Clinical Review of Vascular Trauma

Anahita Dua Sapan S. Desai John B. Holcomb Andrew R. Burgess Julie Ann Freischlag *Editors*

Clinical Review of Vascular Trauma

Anahita Dua • Sapan S. Desai John B. Holcomb • Andrew R. Burgess Julie Ann Freischlag Editors

Clinical Review of Vascular Trauma

Editors Anahita Dua, MD John B. Holcomb, MD Department of Surgery Division of Acute Care Surgery Medical College of Wisconsin Department of Surgery, Center for Milwaukee, WI Translational Injury Research (CeTIR) USA Houston, TX USA Center for Translational Injury Research Houston, TX Department of Surgery USA University of Texas Houston, TX Sapan S. Desai, MD, PhD, MBA USA Department of Surgery Duke University Andrew R. Burgess, MD Durham, NC Department of Orthopedic Surgery USA University of Texas Houston, TX Department of Cardiothoracic USA and Vascular Surgery University of Texas Medical School Julie Ann Freischlag, MD Houston, TX John Hopkins Medical Institutions USA Baltimore, MD USA

ISBN 978-3-642-39099-9 ISBN 978-3-642-39100-2 (eBook) DOI 10.1007/978-3-642-39100-2 Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013950485

© Springer-Verlag Berlin Heidelberg 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Dedicated to all of our trauma patients – past, present, and future

Foreword

The American Heritage Dictionary of the English Language defines evolution as a gradual process in which something changes into a significantly different, especially more complex or more sophisticated, form. The same dictionary defines revolution in several ways. For this foreword, I would use an assuredly momentous change in any situation. I believe these two definitions apply to the last 10 years in vascular injuries. What has caused this evolution/revolution? Clearly, there are many issues. To a great extent, it is the vendors who provide endovascular stents in the rapid evolution from the original stents for the thoracic aorta to almost any vessel in the human body. An equally important concept was when surgeons stepped forward and learned the techniques of interventional radiologists. Another evolutionary concept was the hybrid operating room where surgery could be carried out as well as placement of endovascular prosthetics. This is an extremely important concept because we are just now developing management protocols in patients with vascular injuries. There are some significant problems. When does the surgeon make a decision to locate the injury with open surgery, tomography, or arterial visualization with injected contrast agents into the vascular system? Alternatively, if an injury can be demonstrated, it may be simpler to control the bleeding blood vessel (artery or vein) by balloon technology. Protocols and treatment algorithms will help as more experience is gained over the next few years. It will be particularly important to define our limitations particularly in some vascular areas. The use of stents may not be the best for intracranial acute vascular injuries.

This book *Clinical Review of Vascular Trauma* is one of the first of many to take on the challenge of defining the problems today, and in their first part they address vascular surgery essentials. This part outlines general vascular principles such as the use of vascular diagnostics, scoring systems, and the hematologic perspectives that includes a discussion on anticoagulation, vascular trauma resuscitation, and hemostatic monitoring. The subject of anticoagulation is extremely important. From my perception, anticoagulation contributes more to morbidity than any one other single entity. Other chapters in vascular surgery essentials include an overview of vascular trauma, a chapter on the mangled extremity, and another chapter by Burgess on fasciotomy. These are important due to recent activities in the Middle East as well as the bombing in Boston. The chapter on surgical critical care is particularly important because I believe the vascular surgeon must be involved in critical care decisions. Very few interventional radiologists care about surgical critical care and delegate it to other specialties. There must be surgical input!

The rest of the book is dedicated to the various regions of the anatomy, and the second part is on cerebral vascular and upper extremity injuries. This part is particularly important because of the limitations of some of the bony canals and the skull base.

The third part is on the chest which is the area where endovascular surgery had its beginnings. The fourth part is on abdominal vascular injuries and focuses on the abdominal aorta and the branches. I think there is particular merit in having a separate subsection of the IVC and other major veins. During my surgical career I have gained a major respect for large veins. I have successfully repaired avulsion of the left hepatic vein in two patients and avulsion of the right hepatic vein in two patients with one survivor.

The pelvis is the fifth part and this can be very important to the patient with grade IV and V pelvic fractures.

The sixth part covers the lower extremity and this particular anatomical region is evolving rapidly. I am also pleased to see a special consideration of military injuries, pediatric and vascular trauma, neurologic injuries, and the use of shunts particularly in far forward military situations. This concept could be used in rural areas, particularly farm country where vascular injuries are common but the surgeons are not there to care for them. Why not teach the same concepts of shunts to the rural general surgeon?

I believe that modern vascular trauma surgery is an exciting and worthwhile venture. Hopefully, we will be able to develop treatment protocols based on experience that would tell us whether to open a chest or abdomen to gain control or we can do it with balloons above or below the injury or directly in the injured artery or vein.

Portland, OR, USA

Donald Trunkey, MD

Preface

Caring for people who are afflicted by trauma is an honor and a privilege. These people who come into our trauma bays are exactly that, people; hence in trauma, there is no such thing as a "vascular" patient, an "orthopedic" patient, or a "plastics" patient. There is but the patient.

As surgeons we certainly strive to provide excellent, holistic care for our patients but sometimes the silo nature of our healthcare systems hinders instead of helps. Specialist services have taken over for the general surgeon in many areas with a noble aim: to provide expert care by dedicated surgeons. However, this double-edged sword can simultaneously prevent us from engaging as we should with other disciplines, and it is this issue of communication that can lead to devastating consequences for our patients. This book was inspired by a patient who sustained a gunshot wound to the abdomen resulting in a bowel and iliac injury. After trauma surgery stabilized the patient, vascular surgery was consulted to fix the iliac artery injury. They opted to use vein graft which got infected and disintegrated 7 days later, leading to frank hemorrhage and near death for our patient. As per the "vascular" literature, the choice of conduit was correct: a contaminated field meant vein graft to reduce the infection risk. However, recent "trauma" literature from the Iraq and Afghanistan wars advocated for the use of prosthetic graft in a contaminated field to avoid the complication we faced with our patient. The correct approach here would have been for both the vascular and trauma teams to have been aware of each other's literature so an informed, bestpractice decision could have been made for our patient. This text is an attempt to bring together evidence from multiple fields that are involved in the care of trauma patients with vascular pathology.

This book is broken down by vessel injury so it may serve as a reference for any orthopedic, vascular, trauma, acute care, plastics, or cardiothoracic surgeon during that 2 AM trauma call. Every part has been meticulously reviewed by surgeons from various disciplines so that chapters provide a consensus between the disciplines. Our senior editors include a professor of trauma and acute care surgery (Dr. Holcomb), a professor of vascular surgery (Dr. Freischlag), and a professor of orthopedic surgery (Dr. Burgess) along with a vascular fellow (Dr. Desai) and myself (Dr. Dua) a general surgery resident. We are an example of the team that would come to the trauma bay to take care of a vascular trauma patient, and all viewpoints are an essential part of this book as they should be an essential part of patient care. This text includes dedicated chapters on the mangled extremity and fasciotomy, written by Dr. Burgess, an orthopedic surgeon. In our medical system, mangled extremities are managed by the trauma or vascular surgery team. Today, barely any house staff have any orthopedic rotations or basic clinical experience in the diagnosis of high-energy musculoskeletal injury, especially when combined with significant vascular injury. Therefore, a text of this nature brings the orthopedic viewpoint to the forefront so it can be a consideration during a trauma call by all members of the surgery teams involved.

The overall mission of this book is to optimize the care of trauma patients using a multidisciplinary approach.

Houston, TX, USA

Anahita Dua, MD

Contents

Part I	Vascular	Surgery	Essentials

1	Overview of Vascular Trauma Gabriel J. Bietz and Joseph L. Bobadilla	3
2	Anticoagulation, Resuscitation, and Hemostasis Pär I. Johansson	21
3	Diagnosis of Vascular Trauma John Byrne and R. Clement Darling III	33
4	Vascular Scoring Systems Mark L. Shapiro	53
5	The Mangled Extremity Andrew R. Burgess	57
6	Fasciotomy Andrew R. Burgess and Abdul Aziz	65
7	Endovascular Considerations in Vascular Trauma Peter J. Rossi and Nicholas M. Southard	75
Par	t II Cerebrovascular and Upper Extremity	
Par 8	t II Cerebrovascular and Upper Extremity Carotid and Vertebral Injuries Jeremy S. Juern and Karen J. Brasel	93
	Carotid and Vertebral Injuries	93 105
8	Carotid and Vertebral Injuries Jeremy S. Juern and Karen J. Brasel Axillary and Brachial Injuries.	
8 9 10	Carotid and Vertebral Injuries Jeremy S. Juern and Karen J. Brasel Axillary and Brachial Injuries Neal C. Hadro and Ronald I. Gross Radial, Ulnar, and Hand Injuries	105
8 9 10	Carotid and Vertebral Injuries	105

13	Thoracic Aortic Injuries. Ahmed Al-Adhami, Sapan S. Desai, and Ali Azizzadeh	157
14	Subclavian Artery and Vein Injuries	169
15	Thoracic Duct Injuries	181
Par	t IV Abdomen	
16	Abdominal Aorta Injuries Sherene Shalhub and Benjamin W. Starnes	191
17	Abdominal Vein Injuries	201
18	Mesenteric Vascular Injuries Leslie M. Kobayashi, Todd W. Costantini, and Raul Coimbra	213
Par	t V Pelvis	
19	Iliac Artery Injuries Nicolas H. Pope, William F. Johnston, and Gilbert R. Upchurch Jr.	227
20	Iliac Vein Injuries William F. Johnston, Nicolas H. Pope, and Gilbert R. Upchurch Jr.	241
21	Urogenital and Retroperitoneal Injuries David R. King and John O. Hwabejire	253
Par	t VI Lower Extremity	
22	Femoral and Above-Knee Popliteal Injuries Charles J. Fox	271
23	Below-Knee Popliteal, Tibial, and Foot Injuries	281
Par	t VII Trauma and Critical Care	
24	Surgical Critical Care Laura A. Kreiner and Laura J. Moore	303
25	Peripheral Vascular Neurologic Injuries Jessica R. Stark and Daniel H. Kim	315
26	Pediatric Vascular Injuries	331

27	Military Vascular Injuries Charles J. Fox	343
28	Utilization of Shunting Robert Houston IV and Todd E. Rasmussen	355
Ind	ex	367

Contributors

Ahmed Al-Adhami, MBChB (Hons), MSc Department of Cardiothoracic Surgery, Golden Jubilee National Hospital, Glasgow, UK

Abdul Aziz, MBChB Department of Trauma and Orthopaedic Surgery, Queens Medical Centre, Nottingham, UK

Ali Azizzadeh, MD Department of Cardiothoracic and Vascular Surgery, University of Texas Medical School, Houston, TX, USA

Memorial Hermann Heart and Vascular Institute, Texas Medical Center, Houston, TX, USA

Gabriel J. Bietz, MD Division of Vascular and Endovascular Surgery, Department of Surgery, University of Kentucky, Lexington, KY, USA

Walter Biffl, MD Department of Surgery, Denver Health Medical Center, University of Colorado School of Medicine, Denver, CO, USA

Joseph L. Bobadilla, MD Division of Vascular and Endovascular Surgery, Department of Surgery, University of Kentucky, Lexington, KY, USA

Karen J. Brasel, MD, MPH Division of Trauma and Critical Care, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA

Kellie Brown, MD Division of Vascular Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA

Andrew R. Burgess, MD Department of Orthopedic Surgery, University of Texas, Houston, TX, USA

Ruth L. Bush, MD, MPH Department of Surgery, Texas A&M Health Science Center College of Medicine, Round Rock, TX, USA

John Byrne, MCh, FRCSI (Gen) Department of Surgery, Albany Vascular Group, Albany Medical College, Albany, NY, USA

Division of Vascular Surgery, Albany Medical Center Hospital, Albany, NY, USA

Kristofer M. Charlton-Ouw, MD Department of Cardiothoracic and Vascular Surgery, University of Texas Medical School at Houston, Houston, TX, USA

Raul Coimbra, MD, PhD Division of Trauma, Surgical Critical Care and Burns, Department of Surgery, University of California San Diego Health Sciences, San Diego, CA, USA

Todd W. Costantini, MD Division of Trauma, Surgical Critical Care and Burns, Department of Surgery, University of California San Diego Health Sciences, San Diego, CA, USA

R. Clement Darling III, MD Department of Surgery, Albany Vascular Group, Albany Medical College, Albany, NY, USA

Division of Vascular Surgery, Albany Medical Center Hospital, Albany, NY, USA

Sapan S. Desai, MD, PhD, MBA Department of Surgery, Duke University Medical Center, Durham, NC, USA

Department of Cardiothoracic and Vascular Surgery, University of Texas Medical School, Houston, TX, USA

Anahita Dua, MD Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA

Center for Translational Injury Research, Houston, TX, USA

John F. Eidt, MD, FACS Division of Vascular Surgery, Greenville Health System, University Medical Center, Greenville, SC, USA

Charles J. Fox, MD Department of Surgery, Denver Health Medical Center, University of Colorado School of Medicine, Denver, CO, USA

Julie A. Freischlag, MD Department of Surgery, The Johns Hopkins Hospital, Baltimore, MD, USA

Mario G. Gasparri, MD Division of Cardiothoracic Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA

Ronald I. Gross, MD Division of Trauma and Emergency Surgery, Department of Surgery, Tufts University School of Medicine, Boston, MA, USA

Division of Trauma, Acute Care Surgery and Surgical Critical Care, Baystate Medical Center, Springfield, MA, USA

Neal C. Hadro, MD Department of Surgery, Tufts University School of Medicine, Baystate Vascular Services, Boston, MA, USA

Division of Vascular Surgery, Baystate Medical Center, Springfield, MA, USA

Linda Harris, MD Division of Vascular Surgery, Department of Surgery, State University of New York (SUNY), Buffalo, NY, USA

Nathan P. Heinzerling, MD Division of Pediatric Surgery, Children's Hospital of Wisconsin, Milwaukee, WI, USA

Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA **Jennifer A. Heller, MD** Division of Vascular Surgery, Department of Surgery, The Johns Hopkins Hospital, Baltimore, MD, USA

John B. Hijjawi, MD Departments of Plastic Surgery and General Surgery, Medical College of Wisconsin, Milwaukee, WI, USA

John B. Holcomb, MD Division of Acute Care Surgery, Department of Surgery, Center for Translational Injury Research (CeTIR), Houston, TX, USA

Department of Surgery, University of Texas, Houston, TX, USA

Robert Houston IV, MD Department of Surgery, San Antonio Military Medical Center, Houston, TX, USA

Pär I. Johansson, MD, DMSc, MPA Section for Transfusion Medicine, Capital Region Blood Bank, Rigshospitalet University of Copenhagen, Copenhagen, Denmark

Department of Surgery, Center for Translational Injury Research (CeTIR), University of Texas Medical School – Houston, Houston, TX, USA

William F. Johnston, MD Department of Surgery, University of Virginia, Charlottesville, VA, USA

Jeremy S. Juern, MD Department of Trauma and Critical Care, Medical College of Wisconsin, Milwaukee, WI, USA

Melina R. Kibbe, MD Division of Vascular Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA

Daniel H. Kim, MD Department of Neurosurgery, University of Texas Medical School at Houston, Houston, TX, USA

David R. King, MD Division of Trauma, Emergency Surgery and Surgical Critical Care, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA

M. Margaret Knudson, MD Department of Surgery, University of California San Francisco, San Francisco, CA, USA

Department of Surgery, San Francisco General Hospital and Trauma Center, San Francisco, CA, USA

Leslie M. Kobayashi, MD Division of Trauma, Surgical Critical Care and Burns, Department of Surgery, University of California San Diego Health Sciences, San Diego, CA, USA

John F. Kragh Jr., MD Department of Surgery, US Army Institute of Surgical Research, Fort Sam Houston, TX, USA

Laura A. Kreiner, MD Department of Surgery, University of Texas Medical School at Houston, Houston, TX, USA

SreyRam Kuy, MD, MHS Department of Surgery, Division of Vascular Surgery, Medical College of Wisconsin, Milwaukee, WI, USA

Mark A. Mattos, MD Division of Vascular Surgery, Department of Surgery, Wayne State University, Detroit, MI, USA

Jason McMaster, MD Obstetrics and Gynecology Resident, Medical College of Wisconsin, Milwaukee, WI, USA

Martin A.S. Meyer, BSc Section for Transfusion Medicine, Capital Region Blood Bank, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark

Department of Surgery, Center for Translational Injury Research, The University of Texas Health Science Center, Houston, TX, USA

David J. Milia Division of Trauma and Critical Care, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA

Erica L. Mitchell, MD Division of Vascular Surgery, Oregon Health and Science University, Portland, OR, USA

Victor A. Moon, MD Department of Surgery, Hofstra North Shore – LIJ School of Medicine, Hempstead, NY, USA

Laura J. Moore, MD, FACS Division of Acute Care Surgery, Department of Surgery, Shock Trauma Intensive Care Unit – Memorial Hermann Hospital, The University of Texas Health Science Center at Houston, Houston, TX, USA

Jessica O'Connell, MD Division of Vascular Surgery, Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA

Bhavin Patel, MD Department of Medicine, Medical College of Wisconsinm, Milwaukee, WI, USA

Rushad D. Patell, MD Department of Medicine, Medical College Baroda and SSG Hospital, Vadodara, Gujarat, India

Jasmeet S. Paul, MD Division of Trauma and Critical Care, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA

K. Shad Pharaon, MD Division of Trauma, Critical Care and Acute Care Surgery, Oregon Health and Science University, Portland, OR, USA

Nicolas H. Pope Department of Surgery, University of Virginia, Charlottesville, VA, USA

Todd E. Rasmussen, MD Department of Surgery, USA Institute of Surgical Research, Joint Base San Antonio, Fort San Houston, TX, USA

Jesper B. Ravn, MD Department of Cardiothoracic Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark

Amy B. Reed, MD Vascular Surgery, Heart and Vascular Institute, Penn State Hershey Medical Center, Hershey, PA, USA

Justin L. Regner, MD Trauma, Critical Care and Acute Care Surgery, Scott and White Memorial Hospital, Texas A&M University, Temple, TX, USA **Peter Rhee, MD, MPH** Surgical Critical Care, Burns and Emergency Surgery, University of Arizona, Tucson, AZ, USA

Peter J. Rossi, MD Division of Vascular Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA

Harleen K. Sandhu, MD Department of Cardiothoracic and Vascular Surgery, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA

Thomas T. Sato, MD Division of Pediatric Surgery, Children's Hospital of Wisconsin, Milwaukee, WI, USA

Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA

Martin A. Schreiber, MD Department of Surgery, Oregon Health and Science University, Portland, OR, USA

Sherene Shalhub, MD, MPH Division of Vascular Surgery, University of Washington, Seattle, WA, USA

Mark L. Shapiro, MD, FACS Department of Trauma, Duke University Medical Center, Durham, NC, USA

Nicholas M. Southard, DO Division of Vascular Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA

Jessica R. Stark, MD Department of Neurosurgery, University of Texas Medical School at Houston, Houston, TX, USA

Benjamin W. Starnes, MD Division of Vascular Surgery, University of Washington, Seattle, WA, USA

William B. Tisol, MD Division of Cardiothoracic Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA

Donald D. Trunkey, MD Section of Trauma and Critical Care, Department of Surgery, Oregon Health and Science University, Portland, OR, USA

Gilbert R. Upchurch Jr., MD Division of Vascular and Endovascular Surgery, Department of Surgery, Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA

John A. Weigelt, MD Division of Trauma and Critical Care, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA

John W. York, MD Division of Vascular Surgery, Greenville Health System, University Medical System, Greenville, SC, USA

Abbreviations

- AAST American Association for the Surgery of Trauma
- ABC Airway, breathing, and circulation
- ABI Ankle-brachial index
- ACS American College of Surgeons
- ADP Adenosine diphosphate
- AIS Abbreviated injury score
- AP Anterior-posterior
- APTT Activated partial thromboplastin time
- ASA Aspirin
- AT Anterior tibial
- ATLS Advanced trauma life support
- AV Arteriovenous
- AVF Arteriovenous fistula
- BAAI Blunt abdominal aortic injury
- BAI Blunt aortic injury
- BCI Blunt cardiac injury
- BCVI Blunt cerebrovascular injury
- BPM Beats per minute
- BRAI Blunt renal artery injury
- BTAI Blunt thoracic aortic injury
- CABG Coronary artery bypass graft
- CAD Coronary artery disease
- CAG Coronary angiography
- CCA Common carotid artery
- CCD Charge-coupled device
- CFA Common femoral artery
- CFD Color flow duplex
- CKD Chronic kidney disease
- CNS Central nervous system
- COT Committee on Trauma
- CPN Common peroneal nerve
- CPU Central processing unit
- CT Computed tomography
- CTA Computed tomographic angiography
- DBP Diastolic blood pressure
- DIC Disseminated intravascular coagulation
- DP Dorsalis pedis

DSA	Digital subtraction angiography
DUS	Duplex ultrasonography
DVT	Deep vein thrombosis
EAST	Eastern Association for the Surgery of Trauma
ECA	External carotid artery
ECMO	Extracorporeal membrane oxygenation
ECRB	Extensor carpi radialis brevis
ECRL	Extensor carpi radialis longus
ED	Emergency department
ePTFE	Expanded polytetrafluoroethylene
FAST	Focused assessment with sonography in trauma
FDA	Food and Drug Administration
FFP	Fresh frozen plasma
FWB	Fresh whole blood
FXIII	Factor XIII
GCS	Glasgow coma score
GDA	Gastroduodenal artery
GONR	Graphene oxide nanoribbon
GSW	Gunshot wound
GWOT	Global war on terror
HES	Hydroxyethyl starch
HOCM	High-osmolar contrast media
HR	Heart rate
HU	Hounsfield unit
IAOB	Intra-aortic occlusion balloon
IAVI	Intra-abdominal venous injury
ICA	Internal carotid artery
ICU	Intensive care unit
IFU	Instructions for use
IMA	Inferior mesenteric artery
IMV	Inferior mesenteric vein
INR	International normalized ratio
IOCM	Iso-osmolar contrast media
ISS	Injury severity score
IV	Intravenous
IVC	Inferior vena cava
IVU	Intravenous urography
KE	Kinetic energy
KUB	Kidney, ureters, and bladder
LMWH	Low-molecular-weight heparin
LSA	Left subclavian artery
LTA	Light transmission aggregometry
Ly	Clot lysis
M	Mass
MA	Maximum amplitude
MAI	Minimal aortic injury
MDCT	Multidetector row computed tomography

- MDCT Multidetector row computed tomography
- MESS Mangled extremity severity score

MRA	Magnetic resonance angiography
MRI	Magnetic resonance imaging
MT	Massive transfusion
MTP	Massive transfusion protocol
MVC	Motor vehicle collision
NaCl	Sodium chloride
NAP	Nerve action potential
NBCA	N-butyl cyanoacrylate
NPO	Nil per os
NTDB	National Trauma Data Bank
OIS	Organ injury scale
PCI	Percutaneous coronary intervention
PFA	Profunda femoral artery
PLT	Platelet
POSSUM	Physiological and operative severity score for the enumeration
	of mortality and morbidity
PRBC	Packed red blood cells
PRN	As needed
PT	Posterior tibial
PT	Prothrombin time
PTFE	Polytetrafluoroethylene
PV	Portal vein
PVA	Polyvinyl alcohol
R	Reaction time
RBC	Red blood cell
RNA	Ribonucleic acid
ROTEM	Rotational thromboelastometry
RR	Respiratory rate
RT	Resuscitative thoracotomy
RTS	Revised trauma score
SBP	Systolic blood pressure
SFA	Superficial femoral artery
SMA	Superior mesenteric artery
SMV	Superior mesenteric vein
Т	Temperature
TAG	Thoracic aortic graft
TAVI	Transfemoral aortic valve implantation
TEE	Transesophageal echocardiography
TEG	Thromboelastography
TEP	Trauma exsanguination protocol
TEVAR	Thoracic endovascular aneurysm repair
TF	Tissue factor
TIA	Transient ischemic attack
tPA	Tissue plasminogen activator
TPN	Total parenteral nutrition
TPT	Tibioperoneal trunk
TRA	Tibiopedal retrograde access
TRISS	Trauma and injury severity score

TTE	Transthoracic echocardiography
US	Ultrasonography
V	Velocity
VAC	Vacuum-assisted closure
VAI	Vertebral artery injury
VATS	Video-assisted thoracoscopic surgery
VHA	Viscoelastic hemostatic assay
VTE	Venous thromboembolism
vWF	von Willebrand factor

WTA Western Trauma Association