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Those of us who treat patients with hip pain know that the surgical treatment of hip disease has 
undergone tremendous growth during the last decade. Prior books on the hip have either 
addressed arthroplasty, in providing prosthetic solutions for end-stage hip arthritis, or focused 
on minimally invasive arthroscopy of the hip. Many of them were technical treatises. Yet hip 
surgery has moved on greatly from the days when all that might be offered was fracture fixa-
tion or arthroplasty and, for the younger patient, the instruction to wait until they had reached 
sufficient age to justify a prosthesis. The thrust of most surgeons in the twenty-first century is 
to achieve as much benefit as possible for the patient while keeping surgical trauma to a mini-
mum. Fulfillment of this ambition requires an understanding of new concepts and new proce-
dures, as well as new training to accompany them.

The authors of this book believe that hip disease presents as a spectrum of symptoms and 
pathology, and so any comprehensive text must include the accurate diagnosis and treatment 
of both the biologic and the prosthetic hip. With the explosion of information on hip disease in 
the literature, particularly in the treatment of younger patients, the authors felt that it was time 
for a comprehensive treatise on this subject. Arthroscopy of the Hip, according to many, is the 
fastest growing specialty area within orthopedics. Accordingly, an extensive amount of this 
book is devoted to determining proper surgical indications as well as knowledge of surgical 
techniques and outcomes for the expanding number of surgical procedures in this area.

This book is divided into 16 parts. Pathology within the hip is best understood in contradis-
tinction to normal growth and development. Early chapters also focus on discerning extra-
articular from intra-articular etiologies of hip pain. Digital imaging, including CT, MRI, and 
ultrasound, has immensely increased our diagnostic understanding of the joint and the periar-
ticular soft tissues. At times, MR imaging may disclose combined issues in pathology such as 
intra-articular loose bodies in combination with osteonecrosis of the hip or, similarly, an ace-
tabular labral tear in combination with abductor muscle attenuation.

The spectrum of treatment of hip disease importantly includes hip osteotomies, whether of 
the femur or the acetabulum, or in combination. Knowledge of these procedures and their 
indications is a critical prerequisite for successful outcomes, especially in young patients. 
However, some young patients do require total hip arthroplasty, typically secondary to osteo-
necrosis, tumors, trauma, or collagen disease. Several chapters are devoted to the latest 
evidence-based information on bearing surfaces, and implant selection as well as surgical 
techniques.

A critically important area for increased understanding is patient outcomes following hip 
arthroscopy, osteotomy, or total joint replacement. Importantly, world experts in validated out-
come measures and quality of life indicators are authors of chapters in this book. Another 
unique feature of this volume is a section describing the growth and development of hip 
arthroscopic surgery in each of the world’s continents, authored by experts in each of these 
geographical areas. Finally, there is an entire section devoted to research and future develop-
ments. The robustness of the information as well as the development in these areas adds sig-
nificantly to the depth of knowledge contained within this book.
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There has never been such an exciting time to be a specialist in hip surgery, nor such a time 
to feel so proud. This book brings together a large number of specialists in the field, each of 
whom has given up valuable hours to prepare their text. As editors we are enormously grateful 
to them. Our authors are excellent clinicians, respected practitioners, but, more than anything, 
good personal friends. So join us on the tidal wave of surgical development shown on these 
pages, the tidal wave in the surgical treatment of hip disease.

In conclusion, this book has been a truly collaborative effort but would never have been 
possible without the tireless efforts of Connie Walsh, Miranda Finch and Kristopher Spring at 
Springer whose expertise, patience, and attention to detail have been vital. We also profusely 
thank our colleagues and fellow members of ISHA (The International Society of Hip 
Arthroscopy) who have pitched in as authors and section editors to share their knowledge and 
understanding of hip disease in making this work an important treatise. And finally, we thank 
our spouses and families for their support and understanding during this extensive endeavor.

Newton, MA, USA� Joseph C. McCarthy, MD 
Houston, TX, USA� Philip C. Noble, PhD 
Impington, UK� Richard N. Villar, BSc(Hons), MA, FRCS 
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ADL	 Activities of daily living
AIIS	 Anterior inferior iliac spine
ASIS	 Anterior superior iliac spine
AVN	 Avascular necrosis
BMP	 Bone morphogenic proteins
BW	 Body weight
CMI	 Core muscle injury
COPD	 Chronic obstructive pulmonary disease
CT	 Computerized tomography
DEXRIT	 Dynamic external rotatory impingement test
DGS	 Deep gluteal syndrome
DHS	 Dynamic hip screw
DIRI	 Dynamic internal rotatory impingement test
EMG	 Electromyography
FABER	 Flexion, abduction, external rotation
FADDIR	 Flexion adduction internal rotation test
FAI	 Femoroacetabular impingement
GRF	 Ground reaction force(s)
HHS	 Harris hip score
HHSm	 Modified Harris hip score
HPI	 History of present illness
iHOT	 international hip outcome tool
IPI	 Iliopsoas impingement
ITB	 Iliotibial band
L	 Left
MAHORN	 Multicenter arthroscopy of the hip outcomes research network
MFCA	 Medial femoral circumflex artery
MRI	 Magnetic resonance imaging
NAHS	 Nonarthritic hip score
NSAIDS	 Nonsteroidal anti-inflammatory drugs
OA	 Osteoarthritis
ON	 Osteonecrosis
ONFH	 Osteonecrosis of the femoral head
PRP	 Platelet rich plasma
R	 Right
ROM	 Range of motion
SCFE	 Slipped capital femoral epiphysis
SI	 Sacroiliac

Abbreviations
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TFL	 Tensor fasciae latae
THA	 Total hip arthroplasty
VAS	 Visual Analog Pain Scale
WOMAC	 Western Ontario and McMaster University
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Development of the Hip: Phylogeny 
and Ontogeny

Tom Hogervorst, Karl-Philipp Kienle, and Moritz Tannast

�Introduction

The human hip is a conceptually simple ball and socket joint, 
but functions as part of a complex anatomic unit consisting 
of the femur, the pelvis and the lumbosacral spine. This unit 
is highly variable between different species of animals. 
Human hip evolution is characterized by obligate bipedal 
gait and encephalization (development of a disproportion-
ately enlarged brain). This makes the female pelvis the only 
skeletal element that conveys information about these two 
most peculiar traits of human evolution. It shows both the 
adaptations that occurred to facilitate a permanent bipedal 
gait and, at the same time, the adaptations to accommodate 
the birth of a large-brained baby.

Human hip morphogenesis can deviate from its normal 
pathway by developmental hip disorders. Common develop-
mental hip disorders such as developmental dysplasia of the 
hip, slipped capital femoral epiphysis (SCFE) but also femo-
roacetabular impingement can be explained from an evolu-
tionary perspective. Below, we review relevant aspects of 
evolution (phylogeny) and human hip morphogenesis 
(ontogeny) that are relevant to the understanding of hip mor-
photypes and related hip disorders.

�Evolution of Bone and Locomotion

Mineralized tissues (enamel, dentine and bone) were a major 
breakthrough in evolution. Calcium carbonate (CaCo3), the 
common constituent of rock, was always present in ocean 
water and started being used as reinforcement in organisms 
about half a billion years ago in the Cambrian era [1]. Since 
then, fossils demonstrate the calcified remains of life’s evolu-
tion. But the fossil record will, by definition, always remain 
incomplete, and it is genetic studies that have revolutionized 
our understanding of the early stages in evolution of mineral-
ized tissues. For example, a related family of genes that likely 
arose from a common ancestor produces the mineralized 
tissues for teeth (enamel, dentine) and skeletons (bone extra-
cellular matrix) [2]. Teeth-like structures probably evolved 
first, allowing new forms of predation, followed by a dermal 
exoskeleton of dentine, enamel and bone [3]. Teeth produced 
big changes in feeding and predation while development of 
endo- and exoskeletons allowed radical changes in  locomo-
tion. Bone likely appeared as an attachment to dentine in 
scales [2] in exoskeletons. The stunning fossils from the 
Cambrian era document an explosion in the possible basic 
structures of bodies (body plans) [4, 5]. The vast majority of 
these have long gone extinct and the remaining body plans 
(i.e. at phylum and subphylum level) now show striking 
invariability, for which genetic explanations have been sug-
gested recently [6]. In contrast, within phyla, a spectacular 
variety in animal form has developed. On the phylum level, 
the existence of an endo- versus an exoskeleton (e.g. 
Arthropodae) imparts major differences in function. An exo-
skeleton affords strength and allows limbs to be longer which 
enhances both protection and locomotion. An endoskeleton 
has the advantage over exoskeletons that it frees the skin to 
function as sensory and thermoregulatory organ.

Already in lobe-finned fishes such as the Eusthenopteron 
(Devonian period [415–375 million years ago]), we find the 
primordial tetrapod body structure consisting of a longitudi-
nal body axis with four perpendicular appendages. Indeed, 
their paired breast and pelvic fins have the pattern of our 

1

T. Hogervorst, MD, PhD (*) 
Haga Ziekenhuis, Lokatie Sportlaan,  
Sportlaan 600, Den Haag 2566MJ, the Netherlands
e-mail: thogervorst@gmail.com 

K.-P. Kienle, MD 
Department of Orthopedic Surgery, University Bern,  
Bern, Switzerland
e-mail: philipp.kienle@gmail.com 

M. Tannast, MD 
Department of Orthopaedic Surgery, University of Bern, 
Inselspital, Murtenstrasse, Bern 3010, Switzerland
e-mail: moritz.tannast@insel.ch

© Springer Science+Business Media LLC 2017
J.C. McCarthy et al. (eds.), Hip Joint Restoration, DOI 10.1007/978-1-4614-0694-5_1

mailto:thogervorst@gmail.com
mailto:philipp.kienle@gmail.com
mailto:moritz.tannast@insel.ch


4

limbs today: one proximal (femur and humerus) and two 
distal bones (tibia/fibula and radius/ulna, Fig. 1.1). Their pelvic 
fins had what can be interpreted as a proto-femur. Once “on 
land” a suite of further developments improved locomotion, 
both in endurance and speed.

�Evolution of Tetrapod Gait

The development of terrestrial life forms hinged on the evo-
lution of limbs from paired fins, limbs that, eventually, could 
bear the animal’s weight against gravity (Fig. 1.2). Molecular 
genetic studies now show the fin to limb transformation can 
be made by subtle changes in a relatively small number of 
genetic switches [7], i.e. without the need for extraordinary 
processes or genetic mechanisms. Amphibians started walk-
ing with a sprawling gait, with the limbs still perpendicular 
to the long axis of the body—as with the paired fins in fish. 
But on land this requires permanent elevation of the body 
above the plane of the appendages to prevent contact between 
the trunk and the ground (Fig. 1.3).

Much heavier loads can be carried by limbs that are vertical 
than those that are horizontal, and so, vertical limb alignment 
allowed dinosaurs to grow to a huge size. The emergence of 
vertical limb positions and rounding of the hip joint also 
enabled increased stride length, while adoption of an erect 
posture decoupled walking from breathing. This increased 
stamina, as running no longer counteracted breathing [8].

�Mammalian Hip Types

Mammals display large variation in hip morphology. 
Conceptually, two types of hip can be distinguished, coxa recta 
and coxa rotunda [9, 10], based on differences in proximal 

femoral concavity [11]. Concavity is a compound measure, 
influenced by the relative dimensions of the femoral head 
and neck (head-neck ratio), the roundness of the femoral 
head (sphericity) and the position of the femoral head rela-
tive to the neck [12]. Concavity thus determines the potential 
for femoral impingement (the acetabular parameters are 
depth and sphericity). Concavity can be quantified by angu-
lar measurements, e.g. alpha [13], beta, gamma and delta 
angles [12] and linear measurements (offset) or ratios. Coxa 
recta and rotunda relate to the ossification pattern of the 
proximal femur [14] and locomotor categories. Specifically, 
a single coalescence of the proximal femur is seen in coxa 
recta, whereas separation of the trochanteric and capital 
epiphysis is seen in coxa rotunda. Typically, coxa recta is 
seen in runners and jumpers, rotunda in climbers, amphibi-
ans and swimmers (Fig. 1.4. horse/walrus). In humans (and 
in the nonhuman apes), the two epiphyses of the proximal 
femur separate, i.e. a coxa rotunda ossification pattern. 
However, some morphotypes of the human hip appear to 
mimic the normal morphology of species with “coalesced” 
epiphyses [14], i.e. a coxa recta or “cam-type” hip [15].

�Locomotion in the Nonhuman Apes

The nonhuman apes have a varied repertoire of locomotion 
including arm slinging, climbing, quadrupedal knuckle 
walking and bipedal walking. The nonhuman apes (chim-
panzee, bonobo, gorilla, gibbon, orangutan) do not run 
bipedally [16], and their bipedal walking is not the true 
upright walking seen in modern humans. Due to a stiff spine 
[17], bipedal walking in the nonhuman apes requires flexion 
in both hips and knees to position the trunk over the feet 
(Fig. 1.5). Bipedal walking in the nonhuman apes therefore 
requires constant activity of hip extensors (hamstrings) and 
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Fig. 1.1  The ancient building plan of (hind) limbs. Eusthenopteron 
is a lobe-finned fish,  Ichtyostega is a fishapod, comparable to 
Acanthostega (Fig. 1.2) From [81] and Hogervorst T, Bouma HW, 

de Vos J. Evolution of the hip and pelvis. Acta Orthop Suppl. 2009 
Aug;80(336):1–39. Reprinted with permission from Informa 
Healthcare
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Fig. 1.2  Eusthenopteron (top), a fossil lobe-finned fish of approx. 380 
million years ago, is thought to represent the beginning of the transition 
to land-life. It has no neck and a bony connection of the pectoral girdle 
(with its pectoral fins) to the skull. The pelvic bone (yellow, green, 
orange), however, is not attached to the spine. Acanthostega (a fossil 
fishapod, middle) can be seen as the other end of the transition to land-
life, and the time elapsed between these two fossils is about 15 million 
years. The scapulocoracoid (red) has increased in size, and the pectoral 

girdle is no longer attached to the cranium. The pelvis has enlarged 
markedly and is now attached to the spine by ligaments and muscles. 
Varanus (bottom), an extant lizard, has its clavicle (light blue) not 
attached to the spine, allowing movement between the scapulocoracoid 
and the spine to increase stride length. The pelvis has a bony connection 
to the spine through the sacroiliac joints. From Hogervorst T, Bouma 
HW, de Vos J. Evolution of the hip and pelvis. Acta Orthop Suppl. 2009 
Aug;80(336):1–39. Reprinted with permission from Informa Healthcare

Fig. 1.3  Posture types: sprawling (e.g. reptiles), semi-erect and erect (e.g. cursorial mammals)

1  Development of the Hip: Phylogeny and Ontogeny
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knee extensors (quadriceps). Further, in the nonhuman apes, 
the orientation of the pelvic ala coincides with the coronal 
plane. Consequently, the gluteus medius and minimus con-
tinue to function as hip extensors rather than abductors 
(Fig. 1.6), and so nonhuman apes tend to walk with less 
lateral balance control [18].

�Early Human Hips: Ancestors

DNA studies date the shared ancestor of chimpanzees and 
humans to approx. six to seven million years [19], which 
makes this a recent event, in evolutionary terms. Many qua-
drupedal mammals can also walk upright (e.g. bears, apes), 
but for modern humans, upright walking quickly became the 
only gait type. Many adaptations in lumbosacro-pelvic mor-
phology occurred within a relatively short time span to 
enable this (for review see [17]). Spectacular fossil finds of 
the last 50 years [10] show that obligate and exclusive 
bipedal gait was established within 2–3 million years of 
early human evolution [20]. Human bipedal gait is highly 
efficient compared to that of the other large apes. Little mus-
cle activity is required to maintain human upright posture 
[21]. Compared to the extensive changes in lumbosacral 
spine and pelvis, the changes in the early human hip joint can 
be considered minor. When comparing with the nonhuman 
apes, the changes in the proximal femur reflect the increased 
loading of bipedal gait and running (nonhuman apes do not 
run bipedally). The human hip has a thicker femoral neck 
(decreased head-neck ratio, Fig. 1.7) and reduced concavity 
compared to the nonhuman apes (Figs. 1.8 and 1.9).

�Comparison of Human and Ape Hip 
Morphology

A comprehensive study of cadaveric femora of 375 North 
Americans (divided equally between males and females and 
blacks and whites) found considerable variability in the con-
cavity of the femoral head-neck junction, both superiorly 
(gamma angle) and anteriorly (alpha angle) [12]. Epidemiology 
studies in predominantly white populations concur, with a 
prevalence of approx. 8–20 % of the coxa recta morphotype 
[13, 22–27]. Coxa profunda (defined as a lateral CE angle 
> 39° or a posterior wall sign) appears to have comparable 
prevalence although this has been less extensively studied, and 
gender differences are conflicting [23, 27].

However, it appears that considerable differences in 
human hip morphology exist between different ethnic popu-
lations. Although studies comparable to Toogood et al. are as 
yet lacking, low concavity of the proximal femur appears to 
be rare in many [28–32], if not all [33, 34], Asian popula-
tions. Thus, it has been speculated that the lower incidence of 
osteoarthritis in the “Asian hip” [35, 36] is related to this 
higher concavity and decreased FAI [28, 37]. In contrast, the 
nonhuman apes share a much more uniform hip morphotype, 
with no important differences in concavity, either between 
species or between the sexes. In 210 cadaveric great ape fem-
ora (chimpanzee/bonobo and gorilla) examined using the 
exact methods of Toogood et al., much lower variability in 
concavity was found [38]. The nonhuman apes have coxa 
rotunda (Figs. 1.7 and 1.9), allowing a large range of motion, 
advantageous for a locomotion generalist and particularly so 
for climbing. Perhaps, increasing the loading history during 

Fig 1.4  Femora of a horse (a), a cursorial (an animal adapted for running) with coxa recta (left) and a walrus (b), a swimmer with coxa rotunda 
(right)

T. Hogervorst et al.
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Fig. 1.5  Chimpanzee bent hip—bent 
knee gait has about the same position of 
the femur in the acetabulum as when 
knuckle walking, which is in its 
mid-range. From [82] Kummer 
B. Biomechanik: Form und Funktion des 
Bewegungsapparates. Dt. Ärzte-Verlag 
2004. Reprinted with permission from 
German Ärzte-Verlag GmbH

Fig. 1.6  Rearrangement of gluteal origins and insertions. A gorilla, B 
human. (Red) gluteus maximus origin, orange insertion. (Blue) gluteus 
medius origin, cyan insertion. Gmx gluteus maximus, gmd gluteus 
medius. From [83] Hogervorst T, Vereecke E. Evolution of the human 
hip. Part 2: muscling the double extension. J Hip Preserv Surg. 
2015;2:3–14. Reprinted with permission from Oxford Journals

Fig. 1.7  Radiographs of hominid hips with head-neck ratios (head 
largest diameter divided by smallest neck width). The human hip has 
the thickest neck, decreasing offset and impingement-free motion. Also 
note thicker cortical bone in the superior femoral neck of the apes (from 
Lovejoy 2005 [15], with permission). (a) Orangutan (1.8) (b) Gorilla 
(1.5) (c) Chimpanzee (1.5) (d) Homo (1.35). AP view, not to scale

1  Development of the Hip: Phylogeny and Ontogeny
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growth induces morphotype changes in macaques [39], as it 
may in humans (see below).

Thus, modern human hip morphology appears more 
variable than in the nonhuman apes. This variability cur-
rently has no full explanation, yet is important, as certain hip 
morphotypes are associated with development of OA. Both 
genetics and biomechanics (loading history) play a role in 
the development of hip morphotypes (ontogeny) [40].

�Ontogeny: Growth and Development 
of the Human Hip

The evolutionary perspective outlined above can serve to 
better understand several phenomena of human hip growth 
and development. Quadrupedal mammals have a horizontal 
spine and the abdomen and uterus hang under it like a ham-
mock. But the human foetus is positioned in an upright 
mother. It has a very large head and long legs, and, in the last 
trimester, the uterus wall tends to hyperflex the human hip, 
levering the long femur against the prominent anterosuperior 
iliac spine [41, 42]. (The nonhuman apes have no prominent 
anterior iliac spines, smaller heads and shorter legs; dyspla-
sia is all but unknown.) The human hyperflexed position may 
be a mechanical factor to explain the decrease in relative 
acetabular depth [43, 44] and increase in femoral anteversion 
[44–47] with increasing gestation, producing a neonatal/
infant hip dysplasia [41].

After birth, the human hip extends and more varied hip 
positions may explain the consistent finding in normal growth 
and development of postnatal femoral detorsion and relative 
deepening of the acetabulum [48]. Remarkably, for the rest of 
the hip’s lifespan, most of its loading will occur near the limit 
of hip extension. Walking humans extend their hip approxi-
mately 5° at toe-off, and active prone extension is only 10°–
20° [49, 50]. Active hip flexion is 120°, 35° when walking 
and 50° when running [51]. Thus, the human weight-bearing 
range of hip motion shifts close to its extension limit during 
bipedal gait development. Quadrupeds bear weight closer to 

Fig. 1.8  Concavity in nonhuman apes and humans. (a) Gorilla, (b) 
chimpanzee, (c, d) human. The nonhuman apes uniformly have large 
concavity and more so anteriorly than posteriorly. Some humans (c) 
have only small concavity anteriorly, and others have larger anterior 
concavity (d), but virtually all humans have large concavity posteriorly 
(c, d). View is perpendicular to the superior femoral neck. From Fikkers 
JT, et al. What Ape Proximal Femora Tell Us About Femoroacetabular 
Impingement: A Comparison. Clin Orthop Relat Res. 2014 Jul 1. 
Reprinted with permission from Springer
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mid-range hip flexion [52]. In this position femoral neck ante-
version aligns the capital physis more perpendicular to the 
vertical gait forces [53]. The human (extended) hip position 
increases shear forces on the capital physis. During adoles-
cence, the peripheral epiphysis extends towards the femoral 
neck (Fig. 1.10). Prospective MRI studies of children and 
adolescents (9–17 years) now show that in normal develop-
ment, this extension is almost similar at each position of the 
femoral head, which means the epiphyseal torsion angle does 
not change (Figs. 1.10 and 1.11 [54, 55]).

Due to their specialized bipedal gait, humans have much 
higher peak hip forces than quadrupeds of similar weight, 
and these forces increase markedly with running or sports 
[56, 57]. These factors can summate to a loading history of 
high, perhaps excessive, loads on the growing hip, particu-
larly because human growth and development is 5–6 years 
longer compared with chimpanzees [58, 59].

Thus, human hip ontogeny is characterized by specific 
mechanical factors that can be interpreted to explain neona-
tal/infant hip dysplasia, to increase shear forces on the capi-
tal epiphysis that may induce SCFE or subclinical slippage 
and to summate to a loading history that may induce mor-
phologic changes in the growing hip [40].

�Developmental Hip Disorders

During normal growth and development, the human femoral 
head is spherical in childhood [48], but aspherical femoral 
head morphology (coxa recta with alpha angle >60°) has 
already been shown in boys 12 years of age (Figs. 1.12 and 
1.13) [60]. Asymmetric changes in physeal extension can 

reduce concavity at head-neck junction, creating a coxa 
recta. Siebenrock et al. found increased extension of the phy-
seal scar in the anterosuperior head quadrant of FAI patients 
and suggested a growth abnormality of the physis can explain 
the differences in femoral head-neck offset between FAI 
patients and controls [61]. Alternatively, “subclinical” slip-
page of the epiphysis during adolescence has been proposed 
to explain the proximal femoral morphology of FAI, based 
on observations of epiphyseal tilt in cadaver femora, radio-
graphs and recently MRI [11, 62, 63].

There are no longitudinal studies demonstrating the effect 
of loading on hip morphology in children or adolescents. But 
two cross-sectional studies in European populations found 
reduced concavity may develop with exposure of the hip to 
repetitive exercise through intense sports training during 
adolescence [60, 64]. Intriguingly, these differences were 
more pronounced in athletes with a closed capital physis, 
indicating ongoing effect of load history after physeal clo-
sure. Thus, high-intensity sports during adolescence may be 
associated with a higher prevalence of coxa recta morphot-
ype, at least in European populations. As indicated above, 
comparable studies have not been undertaken in Asian popu-
lations. However, since coxa recta may be rare in Asian pop-
ulations, the explanation that coxa recta exclusively occurs 
as an adaptive response to a high loading history appears not 
entirely sufficient [40]. Perhaps genetic differences explain 
varying responses to a given loading history. Research link-
ing genes to hip morphotypes has begun to unravel the 
genetic basis of different hip morphotypes [65, 66] and has 
revealed that the majority of genes imparting OA susceptibil-
ity appear to be involved in skeletogenesis and/or homeosta-
sis of bone and cartilage [40].

Fig. 1.10  Epiphyseal extension, 
defined as the distance from a 
orthogonal straight line on the 
femoral neck axis to EP1 (point with 
largest epiphyseal extension)

1  Development of the Hip: Phylogeny and Ontogeny



10

In normal growth and development, the apical parts of the 
human acetabulum are retroverted in childhood, but become 
progressively anteverted during maturation, according to 
prospective MRI studies (Fig. 1.14). CT studies in normal 
adults report anteversion at the mid-level of the acetabulum 
of about 22°–24° in male and 19°–25° in females [67, 68]. 
The prevalence of retroversion is approx. 5 % in the general 
population, but 20 % in patients with osteoarthritis [69, 70].

Acetabular depth and anteversion determine the femo-
ral head coverage and range of hip motion (Fig. 1.13). 
Reduced coverage in developmental dysplasia and over-
coverage, either locally (retroversion) or globally (coxa 
profunda), can both produce local cumulative mechanical 
overload that can damage joint structures and lead to 
OA. In all, five parameters influence whether femoroace-

tabular impingement will occur: acetabular coverage and 
version, femoral head sphericity and version and neck 
shaft angle. Each of these five parameters has a reciprocal 
interaction with the others; for example, a shallow acetab-
ulum delays impingement of the femoral head with the 
acetabular rim. New parameters are being developed that 
visualize and quantify this interaction of the proximal 
femur and acetabulum [71].

Population studies show small or no differences in the 
prevalence of both undercoverage (DDH) [23, 72] and over-
coverage (coxa profunda) in males and females [23, 27]. In 
contrast, such differences do exist between different ethnic 
populations, with Asian populations having higher preva-
lence of DDH [37, 73, 74] and European or North American 
populations having more overcoverage [37].

Fig. 1.11  The epiphyseal torsion angle is 
defined by two lines: one line is orthogonal 
to the femoral neck axis, and the other line 
connects EP1 and EP2, the points at the 
largest epiphyseal extension

T. Hogervorst et al.
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Perhaps the intrauterine mechanical factors outlined 
above help explain neonatal DDH (but clearly not its ethnic 
disparities). After birth, mechanical factors, such as pro-
longed extended hip positions used with the swaddling of 
babies, influence whether neonatal hip dysplasia corrects or 
not [75]. For DDH of later onset however, we lack prospec-
tive MRI studies documenting the causative changes. 
Ontogeny is characterized by reciprocal development of the 
femur and acetabulum and indeed extends to the entire 
innominate bone [76]. Cultures that keep the hips of infants 
extended during most of the time (i.e. through swaddling) 
have a much higher incidence of hip dysplasia than cultures 
in which the hips are held apart (and therefore in a centred 
position) during carrying (i.e. in a back sling) [73].

The origin of coxa profunda is unproven due to the same 
lack of prospective MRI studies. This limits explanations to 
speculation, with factors cited including the efficiency of the 
abductor muscles [77], obstetric factors [78] and sex hor-
mones [79, 80] or a combination of these.

�Summary

Reviewing human hip phylogeny, and comparing our hip to 
other mammals and the great apes, helps us recognize the 
peculiar features of the human hip. The hip joint sees a 
marked shift in the default loading position from a hyper-
flexed position in utero, to close to its extension limit in later 
life. The hip also has a remarkably long period of growth and 
development and is often exposed to large loads with its phy-
ses still open.

Prospective MRI studies that are now appearing may con-
firm earlier suggestions that a high loading history may 
determine a hip’s eventual morphotype. Conversely, an 
emerging body of evidence attests to an interplay between 

Fig. 1.12  Anteroposterior pelvic and frog leg lateral radiographs (left) 
in human adolescents illustrating normal (top row) and coxa recta (mid-
dle and bottom rows). From Agricola R, Bessems JH, Ginai AZ, 
Heijboer MP, van der Heijden RA, Verhaar JA, et al. The Development 
of Cam-Type Deformity in Adolescent and Young Male Soccer Players. 
Am J Sports Med. 2012 Mar 13;40(5):1099–106. Reprinted with per-
mission from SAGE Publications

Fig. 1.13  Development of coxa recta in a highly active 
adolescent basketball player within 3 years

1  Development of the Hip: Phylogeny and Ontogeny
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genetic and mechanical factors in the development of the hip 
morphotype.

Genes orchestrate hip morphogenesis, but their influence 
most likely acts through several or numerous genes, each 
with modest effect sizes. Presently therefore, we do not know 
whether hip morphogenesis is primarily determined by 
genetic or mechanical factors.

Whether a given hip morphotype will lead to progressive 
OA is, again, influenced by mechanical factors, such as its 
loading history, but appears influenced also by an intrinsic 
ability of its cartilage to withstand mechanical stress.
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Anatomy: Cartilage

Veronica Ulici, Antonia F. Chen, Anthony W.M. Cheng†, 
and Rocky S. Tuan

�Introduction

The articular cartilage is a highly hydrated, avascular, aneu-
ral, and alymphatic tissue that provides a gliding surface for 
smooth articular motion and allows load distribution and 
reversible deformation in response to mechanical stimula-
tion. Its complex organization and composition, including 
specific orientation of collagen fibers and chondrocytes 
within the different cartilage layers, contribute to these 
unique properties. Chondrocytes dynamically remodel their 
surrounding extracellular matrix and receive signaling cues 
from the matrix, communication that is essential for cartilage 
homeostasis. This unique cell type has multiple functions, 
from cartilage development to the mature functions of the 
articular cartilage. Chondrocytes are involved in growth 
plate development during the growth of the long bones, in 
the formation of articulations during joint development, and 
in the maintenance of the mature articular cartilage through-
out life. During joint development it is believed that articular 
chondrocytes are derived from the interzone’s outer layer; 
however, this is still a controversial topic, and more recent 
studies suggest that these cells may originate from an early 
chondrocyte subpopulation that arises at the same time as 
interzone formation. Due to its avascular nature, cartilage 
nutrition and waste product removal are dependent on pro-
cesses such as diffusion and fluid flow. This complex, unique 
tissue is regulated by multiple mechanisms from mechanical 
to growth factor stimulation. Functional and structural 

dysregulations occurring early in development may lead to 
diseases such as chondrodysplasia, while later in life dysregu-
lation during cartilage maintenance may lead to osteoarthri-
tis (OA). In this chapter, we will discuss the macroscopic and 
microscopic features of cartilage and will describe the 
developmental mechanisms that contribute to its final form. 
In addition, we will briefly present a number of structural 
and biological changes in the cartilage that occur in joint 
diseases, such as OA.

�Gross Anatomy of the Hip Cartilage

While the bony anatomy of the hip joint consists of the femoral 
head and the acetabulum, the soft tissue components of the 
hip are comprised of cartilage, ligaments, capsule, and 
synovium. The two main types of cartilage within the hip are 
articular hyaline cartilage on the femoral head and acetabu-
lum and fibrocartilage that comprises the labrum.

The hyaline cartilage is the smooth, white tissue that cov-
ers 60–70 % of the spherical femoral head. All areas of the 
femoral head that articulate with the acetabulum are covered 
in hyaline cartilage, which extends past the equator of the 
femoral head. There is only one small, uncovered central 
area on the femoral head known as the fovea capitis, where 
the ligamentum teres inserts (Fig. 2.1).

The thickness of the articular cartilage varies throughout 
the femoral head (range 0.8–3.8 mm [1–3]) and acetabulum 
(range 1.2–4.8 mm [2, 3]). As expected, the thickness of the 
articular cartilage has been shown to be highest in the super-
olateral quadrant for both the femoral head and acetabulum. 
The thinnest region for the femoral head is medial to the 
fovea, whereas the area closest to the acetabular fossa is the 
thinnest for the acetabulum. The cartilage thickness decreases 
concentrically as one goes from the thickest to the thinnest 
cartilage point [4].

The function of the hyaline cartilage is to provide a nearly 
frictionless surface (coefficient of friction = 0.001) where the 
femoral head can move within the acetabular socket [5] and 
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to support and distribute mechanical load [6]. Due to its 
viscoelastic properties, healthy articular cartilage can 
restore its original shape after deformation in response to 
mechanical stimuli [7, 8].

In the presence of osteoarthritis (OA), the frictional coef-
ficient of the articulating surfaces increases in direct propor-
tion to the severity of cartilage degeneration due to the 
increase in surface roughness of the tissue [9]. Grossly, this 
manifests as fibrillations and deformations in the smooth 
cartilage structure, which may lead to femoral head collapse 
(Fig. 2.1c). This loss of the cartilage also reduces the shock-
absorbing capacity of the hyaline cartilage and leads to fur-
ther cartilage degeneration.

�Synovial Joint Formation

�Developmental Skeletogenesis and Synovial 
Joint Formation

The process of limb development begins when mesenchymal 
cells from the lateral plate mesoderm condense at the future 
place of skeletal elements and form the skeletal blastema 
[10–13] (Fig. 2.2a). The cells in the center of these conden-
sations then differentiate into chondrocytes (Fig. 2.2b.1), 
which deposit an extracellular matrix rich in collagen type II 
and proteoglycans (PG) [10, 14]. Members of the SOX fam-
ily of transcription factors are required for this chondrogenic 
differentiation [15, 16]. At the periphery of the condensa-
tions, cells flatten and elongate to form the perichondrium 
and later differentiate into preosteoblasts (Fig. 2.2b.2) [17].

In the hind limb, these mesenchymal condensations start as 
uninterrupted Y-shaped structures with the proximal arm of 
the Y corresponding to the future femur and the two arms of 
the Y corresponding to the tibia and fibula [10, 13]. Once the 
shape of the future bones is defined, joint formation is initiated 
at the site of the future articulation, with the establishment of 
a region of high mesenchymal cell density called the interzone 
(Fig. 2.2b.3) [18]. This area can be differentiated from the 
neighboring cells histologically and also by the expression of 
specific markers such as growth differentiation factor 5, 
GDF5, a member of the transforming growth factor β (TGF-β) 
superfamily [19, 20]. The interzone is subdivided into three 
layers (Fig. 2.2c.1, 3): a central layer, the intermediate lamina 
(which will break down (Fig. 2.2d.1) and eventually form the 
joint cavity), and two layers of high cell density on either side 
of the intermediate lamina that eventually become two regions 
of articular chondrocytes separated from each other by the 
fluid-filled joint cavity (Fig. 2.2e.1, 2) [21]. The origin of the 
articular chondrocytes is still a controversial issue, and while a 
number of studies suggest that they are derived from interzone 
cells that redifferentiate into chondrocytes, more recent cell 
lineage tracing studies suggest that they may also originate 
from a subpopulation of early chondrocytes [19].

�Human Hip Joint Development

In this section we will present a few selected stages of hip joint 
development as a guideline; however, the time lines of human 
embryonic joint development are quite variable, as described 
by many authors [22–24]. The interzone of the hip in a 13 mm 

Fig. 2.1  The hip joint. (a) 
Appearance of the normal healthy 
cartilage surface of the spherical 
femoral head. (b) Hip joint 
schematic depicting the main 
components of the joint: femoral 
head and acetabulum covered by 
the articular cartilage, ligamentum 
teres, fovea capitis, acetabular 
labrum, and the joint capsule. (c) 
Cartilage degeneration manifests as 
fibrillations, cartilage loss, and 
deformations in the smooth 
cartilage structure
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embryo is continuous with the cartilage on either side of the 
joint and with the perichondrium peripherally. By 14 mm the 
shape of articular surfaces resembles their future final appear-
ance. Both the joint fibrous capsule (Fig. 2.2c.4) and the synovial 
mesenchyme (Fig. 2.2c.2) (which lies between the capsule and 
the extracapsular perichondrium) are derived from the general 
mesenchyme in the vicinity of the joint [22]. It is believed that 
the intra-capsular structures, such as the ligamentum teres, are 
formed from condensations of the synovial mesenchyme. 
At ~16 mm, interzones are still continuous with the perichon-
drium, and no capsular structures can be yet identified at the 
hip [22]. Gardner and Gray [23] noticed a cellular condensa-
tion between the coxal bone and the femur as the first indica-
tion of the future capsule. By 30 mm the three layers of the 
interzone can be observed with the middle zone being differ-
entiated from the other two zones by a difference in density of 
histological staining (Fig. 2.2c.1) [22–24].

The labrum and the ligamentum teres appear as cellular 
condensations when the human embryo is around 22–25 mm 

[23]. The central interzone layer is connected in the joint 
periphery with the synovial mesenchyme, while the two 
interzone chondrogenic layers are continuous with the 
intra-capsular perichondrium [22]. At ~30 mm the middle 
layer of the interzone and the interior part of the synovial 
mesenchyme are starting to break down (Fig. 2.2d.1, 2), in 
order to give rise to joint cavities by the process of liquefac-
tion [22, 23]. Some of the cells from these regions will be 
destroyed, but the majority of them will actually attach to 
the wall of the joint cavity and become part of the joint lin-
ing [22–24]. At 34 mm the first appearance of the hip joint 
cavity has been reported by some investigators [23], though 
more advanced stages have been reported by others, e.g., 
Haines described a cavity that already surrounds the head 
of the femur, and ligamentum teres could also be identified 
within the synovium mesenchyme at this stage [22]. Haines 
[22] also observed the complete separation (dehiscence) 
(Fig. 2.2e.1, 2) of the two hip articular surfaces before the 
embryo reached 45 mm.

Fig. 2.2  Synovial joint formation. A schematic of a general synovial 
joint. (a) Condensation of mesenchymal cells at the location of future 
skeletal elements; (b.1) differentiation of mesenchymal cells into chon-
drocytes; (b.2) formation of the perichondrium; (b.3) establishment of 
the interzone. With further development, three layers of the interzone 
form: a central layer (c.1) and two outer layers of high cell density (c.3) 
that will eventually become two regions of articular chondrocytes (e.2). 

Within the general mesenchyme, the future fibrous capsule can be 
observed as condensations (c.4). In the next stages the central interzone 
layer (c.1) and the synovial mesenchyme (c.2) will start to break down 
(d.1, d.2) in order to form the joint cavity. After the cavitation process, 
the two future articulating bones (e.g., femur and acetabulum) will be 
separated from each other by a fluid-filled cavity (e.1)
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�Structure and Composition of the Articular 
Cartilage

�Cartilage Constituents

The articular cartilage is a hypocellular, avascular, aneural, 
and alymphatic tissue [25]. The mature articular cartilage is 
maintained by chondrocytes that are the only resident cell 
type (with the exception of a stem cell progenitor population 
[26, 27]) and represent only ~5 % of the wet weight of the 
tissue [28].

Fluid within this highly hydrated tissue is responsible for 
60–80 % of its wet weight and contains water and dissolved 
gases, small proteins, metabolites, and ions [8, 11, 29]. 
Structural macromolecules make up the remaining 20–40 % 
of the wet weight, represented by collagens (15–22 %; 
mainly collagen type II, but also types IX and XI), proteogly-
cans (4–7 %), and other non-collagenous proteins [11, 30].

The collagen network is principally responsible for the 
tensile strength of the cartilage tissue, while the proteogly-
cans provide the cartilage with elastic resistance to com-
pressive forces [7, 31]. The collagen network interacts 
intimately with proteoglycan aggregates which are highly 
sulfated and consist of a protein core (i.e., aggrecan), hyal-
uronic acid, and sulfated glycosaminoglycan (GAG) side 
chains made up of chondroitin sulfate, heparan sulfate, and 
dermatan sulfate [7, 28, 30].

�Zonal Structure

The composition, organization, mechanical properties, cell 
morphology, and cell function of the articular cartilage vary 
with the depth from the joint surface. Four different zones 
have been identified, located from the articular surface to 
subchondral bone: superficial zone, transitional (middle) 
zone, deep zone, and the calcified cartilage zone [29].

The superficial zone is the thinnest cartilage zone (10–
20 % of the articular cartilage thickness) [32, 33] and con-
sists of two layers: the first layer, closest to the articular 
surface, is acellular and is comprised of a sheet of fine fibrous 
material; the second layer consists of flat chondrocytes with 
their long axis parallel to the cartilage surface. Their matrix 
is rich in collagen, fibronectin, and water, but is poor in pro-
teoglycans [29], which can be seen with decreased staining 
with Safranin O (Fig. 2.3). The collagen fibers are also 
aligned parallel to the joint surface.

The transitional (middle) zone (40–60 %) [32, 33] has 
spheroidal-shaped chondrocytes and a matrix consisting of 
larger and less organized collagen fibers, with increased pro-
teoglycan concentration and decreased collagen and water 
concentration relative to the superficial zone [29]. The deep 
zone (30–40 %) [32, 33] also has round chondrocytes that 

tend to organize in columns perpendicular to the articular 
surface (Fig. 2.3). Among all zones, the deep zone is the least 
hydrated and has the largest collagen fibers, which are ori-
ented perpendicular to the articular surface, and the highest 
concentration of proteoglycan [29].

A wavy tidemark of basophilic matrix separates the deep 
zone from the final zone: the calcified cartilage zone. 
Collagen fibers lengthen from the middle zone to the calci-
fied cartilage passing through the tidemark (Fig. 2.3). 
Mechanically, this region transfers joint forces from the car-
tilage to the underlying subchondral bone via vertically ori-
ented collagen fibrils [34]. Chondrocytes in this zone are 
surrounded by a calcified matrix and have a small volume 
and a small amount of intracellular organelles. Overall, the 
calcified zone marks the transition from the soft cartilage to 
stiff subchondral bone and is important for connecting non-
calcified cartilage to bone [29, 35].

The subchondral bone is interdigitated with calcified car-
tilage, except that the fibers do not extend from the calcified 
zone to the bone. The cortical portion of the subchondral 
bone is localized underneath the calcified cartilage and 
exhibits low porosity and vascularity, while the subchondral 
trabecular bone is positioned distally from the cortical bone 
(Fig. 2.3) and contains trabeculae oriented perpendicular to 
the cortical subchondral plate [36]. This physical linkage 
between the cartilage and bone is a critical component in the 
pathogenesis of degenerative diseases such as OA [34].

�Extracellular Structure

The composition and organization of the extracellular matrix 
also change with the distance from the cell and can be divided 
in three regions: the pericellular, territorial, and interterrito-
rial matrices [29]. The chondrocyte and its pericellular 
matrix form the chondron that is the basic cellular structural 
unit of the cartilage [37, 38]. The chondrocyte cell mem-
brane appears to attach to the surrounding pericellular 
matrix, which is rich in proteoglycans (derived from aggre-
can, perlecan, and biglycan), collagen (a non-fibrillar colla-
gen type VI, which is specific to the pericellular matrix), and 
small amounts of collagen types II and IX), hyaluronan, and 
fibronectin [39, 40]. It is well established that the interac-
tions between the extracellular matrix and chondrocytes are 
vital for normal cartilage function. The close contact of the 
pericellular matrix with the chondrocyte membrane suggests 
that cellular activities are critically regulated by these cell-
matrix interactions [29, 40, 41].

The next region is the territorial matrix that surrounds 
the pericellular matrix of individual chondrocytes or a 
group of chondrocytes in some areas (e.g., the chondrocyte 
column in the deep zone) [29, 32]. This region contains thin 
collagen fibers that appear to adhere to the pericellular 
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matrix. These fibers intersect at different angles, at some 
distance from the cell, to form a fibrillar network around 
each chondrocyte [29].

The majority of the chondrocyte matrix is represented by 
the interterritorial matrix, which is the furthest away from 
the cell and contains thick collagen fibers. The orientation of 
these fibers is different than that in the territorial matrix, as 
they do not surround the chondrocytes but are angled differ-
ently in the distinct cartilage zones, changing their orienta-
tion from parallel to the articular surface in the superficial 
zone to perpendicular in the deep zone [29].

�Chondrocyte-Matrix Interaction

Dynamic cell-matrix interactions are essential for the bio-
logical functions of the cartilage. Chondrocytes constantly 
remodel their matrix in response to different stimuli, such as 

physical and chemical changes in the neighboring environ-
ment [42]. The stimuli that can trigger anabolic or catabolic 
responses from chondrocytes include mechanical forces 
(e.g., exercise), biomolecules (e.g., cytokines, local growth 
factors, hormones), and matrix composition [28].

The matrix not only protects the chondrocytes from 
mechanical insults but also provides the cells with signaling 
cues that regulate gene expression. There is a direct interac-
tion between the extracellular matrix molecules and chon-
drocytes through cell surface receptors such as the integrins, 
a family of dimeric transmembrane adhesion receptors con-
sisting of α and β subunits [43, 44].

Integrins play an essential role in the attachment of cells 
to their extracellular matrix, but also in chondrocyte differ-
entiation, survival and matrix regulation, and in mediating 
the response of chondrocytes to numerous signals, including 
mechanical loading. These receptors are known to interact 
with pericellular matrix proteins, such as collagen type VI 

Fig. 2.3  The articular cartilage structure. Safranin O staining of femoral 
head cartilage from a 34-year-old woman (a); schematic of the articular 
cartilage (b). The articular cartilage consists of four different zones from 
articular surface to subchondral bone: superficial zone, transitional (mid-
dle) zone, deep zone, and the calcified cartilage zone. The superficial 

zone is rich in collagen, fibronectin, and water, but is poor in proteoglycans 
[29] which can be seen with decreased Safranin O stain (a). A wavy 
tidemark separates the deep zone from the calcified cartilage zone. 
Collagen fibers lengthen from the middle zone to calcified cartilage pass-
ing through the tidemark, but do not extend to the subchondral bone

2  Anatomy: Cartilage
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