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Foreword

Over	 the	 past	 30	 years,	 there	 have	 been	 countless	 important	 clinical	 and
technical	advances	 in	orthopedic	 traumatology.	This	progress	has	been	nothing
short	 of	 amazing,	 and	 most	 of	 it	 has	 been	 directly	 correlated	 with	 improved
knowledge	of	osteology	and	imaging.

In	the	late	1980s,	Drs.	Bob	Winquist	and	S.	Ted	Hansen	introduced	closed
reamed	 femoral	medullary	 nailing	 to	North	America.	 Femoral	 nailing	 allowed
early	fracture	stability	and	patient	mobility	and	was	quickly	identified	to	be	a	life
changing	and	often	life-saving	technique.	The	patient	was	freed	from	the	deadly
“orthopedic	 crucifix”	 position	 of	 prolonged	 skeletal	 traction.	 Intraoperative
fluoroscopy	 was	 the	 key	 component	 that	 changed	 nailing	 procedures	 from
extensive	and	morbid	open	operations	to	safe	closed	ones.	And	the	game	was	on
for	 intraoperative	 fluoroscopy	 as	 clinicians	 used	 it	 more	 and	 more	 to	 better
assess	the	fracture	reduction	quality	and	implant	construct	safety.

The	 entire	 field	 of	 boney	 imaging	 advanced.	 Plain	 radiographs,
intraoperative	imaging,	and	computed	tomography	evolved	as	clinicians	became
more	 aware	 of	 their	 value	 to	 improving	 patient	 care	 quality.	 Injury	 imaging
included	 traction	views,	oblique	 images,	 and	CT	scans	 and	helped	 surgeons	 to
refine	 their	 preoperative	 planning.	 As	 with	 medullary	 nailing,	 high-quality
intraoperative	 fluoroscopy	 has	 been	 directly	 responsible	 for	 the	 evolution	 of
modern	 percutaneous	 pelvic	 surgery.	 Long	 before	 any	 pelvic	 fixation	 screws
were	 inserted,	 we	 had	 to	 completely	 understand	 the	 various	 osseous	 fixation
pathways	 and	 their	 imaging	 details.	 The	 cortical	 surface	 limits	 had	 to	 be
identified	 first	 and	 then	 the	 specific	 images	 necessary	 to	 reliably	 demonstrate
them	followed.	Finally,	the	variants	of	pelvic	osteology	were	defined	so	that	the
intraoperative	 fluoroscopic	 pelvic	 imaging	 would	 accurately	 assess	 the
manipulative	reductions	and	also	guide	the	insertion	of	pubic	ramus,	pelvic	brim,
acetabular	columnar,	iliosacral,	and	other	pelvic	fixation	screws.

Overall,	 intraoperative	 imaging	 serves	 numerous	 important	 clinical	 needs
including	 (1)	 proper	 patient	 positioning,	 (2)	 fracture	 site	 instability	 and
displacements,	 (3)	 reduction	 accuracy,	 (4)	 implant	 location,	 (5)	 inadvertent
retained	surgical	devices,	and	(6)	stability	of	the	repair.



With	 this	 book,	 Drs.	 Mamczak,	 Smith,	 and	 Gardner	 provide	 practicing
surgeons,	 residents,	 medical	 students,	 nurses,	 operating	 room	 staff,	 and
radiology	 technicians	 with	 a	 clear,	 concise,	 detailed,	 and	 comprehensive
reference	 for	 their	 individual	 intraoperative	 imaging	 needs.	 Each	 chapter	 has
been	 authored	 by	 an	 experienced	 clinician	 and	 focuses	 on	 the	 indications,
specifics,	 and	 common	mistakes	 of	modern	 intraoperative	 imaging.	 This	 book
will	help	you	to	improve	your	overall	knowledge	of	modern	imaging,	and	more
importantly,	it	will	improve	your	awareness,	abilities,	and	safety.

Milton	L.	Chip	Routt,	Jr,	MD

It	 gives	me	great	 pleasure	 to	be	 invited	by	Chris	Smith	 to	write	 a	 forward	 for
“Illustrated	 Tips	 and	 Tricks	 for	 Intraoperative	 Imaging	 in	 Fracture	 Surgery”,
that	is	coauthored	by	Drs.’	Mamczak,	Smith,	and	Gardner.	This,	especially	so,	as
I	was	honored	to	be	one	of	Chris	Smith’s	mentors,	and	he	continues	to	flourish
and	make	us	all	very	proud!!

The	 more	 we	 know	 about	 orthopedic	 trauma	 the	 more	 we	 realize	 that
restoration	of	normal	anatomy,	when	feasible,	usually	assures	the	best	outcome.
Obviously,	there	are	many	variables,	including	the	patient,	timing,	other	injuries,
soft	 tissues,	 age,	 comorbidities,	 etc.,	 that	 are	 involved	 in	 the	 decision	making,
but	when	possible	as	determined	by	the	preoperative	plan,	“perfect”	must	be	the
goal.	Obviously	 if	 that	can	be	achieved	with	 less	direct	visualization/exposure,
that	 is	an	advantage,	 that	 is,	precisely	what	an	 intraoperative	C-arm	allows!	 In
addition,	 the	 worst	 case	 scenario	 as	 a	 surgeon	 is	 to	 have	 a	 problem
intraoperatively,	 which	 one	 cannot	 see,	 cannot	 even	 visualize	 adequately	with
the	C-arm	due	to	poor	planning	and	being	forced	to	expose	more	(unnecessarily)
or	accept	a	less	than	optimal	outcome.

I	do	believe	the	authors	have	addressed	those	issues	in	“Illustrated	Tips	and
Tricks	 for	 Intraoperative	 Imaging	 in	 Fracture	 Surgery”	 and	 assured	 with	 a
complete	 preoperative	 plan	 that	 includes	 the	 patient,	 surgery,	 and	 C-arm
positioning/views	 to	 allow	 intraoperative	 visualization	 and	 assessment	 of
reduction,	fixation,	and	hence	the	best	chance	for	an	optimal	outcome.

Clearly	 this	 book	 is	 a	must	 for	 all	 orthopedic	 surgeons	 but	 especially	 for
those	doing	trauma	and	fracture	surgery.

David	L.	Helfet,	MD



Preface

It	 goes	 without	 saying	 that	 preoperative	 planning	 is	 a	 critical	 prerequisite	 for
achieving	 optimal	 outcomes	 in	 fracture	 surgery.	 However,	 one	 aspect	 of	 the
process	 that	 may	 be	 underappreciated	 and	 overlooked	 is	 the	 importance	 of
strategically	 positioning	 the	 patient	 as	 a	 link	 to	 maximizing	 the	 efficiency	 of
fluoroscopy.	 The	 advent	 of	 using	 an	 intraoperative	 C-arm	 has	 dramatically
improved	the	quality	of	fracture	reductions	and	fixation	when	compared	to	cases
without	 imaging.	Yet	despite	 its	commonplace	use,	a	purposeful	understanding
of	the	C-arm’s	capabilities	and	limitations	is	paramount.	This	begins	with	proper
positioning	of	the	patient	within	a	preferably	radiolucent	operative	field.	Various
factors	 come	 into	 play	 within	 this	 decision	 process:	 fracture	 type,	 operating
table,	positioning	adjuncts,	patient	body	habitus,	and	the	functional	range	of	the
fluoroscope.	 Surgeon	 preference	 should	 be	 a	 dynamic	 variable	 as	 one	 fixation
technique,	 and	method	 is	 usually	 not	 sufficient	 for	 all	 variations	 of	 a	 fracture.
Although	a	surgeon’s	surgical	training	experience	is	the	most	influential	factor	in
patient	 positioning	 and	 fluoroscopy	 use,	 continuing	 education	 is	 a	 critical
component	to	refining	one’s	skills,	comfort	level,	and	outcomes.

This	 textbook	 is	 meant	 to	 provide	 a	 valuable	 guide	 for	 the	 use	 of
intraoperative	 fluoroscopy	 in	 fracture	 surgery.	Based	on	 the	 absence	of	 such	 a
resource,	the	editors	envisioned	an	instructional	manual	of	tips	and	tricks	to	set
surgeons	up	for	success	in	fracture	care.	We	have	all	been	taught	that	“one	view
is	 no	 view.”	 Most	 of	 us	 have	 probably	 participated	 in	 a	 case	 where	 better
preoperative	 planning	 may	 have	 optimized	 the	 ability	 to	 arrive	 at	 the	 desired
fixation	 outcome.	 Nothing	 may	 be	 more	 frustrating	 during	 a	 case	 than	 the
inability	 to	 achieve	 a	 symbiotic	 relationship	 between	 patient	 positioning	 and
obtaining	 accurate	 imaging.	 Settling	 for	 suboptimal	 images	 because	 we
improperly	 set	 up	 the	 case	 is	 a	 less	 than	 ideal	 outcome.	 Learning	 from	 our
mistakes	and	recreating	a	consistent	environment	to	allow	fluoroscopy	to	guide
fracture	reduction	and	safe	implant	fixation	is	inherent	to	the	development	of	a
talented	surgeon.

The	 chapters	 within	 this	 text	 are	 a	 culmination	 of	 recommendations	 for
patient	 positioning	 and	 variations	 of	 C-arm	 use	 by	 experts	 within	 the	 field	 of



orthopedics.	 The	 author’s	 tips	 and	 tricks	 are	 the	 result	 of	 a	 common	 desire	 to
“get	it	right,”	our	mentor’s	teaching,	and	our	own	struggles	and	experience.	This
book	 is	geared	 to	any	surgeon	who	operates	on	extremity	and	pelvic	 fractures,
both	 novice	 and	 seasoned.	 It	 is	 a	 concise	 review	 of	 the	 radiographic	 bony
anatomy	 and	 understanding	 of	 what	 we	 should	 be	 “seeing”	 during	 fracture
reduction	and	 instrumentation.	We	 trust	 that	you	will	 find	 this	 reference	useful
for	confirming	your	knowledge	base	for	the	most	practical	cases	as	well	as	the
most	 challenging	 ones.	 It	 represents	 a	 teaching	 tool	 full	 of	 illustrations	 for
educators	to	use	at	academic	centers	and	a	quick	visual	refresher	for	any	surgeon
to	absorb	right	before	a	case.	It	has	been	a	fun	challenge	to	create	this	textbook
as	we	sought	to	consider	the	different	methods	of	fixation	and	their	connection	to
fluoroscopy.	 We	 encourage	 the	 reader	 to	 never	 undervalue	 the	 time	 spent	 in
preoperatively	 planning	 a	 case	 and	 to	 embrace	 fluoroscopy	 as	 complimentary
adjunct	to	fracture	surgery.	Position	yourself	(and	the	patient)	for	success	and	get
it	right.

Christiaan	N.	Mamczak,	Christopher	S.	Smith,	and	Michael	J.	Gardner
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Chapter	1
Introduction
WILLIAM	M.	RICCI

Brief	History	of	Fluoroscopy
Fluoroscopy	 is	 an	 indispensable	 part	 of	 the	 orthopedic	 traumatologist’s
armamentarium.	Although	it	could	be	argued	that	intraoperative	imaging	may	be
overutilized,	 it	 is	 almost	unimaginable	 to	 consider	 embarking	on	 the	 reduction
and	 fixation	 of	 a	 complex	 fracture,	 especially	 when	 using	 indirect	 reduction
techniques,	without	fluoroscopy.	This	technology	dates	back	to	the	very	earliest
days	of	radiography.	Within	1	year	of	Roentgen’s	discovery	of	x-rays,	in	1896,
Thomas	 Edison	 developed	 the	 “fluoroscope.”	 This	 real-time	 viewing	 of	 x-ray
images	 utilized	 a	 simple	 fluorescent	 screen	 in	 a	 light-tight	 viewing	 cone.	 The
imaging	process	has	since	been	known	as	“fluoroscopy.”1	For	the	first	half	of	the
20th	century,	little	changes	were	made	to	this	basic	practice.	High	doses	of	x-ray
were	 required,	 and	 cumulative	 exposure	 times	were	 often	minutes	 long	 rather
than	seconds.	This	combination	caused	excessive	exposure	doses	to	patients	and
staff,	 limiting	 the	 utilization	 of	 this	 technology.	 In	 1948,	 John	 Coltman
developed	 the	 image	 intensifier	 that	 converted	x-rays	 to	 an	 electron	beam	 that
could	 be	 accelerated	 and	 focused	 on	 a	 fluorescent	 screen.	 The	 light	 emitted
could	be	thousands	of	times	brighter	with	the	image	intensifier	than	without	the
image	 intensifier,	 thus	 reducing	 the	 doses	 of	 radiation	 required.	 Fluoroscopy
could	then	be	used	with	reasonable	safety	in	more	routine	applications,	including
fracture	care.

Technical	Considerations
Fluoroscope	Components



A	 typical	 fluoroscopic	 system	 (Fig.	 1-1)	 includes	 the	 x-ray	 generating	 tube,	 a
collimator,	an	image	intensifier,	and	a	video	camera.	The	image	intensifier	 is	a
tube	 with	 a	 fluorescent	 screen	 (input	 phosphor)	 that	 glows	 with	 the	 image
produced	 by	 the	 x-ray	 pattern	 that	 exits	 the	 patient.	 The	 light	 from	 the	 input
phosphor	causes	ejection	of	electrons	 from	a	photoelectric	material	adjacent	 to
the	 input	phosphor.	These	electrons	are	accelerated	via	a	high	voltage	 (30	kV)
and	 focused	 onto	 a	 small	 (1-inch	 diameter)	 screen	 (the	 output	 phosphor).	 The
output	phosphor	glows	much	more	brightly	than	does	the	input	phosphor	(about
3,000	 times)	 because	 of	 the	 energy	 gain	 provided	 by	 the	 acceleration	 of	 the
electrons	and	also	because	of	minification	of	the	image.	The	image	on	the	output
phosphor	is	monitored	via	a	video	camera	system.

X-Ray	Basic	Physics
X-rays	 generated	 by	 fluoroscopy	 and	 plain	 radiography	 are	 forms	 of
electromagnetic	 radiation.	Other	examples	of	 electromagnetic	 radiation	 include
visible	 light	 and	 radio	 waves.	 X-rays	 are	 produced	 when	 a	 heated	 filament
(negatively	 charged	 cathode)	 within	 a	 tube	 generates	 electrons	 that	 are
accelerated	 by	 application	 of	 high	 voltage	 (50	 to	 150	 kVp)	 toward	 a	 tungsten
target	 (positively	 charged	 anode).	 The	 electrons,	 repelled	 by	 the	 cathode	 and
pulled	 toward	 the	anode,	accelerate	 to	more	 than	one-half	 the	speed	of	 light	 in
one	 inch	 of	 travel.	 The	 electrons	 impact	 the	 anode	 and	 suddenly	 slow.	 The
energy	 lost	 by	 the	 slowed	 electrons	 is	 converted	 to	 heat	 and	 creation	 of
electromagnetic	 radiation	 including	 infrared	 light,	 visible	 light,	 ultraviolet
waves,	and	x-rays.



Figure	1-1			A	schematic	diagram	of	a	fluoroscopy	unit.
X-ray	generator—Produces	electrical	energy	and	allows	selection	of	kilovolt	peak
(kVp)	and	tube	current	(mA)	that	is	delivered	to	an	x-ray	tube.
X-ray	tube—Converts	electrical	energy	of	x-ray	generator	to	x-ray	beam.
Collimator—Contains	multiple	sets	of	shutters	(round	and	rectangular	blades)	that
refine	the	x-ray	beam	shape.	Collimating	the	beam	to	the	area	of	interest	reduces
the	exposed	volume	of	tissue	and	results	in	less	scatter	and	better	image	contrast.	It
also	reduces	the	overall	patient	and	surgeon	radiation	dose	by	minimizing	scatter
and	direct	exposure.
Image	intensifier—Converts	x-rays	to	photoelectric	energy.	Major	components
include	an	input	layer	(input	phosphor	+	photocathode)	to	convert	x-rays	to
electrons,	an	image	intensifier	tube	to	accelerate	and	focus	the	electrons,	and	an
output	layer	(output	phosphor)	to	create	a	visible	image.
Video	camera	system—Captures	the	image	and	displays	it	on	a	video	monitor.

The	 flow	 of	 electrons	 from	 the	 filament	 to	 the	 target	 is	 called	 the	 tube
current	 and	 is	 measured	 in	 milliamperes	 (mA).	 Fluoroscopy	 is	 normally



performed	using	2	 to	6	mA	and	an	accelerating	voltage	of	75	to	125	kVp.	The
rate	of	x-ray	production	is	directly	proportional	to	the	tube	current,	but	is	more
sensitive	to	increasing	voltage	than	current.	For	example,	increasing	the	kVp	by
15%	is	equivalent	to	a	200%	increase	in	the	mA.

When	x-rays	traverse	tissue,	they	can	result	in	(1)	complete	penetration,	(2)
total	 absorption,	 or	 (3)	 partial	 absorption	 with	 scatter.	 Complete	 penetration
means	 that	 the	 x-rays	 completely	 passed	 through	 the	 tissue,	 resulting	 in	 an
image.	Total	absorption	means	that	the	x-ray	energy	was	completely	absorbed	by
the	tissue,	resulting	in	no	image.	Partial	absorption	with	scatter	involves	partial
transfer	of	energy	to	tissue,	with	the	scattered	x-ray	possessing	less	energy	and
following	a	different	trajectory.	The	scattered	radiation	is	responsible	for	causing
radiation	exposure	to	the	operator	and	staff.

Units	of	Radiation	Exposure	and	Dose
Radiation	exposure	 is	defined	as	 the	quantity	of	x-rays	 required	 to	produce	an
amount	of	ionization	in	air	at	standard	temperature	and	pressure.	The	traditional
unit	of	exposure	is	the	Roentgen	(R),	which	is	defined	as	R	=	2.58	×	10−4	C/kg
air.	The	SI	 unit	 is	Coulombs/kilogram	 (C/kg).	The	 unit	Roentgen,	 however,	 is
only	defined	for	air	and	cannot	be	used	to	describe	dose	to	tissue.	An	absorbed
dose	of	radiation	can	be	measured	in	rad	(Radiation	Absorbed	Dose).	The	SI	unit
is	the	Gray	(Gy)	where	1	Gy	=	100	rad.	Dose	equivalent	accounts	for	differences
in	 biological	 effectiveness	 of	 different	 types	 of	 ionizing	 radiation.	 Dose
equivalent	is	equal	to	absorbed	dose	(Gy	or	rad)	multiplied	by	a	radiation	quality
factor	specific	to	the	type	of	radiation	being	used.	The	traditional	unit	is	the	rem
(Roentgen	Equivalent	in	Man);	 the	SI	unit	is	the	sievert	(Sv)	where	1	Sv	=	100
rem.	In	diagnostic	x-ray,	the	radiation	quality	factor	is	1,	so	1	rad	is	equivalent	to
1	rem.	The	effective	dose	equivalent	(EDE)	takes	into	account	that	the	potential
health	 effect	 from	 single	 organ	 exposure	 is	 smaller	 than	 from	 whole	 body
exposure.	 The	 EDE	 is	 defined	 as	 the	 sum	 of	 the	 absorbed	 dose	 to	 the	 tissue
multiplied	 by	 a	 weighting	 factor,	 which	 calculates	 risk	 of	 cancer	 from	 partial
body	irradiation	versus	whole	body	irradiation.	Units	are	also	rem	or	sieverts.

Radiation	Exposure
Background	and	Direct	Exposures
Exposure	to	intraoperative	radiation	is	of	concern	to	all	members	of	the	surgical



team.	 For	 perspective,	 the	 average	 yearly	 exposure	 of	 the	 public	 to	 ionizing
radiation	is	about	360	millirems	(mrem),	of	which	300	mrem	is	from	background
radiation	and	60	mrem	from	diagnostic	radiographs.	A	chest	radiograph	exposes
the	patient	to	approximately	25	mrem,	a	hip	radiograph	to	500	mrem,	and	a	hip
CT	1,000	mrem.	A	regular	C-arm	exposes	the	patient	to	approximately	1,200	to
4,000	 mrem/min	 (lower	 for	 extremity	 and	 higher	 for	 pelvis).	 These	 values
represent	 direct	 exposure.	 Recommended	 yearly	 limits	 of	 radiation	 are	 2	 to	 5
rem	(depending	on	the	governing	body)	to	the	torso,	15	rem	to	the	eyes,	30	rem
to	the	thyroid,	and	50	rem	to	the	extremities	(e.g.,	hands).2	Fetal	limits,	relevant
to	fluoroscopy	in	pregnant	patients,	are	0.5	rem	over	9	months.

Surgeon	Exposure
Surgeon	and	staff	may	be	exposed	directly,	most	commonly	to	hands	in	the	path
of	the	x-ray	beam,	or	exposed	indirectly	via	scatter.2	Those	in	close	proximity,
<36	inches,	are	at	highest	risk	for	exposure.3	Sanders	et	al.,	in	1993,	found	that
average	exposure	of	surgeon	from	scatter	during	femoral	and	tibial	nailing	was
100	 mrem	 per	 operation.4	 At	 this	 dose,	 yearly	 limits	 to	 the	 eyes	 (the	 most
sensitive	organ	not	typically	shielded)	would	be	reached	after	150	cases.	Of	note,
average	 fluoroscopy	 time	 in	 this	 study	was	 6.26	minutes.	 Similar	 results	were
found	by	Muller	et	al.,	in	1998,	where	average	exposure	per	case	to	the	dominant
index	finger	was	127	mrem	for	nailing	procedures	that	averaged	4.6	minutes	of
fluoroscopy.5	A	number	of	other	studies6–9	specifically	evaluated	exposure	to	the
hands.	 Exposure	 varied	 substantially	 between	 procedure	 and	 surgeon	 varying
from	 undetectable	 to	 570	 mrem	 per	 procedure.	 It	 should	 be	 noted	 that	 more
recent	 studies	 have	 shown	 shorter	 fluoroscopy	 times	 for	 long	 bone
intramedullary	 nailing	 than	 in	 the	 aforementioned	 studies	 that	 described
exposure	 doses.	 Ricci	 et	 al.10	 found	 the	 average	 time	 for	 antegrade	 femoral
nailing	 to	 be	 153	 seconds	 (range:	 16	 to	 662)	when	 using	 a	 piriformis	 starting
point	 and	 95	 seconds	 (range:	 20	 to	 375	 seconds)	 when	 using	 a	 greater
trochanteric	starting	point	and	in	a	separate	study	found	the	average	fluoroscopy
time	for	tibial	nailing	to	be	72.4	or	82.6	seconds	depending	on	the	surgery	time
of	 day.11	 Also,	 more	 advanced	 newer	 generation	 C-arm	 devices	 reduce	 the
exposure	per	case.

Team	Exposure
Exposures	to	operating	personnel,	other	than	surgeon,	are	of	concern	too.	Many



of	these	individuals	spend	more	cumulative	time	being	exposed	than	do	surgeons
by	virtue	of	being	in	the	OR	on	a	daily	basis.	A	study	utilizing	simulated	pelvic
surgery	 found	 first	 assistant	 exposure	 (2	 feet	 away)	 of	 6	 mrem/min	 and	 no
detectable	 exposure	at	 the	 scrub	nurse	position	 (3	 feet	 away)	or	 the	 anesthesia
position	(5	feet	away).3

Exposure	Reduction	Strategies
Standard	 strategies	 to	mitigate	 exposure	 to	 scatter	 include	decreasing	exposure
time,	increasing	distance,	shielding,	and	contamination	control.	Typical	shielding
techniques	used	by	orthopedic	trauma	surgeons	include	use	of	lead	garments	that
shield	 the	 body	 core.	 Thyroid	 shields	 are	 a	 common	 adjunct.	 Because	 eye
exposure	can	be	many	 times	higher	 than	central	exposure,	 leaded	glasses	have
been	 recommended.12	 There	 is	 little	 debate	 that	 less	 exposure	 is	 better	 than
more,	and	a	number	of	studies	have	documented	strategies	 to	reduce	exposure.
Use	 of	 a	 real-time	 radiation	 exposure	 feedback	 from	 the	 Philips	 DoseAware
device	decreased	radiation	exposure	by	60%.13

Differences	Between	Fluoroscopy	and	Plain
Radiography
The	 fluoroscopic	 image	 generally	 has	 less	 contrast	 and	 less	 resolution	 of	 fine
detail	 than	does	a	 radiographic	 image.	A	fundamental	difference	between	plain
radiographs	 and	 fluoroscopy	 is	 that	 fluoroscopy	 machines	 can	 automatically
adjust	 exposure	 based	 on	 the	 density	 of	 the	 subject.	 Exposure	 for	 traditional
plain	 radiography	 is	 set	 by	 the	 technician	 and	 is	 static.	 Fluoroscopy	 units	 are
usually	 operated	 in	 an	 automatic	 brightness	 control	 (ABC)	 mode,	 in	 which	 a
sensor	 in	 the	 image	 intensifier	 monitors	 the	 image	 brightness.	 When	 there	 is
inadequate	brightness,	 the	ABC	increases	 the	kVp	first,	which	 increases	 the	x-
ray	 penetration	 through	 the	 patient,	 and	 then	 adjusts	 the	 mA	 to	 increase	 the
brightness.	 Thicker	 soft	 tissue	 or	 larger	 cross-sectional	 areas	 will	 generate
greater	 exposure	 to	 optimize	 brightness.	However,	 radiodense	metallic	 objects
may	inadvertently	lead	to	overexposed	images	when	automatic	modes	are	used.
Conversely,	 a	 field	 dominated	 by	 radiolucent	material,	 such	 as	 air	 in	 a	 poorly
centered	image,	will	result	in	an	underexposed	image	(Fig.	1-2).

Another	difference	 is	 that	 the	area	of	 capture	 for	 fluoroscopy	 is	generally
more	limited	than	with	plain	x-rays	and	is	round	rather	than	rectangular.	The	size



of	 most	 image	 intensifiers	 is	 approximately	 12	 inches	 in	 diameter,	 although
units,	 often	 used	 in	 vascular	 surgery,	 exist	 with	 larger	 sized	 intensifiers.	 The
relatively	small	size	of	fluoroscopy	images	therefore	limits	the	ability	to	evaluate
alignment	of	long	bone	fixation.	For	these	purposes,	plain	radiography	has	more
utility.

Figure	1-2			A:	This	fluoroscopic	image	is	centered	such	that	a	substantial	portion	of
the	field	is	air.	Note	that	the	tissue	is	underpenetrated	due	to	the	computer
adjustments	made	by	the	fluoroscope	being	“fooled”	to	think	the	field	is	relatively
radiolucent.	The	kVp	and	mA	were	66	and	1.9,	respectively.	B:	Centering	the	tissue	to
cover	the	majority	of	the	field	yields	a	properly	exposed	image	with	kVp	and	mA	of	78
and	2.8,	respectively.

Accuracy	of	Fluoroscopy
The	 ability	 to	 rely	 on	 fluoroscopy	 to	 definitively	 judge	 reduction	 has	 been
debated.	 There	 is	 a	 general	 feeling	 in	 the	 orthopedic	 community	 that	 plain
radiographs	 are	more	 accurate	 than	 is	 fluoroscopy	 to	 judge	 fracture	 reduction,
especially	 intra-articular	reductions.	However,	critical	analysis	of	 this	 issue	has
led	 to	 varying	 conclusions.	 Several	 recent	 studies	 demonstrate	 inaccuracies	 of
fluoroscopic	 evaluation	 of	 fracture	 reductions.	 Horst	 et	 al.14	 evaluated	 the
quality	of	reduction	and	fixation	based	on	fluoroscopy	and	compared	results	to
postoperative	plain	 radiographs.	They	 found	 that	 in	8.2%	of	 cases	 information
was	apparent	on	the	postoperative	plain	radiographs	such	that	a	reviewer	felt	that
the	postoperative	treatment	plan	should	change.	Haller	et	al.15	found	fluoroscopy
inaccurate	 for	 evaluation	 of	 simulated	 tibial	 plateau	 fractures	 when	 fracture
displacement	was	2	mm	or	 less.	The	accuracy	of	detecting	 reduction	was	90%



when	 there	 was	 a	 5-mm	 displacement,	 but	 decreased	 to	 37%	 to	 83%	 when
displacement	was	2	or	0	mm.	Capo	et	al.16	found	that	after	closed	reduction	and
percutaneous	 pinning	 of	 simulated	Bennett’s	 fractures	 in	 a	 cadaver	model,	 the
assessment	 of	 the	 articular	 gap,	 step-off,	 and	 displacement	 as	 detected	 by
fluoroscopy	was	often	 in	 error	 compared	 to	 that	 detected	by	plain	 radiographs
and	direct	examination.

On	 the	 other	 hand,	 there	 are	 also	 a	 number	 of	 studies	 that	 indicate
fluoroscopy	provides	 better	 accuracy	 than	do	plain	 radiographs.	Norris	 et	 al.17
found	 better	 results	 for	 fluoroscopy	 in	 evaluating	 positions	 of	 screws	 and
reduction	during	acetabular	fracture	repair.	Intraoperative	fluoroscopy	confirmed
the	 extra-articular	 position	 of	 all	 screws	 evaluated.	 Postoperative	 CT	 scans
confirmed	 the	 extra-articular	 placement	 of	 all	 screws	 assessed	 by	 fluoroscopy.
Quality	 of	 reduction	 using	 intraoperative	 fluoroscopic	 images	 had	 a	 100%
correlation	 with	 reduction	 on	 final	 radiographs.	 One	 patient,	 with	 two	 screws
placed	without	 fluoroscopic	 evaluation,	 had	 intra-articular	 placement	 requiring
revision	surgery.	Another	study	determined	the	accuracy	of	fluoroscopic	imaging
during	 closed	 reduction	 and	 percutaneous	 fixation	 of	 intra-articular	 thumb
metacarpal	 fractures	 compared	 to	 direct	 vision	 and	 plain	 radiographs.18
Fluoroscopy	 showed	 better	 correlation	 with	 direct	 vision	 than	 did	 plain
radiographs	 for	 evaluation	 of	 displacement,	 and	 both	 fluoroscopy	 and	 plain
radiographs	showed	excellent	agreement	when	evaluating	intra-articular	step-off.

Terminology	for	Fluoroscopy	Use	in	Orthopedic
Trauma
There	have	been	studies	that	have	investigated	the	communication	between	the
operative	 team	 and	 the	 fluoroscopy	 technician.19,20	 Poor	 communication	 can
lead	 to	 unnecessary	 and/or	 poorly	 aligned	 fluoroscopy	 shots	 and	 therefore
increased	 radiation	 exposure,	 frustration,	 and	 delay.	 Pally	 and	 Kreder19	 found
that	 terminology	 used	 by	 surgeon	 members	 of	 the	 Canadian	 Orthopaedic
Association	 to	be	 tremendously	diverse.	They	proposed	that	a	standard	 lexicon
be	 adopted	 and	 taught	 to	 orthopedic	 residents	 and	 technologists	with	 the	 hope
that	 efficient	 communication	 would	 be	 an	 unconscious	 part	 of	 operating	 the
fluoroscope	 in	 every	 case.	Although	 no	 such	 effort	 is	 underway	 in	 the	United
States	at	a	national	level,	there	is	great	utility	in	adopting	a	common	terminology
at	the	institutional	level.
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Chapter	2
Scapula	Fractures
STEVEN	M.	CHERNEY
CHRISTOPHER	M.	MCANDREW

Bony	Anatomy
••	The	scapula	is	a	mostly	flat,	roughly	triangular-shaped	bone	that	is	suspended
off	the	posterolateral	chest	wall	through	the	acromioclavicular	articulation.

••	The	scapular	spine	arises	from	the	upper	posterior	surface	and	gives	rise
superolaterally	and	anteriorly	to	the	acromion.

••	The	coracoid	process	arises	from	the	anterosuperior	scapular	neck.	It	runs	in	a
superomedial	direction	before	turning	lateral	and	anterior	as	it	thins	at	its
“beak.”

••	The	glenoid	face	is	nearly	perpendicular	to	the	scapular	body	and	forms	the
medial	side	of	the	glenohumeral	articulation.	Average	glenoid	version	ranges
from	5	degrees	of	anteversion	to	15	degrees	of	retroversion.

••	A	majority	of	the	scapular	body	bony	surface	area	is	only	a	few	millimeters
thick,	limiting	fixation	constructs	to	the	peripheral	borders,	scapular	spine,
glenoid	neck,	and	coracoid.

••	Imaging	of	the	scapular	body	is	complicated	by	the	overlying	thoracic	wall
and	spine,	while	the	acromion	is	difficult	to	image	because	of	the	overlying
distal	clavicle.

••	Because	of	the	complex	anatomy	and	overlying	structures,	scapular	fractures
are	easily	missed	or	underestimated	by	plain	radiographs.

Radiographic	Anatomy
AP	and	Grashey	AP	View



••	In	the	AP	view,	the	glenohumeral	articulation	should	be	seen	free	from
overlying	structures,	but	the	scapular	body	invariably	overlies	the	thoracic
wall,	including	the	ribs	and	the	lung	fields.	The	medial	border	and	inferior
angle	of	the	scapula	should	be	included	on	the	radiograph.

••	Minimally	displaced	scapular	body	fractures,	particularly	over	the	medial	half
of	the	scapula,	are	difficult	to	appreciate	secondary	to	overlying	structures
(Fig.	2-1A	and	B).

••	To	best	visualize	the	glenohumeral	joint,	the	beam	should	be	rotated
approximately	35	degrees	aiming	from	the	midline	to	lateral	in	order	to	profile
the	scapula,	in	line	with	the	glenoid,	generating	a	Grashey	or	“True	AP”	view
(Figs.	2-2	and	2-3).

••	Due	to	the	slightly	concave	nature	of	the	glenoid	surface,	the	Grashey	view
allows	confirmation	that	screws	do	not	protrude	into	the	glenohumeral	joint
(Fig.	2-4).

••	The	Grashey	view	is	often	best	to	ensure	reduction	of	fracture	fragments	with
spikes	that	exit	the	lateral	border	of	the	scapula.	These	fragments	often	have
extension	into	the	glenoid	face,	and	articular	reduction	can	be	partially
assessed	with	this	view	(Fig.	2-5A	and	B).

••	The	lateral	and	posterior	displacement	of	the	caudal	fracture	fragment	can	be
due	to	the	pull	of	the	infraspinatus,	teres	major	and	minor,	the	latissimus	dorsi,
and	the	long	head	of	the	triceps,	depending	on	the	size	of	the	fracture
fragment.

••	Overlying	structures	may	obscure	bony	anatomy	on	the	Grashey	view,
particularly	toward	the	medial	half	of	the	scapula.

Figure	2-1			Suboptimal	technique	and	overlying	structures	resulted	in	a	missed
diagnosis	of	a	medial	scapular	body	fracture	(arrows).	This	injury	was	recognized	on
subsequent	CT	scan	as	part	of	a	trauma	protocol.
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