the width of the LVOT. If the jet is <25% of the LVOT width, 
then the AR is mild, 25–65% is moderate, and >65% of the 
LVOT width is severe AR. Additionally, the vena contracta, 
or smallest width of the AR jet at the level of the valve leaflets, 
can be measured, with a value of >0.6 cm corresponding to 
severe AR. 

The continuous-wave Doppler spectral recording of AR 
typically reveals an increased velocity flow of 3–5 m/s (Figure 
1.22). The rate of deceleration of the regurgitant jet cor-
responds to severity of AR, with aortic diastolic pressure 
decreasing more rapidly as AR worsens. Thus, the Doppler 
tracing can be used to calculate a pressure half-time (PHT) 
in milliseconds, with mild AR having a value of >500 ms 
and severe <200 ms. These measurements, however, can 
be affected by LV compliance and aortic pressure. Finally, 
pulsed-wave Doppler can be used in the proximal descending 
thoracic aorta (DTA) to look at blood flow during diastole. 
If there is holodiastolic reversal of flow in the DTA, this is 
pathognomonic for severe AR. 

Mitral valve and left atrium

The move towards mitral valve (MV) repair in the majority of 
patients with degenerative MV disease was made possible, in 
part, by the widespread use of intraoperative TEE. TEE often 
provides a better view of the MV and left atrium (LA) than 
TTE due to the proximity of both structures to the esophagus. 
TEE allows for the rapid identification of annular calcifica-
tion, prolapsing or restricted scallops, annular dilation, and 
the integrity of the subvalvular apparatus with high precision, 
which allows for better surgical planning before the initiation 
of cardiopulmonary bypass. 

MITRAL REGURGITATION
The most common etiologies of mitral regurgitation (MR) 
are myxomatous (degenerative) MV disease, ischemic heart 
disease, rheumatic heart disease, and endocarditis. Surgical 
correction of MR is guided primarily by the severity of the 
regurgitation, the etiology of the MR, and the anatomy of 
the leaflets and annulus. Severity of MR is assessed through 
several methods, most of which attempt to find an easily 
measurable surrogate for the effective regurgitant orifice 
area (EROA) of the valve. These include the vena contracta 
width and proximal isovelocity surface area (PISA) of the 
regurgitant jet, the ratio of jet area to LA area, and the pres-
ence or absence of systolic reversal of the pulmonary venous 
inflow. Determining the etiology of MR consists largely of 
looking for prolapsing or tethered (restricted) leaflets, as 
well as assessing for annular and LV dilation or the presence 
of perforations or clefts in the MV leaflets (Figure 1.23). 
Etiology has a big impact on the repairability of the valve. An 
isolated P2 prolapse can be repaired in nearly all cases, while 
a complex lesion with prolapse of multiple scallops on both 
leaflets and a cleft should only be repaired by a surgeon with 
sufficient experience in complex MV repairs; otherwise, valve 
replacement should probably be pursued. 
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2D TEE assessment of the MV consists of four midesopha-
geal views (shown in Figure 1.24) which cut the MV in such 
a way that, between these views, the six anterior (A1-3) and 
posterior (P1-3) scallops can be seen. The TG basal short-axis 
view (Figure 1.25) and TG two-chamber view are also useful 
in assessing MV pathology and examining the subvalvular 
apparatus. 

3D TEE has been a major advance in the evaluation of 
MV disease. Using 3D echo, the entirety of the MV as well 
as the subvalvular apparatus can be visualized in real time 
from any angle. This allows for more rapid and accurate 
identification of prolapsing segments with less interobserver 
variability than 2D TEE. This is especially true for more 
complex valvular lesions. Color Doppler can also be added 
to 3D echo of the MV to help better identify the etiology 
of MR and more accurately grade the severity of MR using 
methods like vena contracta area and 3D PISA. Finally, there 

1.24 2D TEE midesophageal views of the mitral valve.

1.25 Transgastric basal short-axis view.
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(a)

(b)

(c)

(d)

1.26a–d Anterior leaflet (A1) flail in (a) 2D and (b) with 
color Doppler. (c) 3D TEE of the same lesion and (d) a quantitative 
map of the MV.

1.27 Systolic anterior motion (SAM) of the mitral valve can 
produce MR.

is software available from several manufacturers that allows 
for 3D quantitative assessment of the MV structure, which 
has helped elucidate many more details about MV function 
in both degenerative and especially ischemic MR. Examples 
are shown in Figure 1.26.

Residual MR after mitral repair is not uncommon. Mild 
to moderate MR detected under the influence of general 
anesthetics might revert to severe MR and symptomatic 
pulmonary edema in the exercising patient. The mechanisms 
of failed repair include persistent excessive leaflet motion, 
prolapse, perforation, and a spectrum of disorders producing 
malcoaptation of the anterior and posterior leaflets. 

SAM of the MV tends to occur in patients with an exces-
sively long (i.e. edge-to-annulus) posterior leaflet. SAM 
produces MR and obstruction of the LVOT (Figure 1.27). 
Hypovolemia and vasodilatation exacerbate SAM. Treatment 
includes volume administration as well as medications to 
increase afterload and decrease heart rate (i.e. phenyle-
phrine). If persistent, reinitiation of cardiopulmonary bypass 
and a sliding posterior valvuloplasty or MV replacement may 
be necessary. The maximum allowable MR after repair is 
controversial. Many clinicians will accept 1+ MR, especially 

if reinitiation of cardiopulmonary bypass and recross-
clamping poses a significantly increased risk (e.g. elderly, 
concomitant ischemic disease, decreased EF).
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MITRAL STENOSIS
The most common etiologies of mitral stenosis (MS) are 
rheumatic heart disease and senile calcific disease. As the MV 
leaflets become increasingly thickened and calcified, their 
free movement in both diastole and systole becomes limited, 
resulting in stenosis and often accompanying regurgitation. 
The decision of when to operate on a patient with MS is 
determined by the severity of the MS and accompanying 
symptoms (i.e. LA dilation, arrhythmias, shortness of breath). 
The severity of MS can be assessed in several ways. The first 
is by assessment of transvalvular gradients. The obstructed 
filling of the LV results in an elevated transmitral flow velocity 
and elevated peak and mean gradients. Mean gradient is used 
for the grading of MS severity with values of 5–10 mmHg for 
moderate MS and >10 mmHg for severe MS. PHT can also 
be used to assess MS severity, with a value of >220 ms corre-
sponding to severe MS and an MV area of <1.0 cm2. 

3D TEE can also be beneficial when assessing MS. Aside 
from being able to better see the movement of the leaflets 
from both the LA and the LV, MVA can be measured from 
a 3D data set of a stenotic valve using planimetry with 
greater accuracy and reproducibility than from 2D echo 
alone. The reason for this is that the likelihood of a 2D live, 
TG short-axis view of the MV being perfectly in plane with 
the minimum valve area is remote while, with 3D TEE, 
the image can be post-processed so that an en face view 
of the smallest valve area is easily obtained and measured 
(Figure 1.28). 

Tricuspid valve, right atrium, interatrial septum, 
and pulmonary artery

TEE of the right atrium and tricuspid valve is a reliable 
method of detecting atrial septal defects, sinus venosus 
defects, anomalous insertion of pulmonary veins, dilated 
coronary sinus (i.e. persistent left-sided vena cava), and 
abnormalities of the tricuspid valve (Figures 1.29 and 1.30). 
Insertion of a coronary sinus cardioplegia cannula can also 
be facilitated by direct imaging. Patent foramen ovale are 
common and diagnosis is established using 2D color Doppler 
and/or contrast echocardiography.

1.28 3D TEE of a stenotic mitral valve.

1.29 Midesophageal bicaval view with blood flow through a 
patent foramen ovale (arrow).

1.30 Midesophageal AV short-axis view. Dilated right atrium 
with flail portion of tricuspid valve (arrow).
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1.32 Mobile thrombus seen in the right main pulmonary 
artery in the midesophageal ascending aorta short-axis view.

1.33 Midesophageal ascending aorta short-axis view 
demonstrating an aneurysm.

The presence of a large PE is often accompanied by acute RV 
dilation and failure, and RV free wall akinesis with apical 
sparing may be seen (McConnell’s sign). The pulmonic valve 
is not always seen clearly with TEE due to its anterior position 
in the chest, but a basic interrogation for regurgitation and/
or stenosis with color Doppler is usually possible. In those 
patients with pulmonic valve disease, a TTE may provide 
more information for diagnosis and surgical planning. 

Thoracic aorta

AORTIC ANEURYSM
Patients presenting with an aortic aneurysm for elective 
repair have generally had their diagnosis confirmed by a vari-
ety of imaging modalities, including TTE, CT, MRI, and/or 
angiography before arriving in the operating room. Patients 
may, however, present for emergent surgery in the setting of 
rupture or dissection of a known aneurysm. The decision of 
when to operate on a dilated thoracic aorta depends largely 
on the diameter of the aneurysm and the rate of expansion, 
and varies between normal patients and those with a family 
history of thoracic aortic disease, bicuspid AV, or known 
collagen vascular disease. The pre-procedure TEE in aortic 
aneurysm repair should focus on measurement of the aneu-
rysm itself as well as the adjacent normal aortic tissue for 
graft sizing, interrogation of the AV to determine whether 
concomitant AVR is necessary, and evaluation of ventricular 
function (Figure 1.33). The post-procedure TEE is aimed at 
assessing the repair and detecting infrequent complications, 
like malperfusion, dissection, residual intracavitary air or 
debris, and worsened AR. New regional wall motion abnor-
malities may suggest ischemia from air emboli or a technical 
issue with the anastomosis of the coronary ostia onto the graft 
if the aortic root was replaced. 

Tricuspid regurgitation (TR) is becoming a more widely 
recognized problem in cardiac surgery patients (Figure 1.31), 
and severe TR has been shown in some studies to be an inde-
pendent predictor of mortality. The decision of whether to 
repair a tricuspid valve during concomitant cardiac surgery 
is often made in the operating room based upon TEE find-
ings. The severity of TR is based on the size of the regurgitant 
jet in the right atrium, the vena contracta width of the TR, 
and the presence or absence of systolic flow reversal in the 
hepatic veins. Tricuspid valve replacement is much less com-
mon than repair and is most frequently due to endocarditis, 
although damage to the valve from carcinoid heart disease 
or iatrogenic injury from EP or other procedures is also seen. 

TEE views of the main pulmonary artery (PA) include the 
midesophageal RV inflow–outflow view, the midesophageal 
ascending aorta SAX view (Figure 1.32), and  the UE aortic 
arch SAX view. These allow for the assessment of pulmonary 
arterial dilation as well as the presence of any large thrombi 
that may necessitate embolectomy or AngioVac procedure. 

1.31 Midesophageal four-chamber view demonstrating 
moderate tricuspid regurgitation (arrow).
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AORTIC DISSECTION
TEE offers several distinct advantages in the diagnosis of 
an acute aortic dissection. These include a high sensitivity 
and specificity (98% and 95% respectively according to a 
meta-analysis by Shiga et al.), expediency, and the ability 
to simultaneously assess LV function and look for AR or a 
pericardial effusion. The major disadvantage of TEE when 
compared to CT or MRI is the inability to image the distal 
portion of the ascending aorta and proximal arch due to 
the location of the air-filled trachea, so a dissection isolated 
to this location may be missed if TEE is the sole imaging 
modality. Given TEE’s utility in aortic dissection, it is com-
mon to have patients admitted straight to an operating room 
from the emergency department or an outside hospital if a 
dissection is suspected based on history, physical exam, or 
imaging. Once in the operating room, general anesthesia 
is carefully induced and a TEE probe is placed, where the 
diagnosis of aortic dissection can be confirmed and a deci-
sion can be made about whether to proceed emergently with 
surgery or if the patient should be sent to the ICU for medi-
cal management and possible eventual open (TAAA repair) 
or endovascular (TEVAR) repair. The major deciding factor 
between emergent surgery or the ICU is whether the dis-
section involves the ascending aorta (Type A) or is isolated 
to the DTA (Type B). The former is a surgical emergency, 
while the latter may be managed medically unless there are 
signs of malperfusion, rupture, or hemodynamic instability. 
Bypassing the delay and risk associated with obtaining CT or 
MRI scans, often in isolated, poorly monitored locations, can 
be life-saving. See Figures 1.34 and 1.35.

Color-flow Doppler may detect blood flow within a true 
(endothelial/atherosclerotic lined) and/or false lumen. An 
entry site (fenestration) between the true and false lumen 
is often identified. The absence of a discrete flap does not 

1.34 Descending aorta short-axis view. Aortic dissection 
with pleural effusion, probably hemothorax. The hallmark of aortic 
dissection is a linear, mobile echogenic density (i.e. intimal flap 
[arrow]) within the lumen of the aorta. Undulating motion of the 
flap can be associated with systole.

1.35 Descending aorta short-axis view. Aortic dissection with 
thrombosed false lumen.

exclude the diagnosis of dissection. Intramural hematoma 
is never a normal finding and implies significant injury to 
the integrity of the aortic wall (e.g. dissection, transection, 
or disruption). Hematoma may appear as an echogenic 
mass within the media or adjacent to the aorta, contained 
by echogenic adventitia. Caution should be used to avoid 
misinterpretation due to ultrasound artifacts such as rever-
beration artifact and beam-width artifact in oblique image 
planes. Transthoracic imaging of the suprasternal notch may 
reveal a limited dissection in the portion of the aortic arch 
that is not readily accessible by TEE. Ultrasound examination 
of the carotid arteries may also be useful to detect extension 
of the dissection into the carotid arteries, as well as confirm 
bilateral flow post-repair. 

Extension of the dissection flap into the aortic root can 
result in a flail aortic cusp and severe AR or can propagate 
down one or both coronary ostia, producing severe ven-
tricular dysfunction. Aortic rupture into the pericardium 
or pleural space is often fatal. However, if the rupture is 
contained by adjacent structures, a pericardial effusion/
tamponade or pleural effusion can be detected and tolerated 
by the patient until emergency surgery corrects the defect.

Initial echocardiographic assessment should focus on a 
detailed examination of all parts of the thoracic aorta with and 
without color Doppler to detect an intimal flap and confirm 
the diagnosis of aortic dissection. A transgastric short-axis 
view of the LV determines whether the pericardium con-
tains blood and permits assessment of regional and global 
ventricular function. The midesophageal AV short-axis and 
long-axis views provide images of AV integrity and allow the 
detection of AR as well as measurement of the aortic annulus 
and root to guide valve repair or replacement if necessary. 
Color-flow Doppler imaging can be used to verify flow within 
the proximal right and left coronary arteries. On initiation of 
cardiopulmonary bypass, the adequacy of arterial inflow into 
the true lumen should be confirmed, and flow in the carotid 
arteries can be assessed using a handheld transducer.
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1.36 Deep transgastric long-axis view showing a paravalvular 
leak from a prosthetic valve in the aortic position.

Prosthetic valves

The interrogation of a prosthetic valve, either in the set-
ting of a fresh valve replacement or redo surgery, presents 
a unique set of challenges to the echocardiographer. There 
are two main types of prosthetic valves, each with their own 
unique imaging characteristics. Bioprosthetic valves consist 
of animal-derived leaflet tissue (often bovine or porcine) 
with a metallic and fabric stent structure and sewing ring 
(although stentless valves also exist). Mechanical valves are 
most often bileaflet in construction, but other designs may 
be seen, especially in older patients. Both valves produce a 
number of imaging artifacts due to their structure, includ-
ing shadowing, mirroring, side-lobe artifacts, and others, 
which can make accurate assessment of function difficult. 
Mechanical valves also have physiologic washing jets (the 
number and characteristics of which vary by valve) which can 
make the detection of paravalvular leaks difficult. 

Generally, paravalvular leaks typically produce high-
velocity, high-variance jets external to the sewing ring that 
extend farther into the adjacent cardiac chamber than a typi-
cal washing jet. In Figure 1.36, a deep transgastric long-axis 
view demonstrates a paravalvular leak from a prosthetic valve 
in the aortic position. 

Intravalvular leaks may also be seen in prosthetic valves, 
and are due to leaflet dysfunction or destruction or impinge-
ment of leaflet movement by valve malposition, pannus 
formation, or some other structure. Prosthetic valve stenosis 
may be detected via Doppler measurements of transvalvular 
peak and mean gradients. 3D TEE may be especially useful 
when assessing for paravalvular leak, as it allows visualization 
of the entire valve and sewing ring in one image, facilitating 
rapid localization of the leak and guidance of surgical or 
transcatheter closure.

FURTHER READING

Andrawes M, Feinman J. 3-dimensional echocardiography and its 
role in preoperative mitral valve evaluation. Cardiol Clin. 2013; 
31: 271–85.

Baumgartner H, Hung J, Bermejo J, et al. Echocardiographic 
assessment of valve stenosis: EAE/ASE recommendations for 
clinical practice. J Am Soc Echocardiogr. 2009; 22: 1–23.

Hahn, RT, Abraham T, Adams MS, et al. Guidelines for performing 
a comprehensive transesophageal echocardiographic 
examination: recommendations from the American Society 
of Echocardiography and the Society of Cardiovascular 
Anesthesiologists. J Am Soc Echocardiogr. 2013; 26: 921–64.

Kallmeyer IJ, Collard CD, Fox JA, et al. The safety of intraoperative 
transesophageal echocardiography. Anesth Analg. 2001; 92: 
1126–30.

Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for 
cardiac chamber quantification in adults: an update from the 
ASE and EACVI. J Am Soc Echocardiogr. 2015; 28: 1–39.

Mathew JP, Swaminathan M, Ayoub CM. Clinical manual and 
review of transesophageal echocardiography. 2nd edn. New York: 
The McGraw-Hill Companies; 2010.

Shiga T, Wajima Z, Apfel CC, et al. Diagnostic accuracy of 
transesophageal echocardiography, helical computed 
tomography, and magnetic resonance imaging for suspected 
thoracic aortic dissection. Arch Int Med. 2006; 166: 1350–6.

Zoghbi WA, Enriquez-Sarano M, Foster E, et al. Recommendations 
for evaluation of the severity of native valvular regurgitation 
with two-dimensional Doppler echocardiography. J Am Soc 
Echocardiogr. 2003; 16: 777–802.



http://taylorandfrancis.com


2
Cardiopulmonary bypass: access, technical 
options, and pathophysiology

JACK H. BOYD AND ALBERT J. PEDROZA

HISTORY

The development of cardiopulmonary bypass (CPB) can be 
largely attributed to the pioneering work of John Gibbon, who 
demonstrated its first successful use in animals in the 1930s 
and performed the first successful human open heart opera-
tion in 1953, when he repaired an atrial septal defect using 
CPB. This initial success was unfortunately followed by several 
deaths, and he became discouraged by the results and post-
poned its subsequent human use. At around the same time, 
C. Walton Lillehei began using controlled cross-circulation 
from parent to child to allow intracardiac repairs. In 1965, 
John Kirklin used a modified Gibbon heart–lung machine 
for intracardiac repair in a series of patients, heralding the 
era of CPB. Since this early work, progressive developments 
have occurred in materials used and in surgical techniques to 
improve the safety, reliability, and efficacy of CPB.

PRINCIPLES AND JUSTIFICATION

CPB is utilized when an empty heart is required for intra-
cardiac repair, when cardiac mechanical arrest is needed, 
when cardiac manipulation requires circulatory support, 
and when deep hypothermia is needed to allow for a period 
of systemic and/or cerebral circulatory arrest. During CPB, 
systemic deoxygenated venous blood drains into the extra-
corporeal circuit and passes via a venous reservoir to a pump, 
which propels blood through a membrane oxygenator for 
gas exchange before return to the systemic arterial circula-
tion (Figure 2.1). This circuit diverts blood flow from the 
patient’s cardiopulmonary circulation while maintaining 
blood oxygenation and organ perfusion. The circuit also 
includes a heat exchanger for body temperature manipula-
tion and access ports for the administration of perfusate and 
drugs and for acquisition of intraoperative blood samples. 
Additional components of the bypass circuit enable the 

administration of cardioplegia solution, venting of cardiac 
chambers, and blood salvage from the surgical field. 

Systemic anticoagulation is required during CPB to pre-
vent blood clotting within the circuit. A systemic bolus 
of 300  units/kg of unfractionated heparin is administered 
prior to cannulation to maintain an activated clotting time 
(ACT) of greater than 400  seconds during bypass. The 
ACT is routinely monitored in 20–30-minute intervals 
throughout the bypass run, and heparin is readminis-
tered to maintain adequate anticoagulation. A fraction of 
patients exhibits heparin resistance, defined by failure to 
achieve the ACT goal despite escalated heparin dosing. 
This process is mediated at least in part by deficiency of 
antithrombin III and is rectified by administration of either 
fresh frozen plasma or antithrombin concentrate, which is 
more expensive but curbs transfusion risks. Patients who 
are unable to receive heparin (e.g.  patients with heparin-
induced thrombocytopenia) can safely be anticoagulated 
with a direct thrombin inhibitor such as bivalirudin or by 
utilizing a protocol with intravenous epoprostenol in addi-
tion to heparin. 

Adequate pump flow rates on CPB depend on the tem-
perature and body surface area of the patient. At physiologic 
temperatures, a minimum of 2.2 L/m2 should be main-
tained. The use of therapeutic hypothermia can reduce flow 
requirements. As a general principle, systemic oxygen con-
sumption decreases about 10–12% for every 2 °C reduction 
in body temperature. In practice, this concept allows for up 
to 20–40 minutes of safe circulatory arrest with selective 
cerebral perfusion and systemic cooling to 24 °C. There is 
considerable variability in the practice of surgeons regard-
ing optimal temperature management during CPB. Multiple 
clinical trials have demonstrated that routine cardiac opera-
tions can be safely performed under only mild hypothermia 
without active cooling through the bypass circuit. Rewarming 
should be timed to allow for normothermia at the end of the 
bypass run to minimize time on pump. 
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2.1

While limited data exist on optimal systemic perfusion 
pressures on bypass, experimental models suggest mainte-
nance of a mean arterial pressure no less than 40 mmHg is 
sufficient. In practice, maintaining a more physiologic mean 
pressure of 60 mmHg is a safe approach, and relatively higher 
pressures should be targeted in the setting of known athero-
sclerotic cerebrovascular disease. Systemic blood pressure is 
highly dynamic in the cardiac operating room due to fluid 
shifts, variable pump flow rates, and the vasodilatory prop-
erties of anesthetics. Accordingly, constant communication 
between the surgeon, anesthesiologist, and perfusionist is 
necessary to maintain adequate perfusion, minimize blood 

loss from the extracorporeal circuit, and optimize working 
operative conditions. 

PREOPERATIVE ASSESSMENT AND 
PREPARATION

In the modern era of cardiac surgery, an expanding array 
of available cannulation and perfusion strategies enables 
the surgeon to optimize the operative field for the planned 
operation. The surgeon must develop a preferred plan as 
well as contingencies for both suspected and unforeseen 
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complicating factors. The preoperative assessment for any 
cardiac case should include consideration of venous and 
arterial cannulation strategies, the need for venting cannulae, 
and myocardial protection. The selection of an appropriate 
arterial cannula is made based on the body surface area of the 
patient and vascular anatomy. A 20-French aortic cannula is 
generally sufficient for most adult cardiac operations. 

Preoperative history and physical exam should identify 
history or stigmata of cerebrovascular disease, ventricular 
dysfunction, renal disease, and peripheral vascular disease. 
All preoperative imaging should be reviewed, including 
assessment for calcification of the aorta to ensure safe central 
cannulation and for atherosclerotic disease that may compli-
cate peripheral cannulation or placement of an intra-aortic 
balloon pump.

ANESTHESIA 

General anesthesia with neuromuscular blockade and 
endotracheal intubation is required for cardiac surgical cases. 
If operative strategy dictates thoracotomy with single-lung 
ventilation, either a dual-lumen tube or bronchial blocker 
is used for bronchial isolation. Multimodal invasive and 
external monitoring devices should be routinely employed 
to guide intraoperative decision-making (Table 2.1). At a 
minimum, surface ECG, pulse oximetry, radial and/or femo-
ral arterial catheters, and a Foley catheter should be in place 
prior to commencing a cardiac operation. Transesophageal 
echocardiography is routinely employed. Cerebral near-
infrared spectroscopy (NIRS), traditionally used in aortic 
procedures, should be considered for all cases. A pulmonary 
artery catheter provides real-time monitoring of hemody-
namic parameters but is not necessarily required in all cases. 

In particularly high-risk cases with elevated concern 
for cardiovascular collapse during induction of anesthesia 
(e.g. severe aortic stenosis, critical coronary lesions, severely 
reduced ejection fraction) the surgeon should consider pre-
induction placement of an intra-aortic balloon pump or 
femoral arterial and venous access to enable rapid cannula-
tion for bypass. Appropriate access for the administration of 
vasoactive drugs and volume resuscitation generally neces-
sitates large-diameter central venous catheter placement. 

OPERATION

Access for central cannulation

Although employment of minimally invasive operations 
is constantly increasing, most cardiac operations are still 
performed via median sternotomy (Figure 2.2a). Adequate 
access is feasible through a skin incision starting 3 cm below 
the sternal notch and ending above the inferior tip of the 
xiphoid process. For a standard sternotomy, the sternum 
is completely divided in the midline with a reciprocating 
sternal saw. 

2.2a

Table 2.1 Multimodal monitoring

Monitoring modality Parameters 
Surface ECG Heart rhythm, ischemia
Arterial catheter Blood pressure, arterial blood 

gas
Pulmonary artery (Swan–Ganz) 
catheter

CVP, PA pressure, cardiac 
output

Transesophageal 
echocardiology (TEE) probe

Ventricular function, valvular 
disease, cannula/wire 
placement

Foley catheter Core temperature, urine output
Cerebral near-infrared 
spectroscopy (NIRS)

Cerebral oximetry 
(oxygenation)
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