

Vitamin D

4th Edition

Editor-in-Chief David Feldman Sr. Associate Editor J. Wesley Pike Associate Editors Roger Bouillon Edward Giovannucci David Goltzman Martin Hewison

Volume One | Biochemistry, Physiology and Diagnostics

VITAMIN D VOLUME 1: BIOCHEMISTRY, PHYSIOLOGY AND DIAGNOSTICS

This page intentionally left blank

VITAMIN D

VOLUME 1: BIOCHEMISTRY, PHYSIOLOGY AND DIAGNOSTICS

FOURTH EDITION

Editor-in-Chief

David Feldman

Senior Associate Editor

J. WESLEY PIKE

Associate Editors

ROGER BOUILLON EDWARD GIOVANNUCCI DAVID GOLTZMAN MARTIN HEWISON

ACADEMIC PRESS

An imprint of Elsevier

Academic Press is an imprint of Elsevier 125 London Wall, London EC2Y 5AS, United Kingdom 525 B Street, Suite 1800, San Diego, CA 92101-4495, United States 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom

Copyright © 2018 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

ISBN: 978-0-12-809965-0

For information on all Academic Press publications visit our website at https://www.elsevier.com/books-and-journals

Working together to grow libraries in developing countries

www.elsevier.com • www.bookaid.org

Publisher: Mica Haley Acquisition Editor: Tari Broderick Editorial Project Manager: Lisa Eppich Production Project Manager: Mohanambal Natarajan Designer: Christian Bilbow

Typeset by TNQ Books and Journals

Contents

3

5

6 9 9

List of ContributorsxxiiiIn MemoriamxxixPreface to the Fourth EditionxxxiAbbreviationsxxxiiiRelevant Lab Values in Adults and Childrenxxxvii

VOLUME I

Ι

HISTORY, CHEMISTRY METABOLISM, CIRCULATION & REGULATION

1. Historical Overview of Vitamin D HECTOR F. DELUCA

Discovery of the Vitamins	
Discovery of the Physiological Functions of Vitamin D	
Discovery of the Hormonal Form of Vitamin D	
Acknowledgment	
References	

2. Evolutionary Biology: Mysteries of Vitamin D in Fish DAVID R. FRASER

Biological Distribution of Vitamin D	14
Evolutionary Origins of Vitamin D	14
Evolution of Vitamin D Function	16
Origin of Vitamin D in Fish	16
Functional Metabolism of Vitamin D in Fish	19
A Possible Role for Sunlight in the Origin of Vitamin D in Fish	19
Vitamin D Function in Fish	21
Transport of Vitamin D and Its Metabolites	23
Vitamin D Toxicity From Oral Ingestion	23
References	24

3. Evolution of Human Skin Color and Vitamin D NINA G. JABLONSKI

Introduction	30
The Solar Context of Human Skin Color Evolution	30
The Nature of the Selective Factors Leading to the Evolution	
of Skin Pigmentation in Early Homo	31
Folate Conservation and the Evolution of Permanent Protective	
Pigmentation	32
Early Hominin Dispersal Out of the Tropics and Vitamin D	
Production	32

The Evolution of Skin Pigmentation in Homo sapiens	36
The Effects of Cultural Buffering, Rapid Migrations, and Modern	
Lifestyles on Skin Color and Vitamin D	38
References	40
Further Reading	44

4. Photobiology of Vitamin D

MICHAEL F. HOLICK

Introduction Historical Perspective Photobiology of Vitamin D	45 45 46
Role of Sunlight and Dietary Vitamin D in Bone Health, Overall Health, and Well-being	50
Sunlight, Vitamin D, and Skin Cancer	51
Conclusions	52
References	53
Further Reading	55

5. The Activating Enzymes of Vitamin D Metabolism (25- and 1α-Hydroxylases)

GLENVILLE JONES, DAVID E. PROSSER AND MARTIN KAUFMANN

Introduction	57
General Information Regarding Vitamin D Hydroxylases	59
Vitamin D ₃ -25-Hydroxylases	59
25-Hydroxyvitamin D-1α-hydroxylase	66
Additional Topics	70
References	74

6. CYP24A1: Structure, Function, and Physiological Role

RENÉ ST-ARNAUD AND GLENVILLE JONES

	Introduction	81
,	CYP24A1-Catalyzed Pathways	82
;	C24-Oxidation Pathway	82
ł	C23-Hydroxylation Pathway	83
	CYP24A1, a Multifunctional Enzyme	83
	Biological Relevance of the C24-Oxidation Pathway	84
	Structure–Function Relationships	84
	Mutations of CYP24A1 and Idiopathic Infantile	
)	Hypercalcemia	85
)	Preclinical Models of Idiopathic Infantile Hypercalcemia	87
	Putative CYP24A1 Involvement in Other Systems	87
	CYP24A1 in Chronic Kidney Disease	87
	Role of 24,25(OH) ₂ D in Chondrocyte Maturation	88
2	24,25(OH) ₂ D and Fracture Repair	88
	Perspectives	90
2	References	91

7. The Vitamin D-Binding Protein

ROGER BOUILLON AND STEVEN PAUWELS

Summary	97
Introduction	98
Vitamin D-Binding Protein: Gene and Protein Structure	99
Functions of Vitamin D-Binding Protein	102
The Vitamin D-Binding Protein–Actin Complex	107
Conclusions and Perspectives	109
References	110

8. Regulation of Renal and Extrarenal 1 α -Hydroxylase dean P. Larner, John S. Adams and Martin Hewison

Introduction	117
Renal 1α-Hydroxylase	118
Extrarenal Expression of 1α-Hydroxylase	121
Conclusions and Future Prospects	129
References	130

Π

MECHANISM OF ACTION

9. Genome-Wide Perspectives on Vitamin D Receptor–Mediated Control of Gene Expression in Target Cells

J. WESLEY PIKE, MARK B. MEYER, SEONG M. LEE, MELDA ONAL AND NANCY A. BENKUSKY

Introduction	142
The Biology of Vitamin D	142
The Metabolic Activation of Vitamin D	144
Overview of the Vitamin D Receptor: The Protein, Its	
Structure, and Function	146
Recent Advances in the Mechanisms of Action of Vitamin D	149
Advances in Understanding the Regulation of the Vitamin D	
Receptor Gene	159
Exploiting Humanized VDR Transgenic Mice to Understand	
Expression, Regulation, and VDR Protein Function In Vivo	163
Establishing a Humanized Mouse Model for the Study of	
Human Disease	165
Summary and Conclusions	167
Acknowledgments	167
References	167

10. Diverse Mechanisms of Transcriptional Regulation by the Vitamin D Receptor

JOHN H. WHITE, REYHANEH SALEHI-TABAR, VASSIL DIMITROV AND MANUELLA BOUTTIER

Introduction

Interplay Between Transforming Growth Factor β and Vitamin D	
Receptor Signaling	176
The Vitamin D Receptor and Transcription Factor Activator	
Protein-1	177
Interplay Between VDR and JAK/STAT Signaling in Immunity	177

Regulation of Wnt Signaling by the Vitamin D Receptor: A	
Molecular Basis for Cancer Prevention	177
Control of FoxO Protein Function by the Vitamin D Receptor	179
Regulation of the c-MYC/MXD1 Network by the	
Hormone-Bound Vitamin D Receptor	180
Multiple Mechanisms of Regulation of NF-KB Signaling by the	
Hormone-Bound Vitamin D Receptor	182
Insights Into Transcriptional Regulation by the Vitamin D	
Receptor from Genomics Studies	183
Conclusions	183
References	183
11. Structural Basis for Ligand Activity in	
Vitamin D Receptor	
ANNA Y. BELORUSOVA AND NATACHA ROCHEL	
Introduction	189
1 α ,25-Dihydroxyvitamin D ₃ Recognition by Vitamin D	
Receptor	191
Natural Metabolites	193
Other Vitamin D Receptor Natural Ligands	194
Secosteroidal Analogs of 1a,25-Dihydroxyvitamin D ₃	195
Structures of Vitamin D Receptor With Analogs That	
Induce Structural Rearrangements	200
Synthetic Mimics of 1 α ,25-Dihydroxyvitamin D ₃	203
Conclusions and Perspectives	205
Acknowledgments	205
References	206
12 Lizzand Indonesi dont Actions of Vitamin D	

12. Ligand-Independent Actions of Vitamin D Receptor

GILLES LAVERNY AND DANIEL METZGER

The Vitamin D Receptor	211
Skeletal Defects Induced by Impaired Vitamin D Receptor	
Signaling	211
Ligand-Independent Role of Vitamin D Receptor in Hair Cycle	212
Unliganded Vitamin D Receptor Repressive Activities Induce	
Severe Skeletal Defects	212
Toward Improved Diagnosis and Treatments of Hereditary	
Vitamin D Resistant Rickets Patients	213
Conclusion and Perspectives	214
Acknowledgments	215
References	215

13. Vitamin D and Chromatin

CARSTEN CARLBERG

Introduction	217
The Nuclear Receptor Superfamily Member Vitamin D Receptor	218
Genome-Wide Location of Vitamin D Receptor-Binding Sites	219
CTCF as Organizer of Vitamin D-Dependent Chromatin Domains	220
The Impact of Epigenomics	220
Vitamin D-Triggered Epigenome Changes	221
A Chromatin Model of Vitamin D Signaling Emerges	222
Vitamin D Signaling In Vivo	222
Conclusion	223
Acknowledgments	224
References	224

175

14.	Mesenchymal Differentiation, Epigenetic
	Dynamics, and Interactions With VDR

MARK B. MEYER, NANCY A. BENKUSKY AND J. WESLEY PIKE

Genetic Control of Mesenchymal Lineage Cells
Epigenetic Fate Determination
Osteoblast Enhancer Complex: Consolidated and Dispersed
Dynamics of Transdifferentiation
Conclusions
Conflict of Interest
References

15. Vitamin D and MicroRNAs

HENGGUANG ZHAO, SRI RAMULU N. PULLAGURA, SANDRA RIEGER AND THOMAS S. LISSE

Introduction	245
MicroRNAs: The Posttranscriptional Age	247
Complexity of MicroRNA Regulation, Biogenesis, and	
Posttranscriptional Regulatory Actions	247
Nuclear Receptors and MicroRNAs	250
Duality Among MicroRNAs and the Vitamin D Synthesis,	
Metabolism, and Signaling Systems	250
Interplay Between Vitamin D and MicroRNAs in Biological	
Systems	255
Strategies for MicroRNA and Target Identification for	
Vitamin D Research	260
Concluding Remarks	261
Acknowledgments	262
References	262

Vitamin D Sterol/Vitamin D Receptor Conformational Dynamics and Nongenomic Actions MATHEW T. MIZWICKI AND ANTHONY W. NORMAN

Introduction	269
1α ,25(OH) ₂ Vitamin D ₃ Regulation of Genomic Versus	
Nongenomic Signaling	270
Vitamin D ₃ Sterol Chemistry	271
1,25(OH) ₂ D ₃ -Mediated Rapid, Nongenomic Responses	275
The Plasma Membrane Vitamin D Receptor	280
The Vitamin D Receptor Conformational Ensemble Model	281
Vitamin D Receptor Ligand Specificity: Does an Unliganded	
Vitamin D Receptor Ever Exist In Vivo?	286
References	287

III

MINERAL AND BONE HOMEOSTASIS

17. Vitamin D Regulation of Osteoblast Function

JEROEN VAN DE PEPPEL, RENNY T. FRANCESCHI, YAN LI AND BRAM C.J. VAN DER EERDEN

Introduction	295
Properties of Mature Osteoblasts and Osteocytes	295

Wajor regulatory runctions of esteoblasts and esteocytes and	
Control by the Vitamin D Endocrine System	297
Effects of $1,25(OH)_2D_3$ on Osteoblast Differentiation	300
Regulation of Intracellular Signaling Pathways by 1,25(OH) ₂ D ₃	302
Summary and Conclusions	303
References	304
18. Osteoclastogenesis and Vitamin D	
YUKO NAKAMICHI, NAOYUKI TAKAHASHI, NOBUYUKI UDAGAWA	
AND TATSUO SUDA	
Introduction	309
Regulation of Mineral Metabolism by Vitamin D, Parathyroid	
Hormone, and Fibroblast Growth Factor 23	310
Phenotypes of Vitamin D Receptor Knockout Mice	311
Regulation of Osteoclastogenesis by the Receptor Activator of	
Nuclear Factor-KB Ligand/Receptor Activator of Nuclear	
Factor-кB/Osteoprotegerin System	312
In Vitro Regulation of Osteoclastogenesis by Vitamin D	312
In Vivo Regulation of Osteoclastogenesis by Vitamin D	
Compounds	313
Conclusion	315
References	316

Major Regulatory Functions of Osteoblasts and Osteocytes and

19. Vitamin D Activities in Osteocytes

PAUL H. ANDERSON, GERALD J. ATKINS, HOWARD A. N	AORRIS AND
DAVID M. FINDLAY	

Introduction	319
Cell Biology of Osteocytes	320
Direct Actions of 1,25-Dihydroxyvitamin D on Osteocyte	
Maturation and Activities	321
Receptor Activator of Nuclear Factor κ B Ligand	321
Vitamin D Metabolism Within Osteocytes	323
The Role of Osteocytes and Vitamin D in Bone Turnover	323
The Role of Vitamin D and Osteocytes in Endocrine	
Feedback	324
Conclusions	324
References	325

20. Regulation of Intestinal Calcium and Phosphate Absorption

JAMES C. FLEET

An Overview of Intestinal Calcium Absorption	329
An Overview of Intestinal Phosphate Absorption	336
References	338

21. Calbindin- $D_{\rm 28K}$ and Calbindin- $D_{\rm 9K}$ and the Epithelial Calcium Channels TRPV5 and TRPV6

SYLVIA CHRISTAKOS, LEILA J. MADY AND PUNEET DHAWAN

Introduction and General Considerations, the Calbindins	343
Localization and Proposed Functional Significance of the	
Calbindins	345
Regulation of Calbindin Gene Expression	349
Epithelial Calcium Channels	351
Conclusion	353
References	354

22. Calcium Homeostasis and Eggshell Biomineralization in Female Chicken YVES NYS AND NATHALIE LE ROY	
Introduction Mineralization Associated With Laying Hen Reproduction Transepithelial Transfer of Calcium Regulation of Calcium Metabolism in Hens Acknowledgments References	361 362 364 369 378 378
23. Mineralization in Mammals Adele L. Boskey	
Introduction Direct and Indirect Effects of Vitamin D and Vitamin D Metabolites on Mineralization Methods for Quantifying Tissue Mineralization Mechanism of Effects of Vitamin D on Mineralization Mineralization and Mineral Properties in Systems With Vitamin D Alterations	383 384 387 391 394
Conclusions Acknowledgments References Further Reading	397 398 398 403
24. Cartilage BARBARA D. BOYAN, MARYAM DOROUDI, KAYLA SCOTT AND ZVI SCHWA	ARTZ
Properties of Cartilage Tissues Regulation by Vitamin D Rapid Actions of Vitamin D and Nongenomic Mechanisms Summary References	405 406 410 414 414
25. Vitamin D and Bone: An Integrated Approach GEERT CARMELIET	
Link Between Bone Metabolism, Calcium Homeostasis, and 1,25(OH) ₂ D ₃ Activity 1,25(OH) ₂ D ₃ and Bone Metabolism During a Positive	419
Calcium Balance Negative Calcium Balance Resulting From Insufficient	420

Negative Calcium Balance Resulting From Insufficient
Vitamin D Action
Negative Calcium Balance With Sufficient Vitamin D
Vitamin D and Fibroblast Growth Factor 23
Conclusion
References

IV

EXTRA-SKELETAL TARGETS

26. Vitamin D and the Kidney

PETER J. TEBBEN AND RAJIV KUMAR

Introduction	437
Role of the Kidney in the Metabolism of 25-Hydroxyvitamin D	439

Effects of Vitamin D, 25(OH)D ₃ and 1α,25(OH) ₂ D ₃ on the Renal Handling of Calcium and Phosphorus Distribution and Regulation of Vitamin D-Dependent Proteins in the Kidney Conclusion References	441 442 450 450
27. Vitamin D and the Parathyroids	
JUSTIN SILVER AND TALLY NAVEH-MANY	
Introduction	461
Parathyroid Hormone Biosynthesis	462
The Parathyroid Hormone Gene	462
Development of the Parathyroid and Tissue-Specific	
Expression of the Parathyroid Hormone Gene	463
Regulation of Parathyroid Hormone Gene Expression	463
Summary References	470 471
Kererences	4/1
28. The Calcium-Sensing Receptor and Vitamin D GEOFFREY N. HENDY	
Introduction	477
The Calcium-Sensing Receptor	478
Overview of Extracellular Ca ²⁺ Homeostasis: Roles of	
Calcium-Sensing Receptor and Vitamin D Receptor	481
Calcium-Sensing Receptor and Vitamin D Receptor in Tissues	
Involved in Ca ²⁺ Homeostasis	482
Calcium-Sensing Receptor and Vitamin D Receptor in Tissues	
Uninvolved in Extracellular Ca ²⁺ Homeostasis	489
Mouse Models of Calcium-Sensing Receptor Deletion	100
Relative to Presentation in Humans	490
Conclusions References	490
References	490

29. Vitamin D in Dentoalveolar and Oral Health BRIAN L. FOSTER AND PHILIPPE P. HUJOEL

Introduction	497
A Brief Primer on Dentoalveolar Cells and Tissues	498
Vitamin D Metabolism and Mechanisms of Action on	
Dental Cells	501
Vitamin D, Rickets, and the Oral Tissues	503
Hereditary Vitamin D-Related Diseases and Dentoalveolar	
Tissues	506
Vitamin D and Oral Health	511
Conclusions	513
Acknowledgments	513
References	513

30. The Role of Vitamin D and Its Receptor in Hair Follicle Biology

MARIE B. DEMAY

Introduction	521
Hair Cycle	521
Keratinocyte Stem Cells	523
Pathways Important for Keratinocyte Stem Cell	
Function	523

524

524

525

545 546

546

547

548

The Vitamin D Receptor Suppresses PPARy Signaling in	
Keratinocyte Stem Cells	
Conclusions	
References	

31. Vitamin D, Calcium, and the Epidermis DANIEL D. BIKLE

Introduction	527
Cutaneous Production of Vitamin D and Its Biologically	
Active Metabolites	528
Regulation of Keratinocyte Differentiation	529
Role of Vitamin D Signaling in Skin Cancer	537
Role of Vitamin D Signaling in Epidermal Wound Repair	538
References	539

32. Vitamin D and the Cardiovascular System

AMY E. RIEK, RITHWICK RAJAGOPAL AND CARLOS BERNAL-MIZRACHI

Introduction
Vascular Physiology
Identification of the Vitamin D Receptor in the Vascular System
Vascular Relaxation
Structural Vascular Changes
Vascular Inflammation
Angiogenesis
Blood Coagulation and Fibrinolysis
Animal Models
Clinical Studies in Cardiovascular Disease
Conclusion
Acknowledgments
References

33. Vitamin D Brain Development and Function

DARRYL EYLES AND JOHN J. MCGRATH

Introduction	564
Vitamin D Signaling in the Brain	564
Dietary Vitamin D Deficiency, Effect on Brain Development	
and Function	567
The Effects of Excess Vitamin D on Brain Development and	
Function	571
Vitamin D Regulates Essential Processes in Normal Brain	
Development	572
Possible Neuroprotective Mechanisms of Vitamin D in the	
Developing Brain	573
Developmental Vitamin D Deficiency and Neuropsychiatric	
Disorders	574
Conclusions	575
References	576
34. Vitamin D, Vitamin D Receptor, and Adipose	
Tissue: Focus on Cellular Mechanisms	
CARMEN J. NARVAEZ, DONALD G. MATTHEWS AND JOELLEN WELSH	

Adipose Tissue: Storage Depot and Target for Vitamin D Effect of Vitamin D on Adipogenesis at the Cellular Level

Impact of Vitamin D Signaling on Adiposity in Mouse Models

Translational Considerations Conclusions and Future Directions References	592 593 593
35. Vitamin D and Skeletal Muscle CHRISTIAN M. GIRGIS	
Skeletal Muscle Physiology	597
Vitamin D Receptor in Muscle	598
Vitamin D and Calcium Signaling in Muscle	601

Vitamin D and Calcium Signaling in Muscle	601
Vitamin D and Phosphate Signaling in Muscle	602
Vitamin D and Insulin Signaling in Muscle	602
Vitamin D, Muscle Contraction, and Strength	603
Vitamin D, Muscle Development, and Mass	604
Vitamin D, Muscle Injury, and Repair	606
Vitamin D and Age-Related Changes in Muscle	606
Vitamin D and Bone Muscle Cross-Talk	607
Conclusions and Future Directions	607
References	609

36. Understanding Vitamin D From Mouse Knockout Models

DAVID GOLTZMAN, GEOFFREY N. HENDY, ANDREW C. KARAPLIS, RICHARD KREMER AND DENSHUN MIAO

Vitamin D Metabolism	614
1,25 Dihydroxyvitamin D/Vitamin D Receptor System	
and Mineral and Skeletal Homeostasis	614
Extraskeletal Actions of 1,25 dihydroxyvitamin D	619
Conclusion	625
References	625
Further Reading	631

V

HUMAN PHYSIOLOGY

37. Pharmacology and Pharmacokinetics

INEZ SCHOENMAKERS AND KERRY S. JONES

571	Overview Vitamin D Absorption	636 636
572	Kinetics of Cutaneous Synthesis Tissue Distribution	638 639
573	Metabolism and Determinants of Metabolic Fate of Vitamin D	641
574	Half-Lives of Vitamin D Metabolites Factors Influencing Vitamin D Half-Life	642 644
575 576	The Pharmacokinetics of Bound and Free Vitamin D Metabolites	646
510	Influence of Vitamin D-Binding Protein Genotype and Concentration on Vitamin D Metabolism and 25(OH)D	
	Half-Life	647
	Dose-Response to Vitamin D Supplementation	648
	The 3-Epimer of 25(OH)D and $1,25(OH)_2D$	652
	Catabolism and Excretion	652
583	Vitamin D Toxicity	653
585	Acknowledgments	653
590	References	653

693 698 699

38.	Vitamin D Role in the Calcium a	and
	Phosphorus Economies	

ROBERT P. HEANEY AND LAURA A. GRAEFF-ARMAS

Introduction	663
Overview of the Calcium Economy	663
Overview of the Phosphorus Economy	668
Calcium and Phosphorus Absorptive Inputs	669
Physiological Sources of Vitamin D Activity	674
Optimal Vitamin D Status	675
Summary and Conclusions	676
References	676
39. Fetus, Neonate, and Infant	

CHRISTOPHER S. KOVACS

Overview of Calcium Metabolism in the Fetus
Animal Data Relevant to Vitamin D and the Fetus
Human Data Relevant to Vitamin D and the Fetus
Overview of Calcium Metabolism in the Neonate and Infant
Animal Data Relevant to Vitamin D and the Neonate and Infant
Human Data Relevant to Vitamin D and the Neonate and
Infant
Conclusions
References

40. Consequences of Perinatal Vitamin D Deficiency on Later Bone Health

CYRUS COOPER, ELIZABETH M. CURTIS, REBECCA J. MOON, ELAINE M. DENNISON AND NICHOLAS C. HARVEY

Introduction	709
Vitamin D Physiology and Epidemiology in Pregnancy	709
The Lifecourse Determinants of Osteoporosis	710
Maternal Vitamin D Supplementation During Pregnancy	
and Offspring Bone Health	717
Maternal Vitamin D Supplementation During Pregnancy	
and Offspring Bone Health: The MAVIDOS Trial	721
Conclusion	724
Acknowledgment	725
References	725
41. Adolescence and Acquisition of Peak	
Bone Mass	
RICHARD LEWIS, EMMA LAING AND CONNIE WEAVER	
Introduction	731
Pubertal Bone Acquisition	732
Sex and Race Differences	734
Serum 25(OH)D in Children and Adolescents	736
Vitamin D and Intermediate Endpoints of Vitamin D and	
Bone Metabolism	740
Vitamin D and Other Predictors of Calcium Retention	743
Vitamin D and Bone	743
Vitamin D and Muscle	747

- Summary and Conclusions
- References

42. Pregnancy, Lactation, and Postweaning Recovery CHRISTOPHER S. KOVACS

Introduction

Introduction	755
	755
Overview of Mineral Physiology During Pregnancy	759
Animal Data Relevant to Vitamin D and Pregnancy	759
Human Data Relevant to Vitamin D and Pregnancy	701
Overview of Mineral Physiology During Lactation and	762
Postweaning Recovery	763
Animal Data Relevant to Vitamin D, Lactation, and	770
Postweaning Recovery	110
Human Data Relevant to Vitamin D, Lactation, and	771
Postweaning Recovery Conclusions	771
References	773
Kererences	773
43. Role in Reproductive Biology and	
Reproductive Dysfunction in Women	
LUBNA PAL AND HUGH S. TAYLOR	
Introduction	783
Procreative Relevance of Vitamin D—Animal Models	785
Therapeutic Relevance of Vitamin D—Data From	101
Experimental Animal Models of Human Gynecological	
Disorders	784
Vitamin D—Relevance in Human Female Reproductive	101
Physiology	785
Vitamin D—Relevance in Female Reproductive Disorders	785
Polycystic Ovary Syndrome	785
Premenstrual Syndrome	785
Menstrual Pain (Dysmenorrhea)	788
Endometriosis	788
Uterine Leiomyomas (Fibroids)	780 789
Vitamin D and Female Infertility	789
Concluding Remarks	709
References	• * =
Keterences	792

44. Vitamin D, Reproductive Biology, and

Dysfunction in Men

IDA M. BOISEN, LASSE BØLLEHUUS HANSEN, LI J. MORTENSEN AND MARTIN BLOMBERG JENSEN

Introduction	797
Vitamin D and Leydig Cell Function	800
Vitamin D and Sex Steroids	803
Vitamin D and Sertoli Cell Function	805
Vitamin D and Germ Cell Function	806
VDR, Activation and Inactivation of Vitamin D in	
Human Sperm	807
Vitamin D and Sperm Function	808
Vitamin D, Epididymis, Prostate, and Seminal Vesicle	811
Vitamin D and Reproductive Hormones	812
Vitamin D, Semen Quality, and Fertility: Functional	
Models	813
Vitamin D, Semen Quality, and Fertility: Human Studies	816
Testicular Germ Cell Tumors	818
Concluding Remarks and Future Perspectives	819
References	820

748

748

45. Vitamin D and the Renin-Angiotensin System	
Introduction The Renin-Angiotensin System Vitamin D Regulation of the Renin-Angiotensin System Vitamin D and the Renin-Angiotensin System in Disease Conclusion References	825 826 829 833 840 840
46. Parathyroid Hormone, Parathyroid Hormone–Related Protein, and Calcitonin JOHN J. WYSOLMERSKI	
Parathyroid Hormone Parathyroid Hormone–Related Protein Calcitonin References	849 856 861 864
47. FGF23 Counter-Regulatory Hormone for Vitamin D Actions on Mineral Metabolism, Hemodynamics, and Innate ImmunityL DARRYL QUARLES	
Introduction Parathyroid Hormone–Vitamin D Axis: Key Regulator of	871
Calcium Homeostasis	872
Fibroblast Growth Factor-23/α-Klotho	872

Fibroblast Growth Factor-23 Endocrine Networks	873
Noncanonical α -Klotho and Fibroblast Growth Factor-23 Signaling	876
Conclusions	879
References	879

VI

DIAGNOSIS AND MANAGEMENT

48. Approach to the Patient With Metabolic Bone Disease ${\mbox{\sc michael P. whyte}}$

Introduction	887
Diagnostic Evaluation	888
Biochemical Investigation	897
Histopathological Assessment	898
Treatment	900
Conclusions	901
Acknowledgments	902
References	902

49. Detection of 1,25-Dihydroxyvitamin D in Human Serum Using Receptor Assisted Chemiluminescent Hormone Assay Technology

FABRIZIO BONELLI AND BRUCE W. HOLLIS

Introduction	903
Methodology	904

Identification of the DNA Consensus Sequence of the	
Immunoglobulin G VH and VL Gene, Expressed by	
Hybridoma Clone 11B4	905
Preparation of the Assay Reagents	905
Assay Format and Performance	905
Discussion	906
References	907

50. Mass Spectrometry Assays of Vitamin D Metabolites Martin Kaufmann, Lusia sepiashvili and ravinder J. Singh

Introduction	909
Approaches and Utility of Vitamin D Metabolite	
Measurements in the Clinical Laboratory Setting	910
Overview of Methodology for Analysis of Circulating	
Vitamin D Metabolites by LC-MS/MS	912
Application of LC-MS/MS to the Study of Vitamin D	
Metabolism in Animal Models	917
Future Directions	920
References	920

51. Free Vitamin D: Concepts, Assays, Outcomes, and Prospects

RENE F. CHUN AND CARRIE M. NIELSON

Introduction	925
Metabolism	926
Transportation and Internalization: Free Hormone	
Hypothesis and Bioavailable Ligand	926
Vitamin D-Binding Protein Genotype	928
Free Vitamin D: Mathematical Estimation	928
Free Vitamin D: Direct Physical Measurement	929
Potential Utility of Free 25(OH)D for Clinical- and	
Population-Based Detection of Vitamin D Deficiency	930
Conclusions and Knowledge Gaps	933
References	933

52. 25-Hydroxyvitamin D Assays: Standardization Guidelines, Problems, and Interpretation

CHRISTOPHER T. SEMPOS, GRAHAM D. CARTER AND NEIL C. BINKLEY

Introduction	939
Vitamin D Standardization Program Objectives	940
Standardization and Traceability	941
Vitamin D Standardization Program Standardization	
Protocols	942
Performance Testing/Quality Assessment of Assays for	
Vitamin D Metabolites	950
Vitamin D Standardization Program Efforts Going Into the	
Future	955
Summary and Conclusions	955
References	956

53. Bone Histomorphometry

JULIET COMPSTON, LINDA SKINGLE AND DAVID W. DEMPSTER

3	Introduction	960
4	Bone Biopsy	960

57 A

T1

 $I \cap V = 1$

.

Histomorphometry	961
Assessment of Mineralization	963
Histological Diagnosis of Osteomalacia	964
Assessment of Bone Turnover	966
Assessment of Remodeling Balance	967
Assessment of Bone Structure	969
Influence of Vitamin D Status on Bone Histomorphometry	969
Future Developments	970
References	971

54. Radiology of Rickets and Osteomalacia

JUDITH	E.	ADAMS

Introduction and Historical Aspects	975
Vitamin D Deficiency	976
Renal Osteodystrophy	981
Renal Tubular Defects and Hypophosphatemia	987
Differential Diagnoses	993
Vitamin D Intoxication	997
Conclusions	1001
References	1001

55. High-Resolution Imaging Techniques for Bone Quality Assessment

ANDREW J. BURGHARDT, ROLAND KRUG AND SHARMILA MAJUMDAR

Introduction	1007
X-ray Computed Tomography	1008
Magnetic Resonance Imaging	1021
References	1031
References	1031

56. The Role of Vitamin D in Orthopedic Surgery

AASIS UNNANUNTANA, ALEKSEY DVORZHINSKIY, BRIAN J. REBOLLEDO, SHEVAUN M. DOYLE, PANAGIOTA ANDREOPOULOU AND JOSEPH M. LANE

Introduction	1043
Impact on Orthopedic Trauma	1044
Impact on Pediatric Orthopedics	1048
Impact on Total Joint Arthroplasty	1050
References	1054

Introduction to Chapters 57A and 57B References

Index for Volume 1	1109
References	1105
Section VIII. Conclusion	1104
Risk of Preterm Birth	1103
Section VII. New Evidence That Vitamin D Lowers	1103
Section VI. Emerging Benefits of Higher Vitamin D: Life Expectancy	1103
Clinical Trials	1101
Versus the Findings of Double-Blind, Randomized	
Section IV. Extraskeletal Effects of Vitamin D Section V. Extraskeletal Effects: Cross-Sectional Observations	1101
and Epidemiology U-Shaped Risk Findings	1098
Section III. Toxicity and Perceptions of Risk of Higher Vitamin D Intakes: Higher-Dose Clinical Trials	
Society Values Differ in Terms of Bone Health	1094
and Endocrine Society Section II. Scientific Basis for Why IOM Versus Endocrine	1092
Section I. Defining the Disagreement Between IOM	1092
REINHOLD VIETH AND MICHAEL F. HOLICK	
Recommended Vitamin D Targets: In Support of the Endocrine Society Position	
57B. The IOM—Endocrine Society Controversy or	
References	1082
Highlights	1082
Vitamin D Status Summary of Recommendations	1079 1081
Vitamin D and Human Health: What is the Optimal	1070
Supplementation	1079
Lessons From Recently Updated Guidelines on Vitamin D	1072
Vitamin D Status and Bone Health in Adults and the Elderly Vitamin D and Extraskeletal Health	1067 1072
Introduction	1065
ROGER BOUILLON AND CLIFF ROSEN	
In Support of the IOM Position	
on Recommended Vitamin D Targets:	
JA. The IOM-Endocrine Society Controversy	

xii

1063

3

4

7 9 12

13

VOLUME II

VII

POPULATION STUDIES: VITAMIN D DEFICIENCY, NUTRITION, SUNLIGHT, GENES & TRIALS

58. Methods of Evaluating Population Studies of Vitamin D: Strengths and Weaknesses EDWARD GIOVANNUCCI Introduction Methods of Assessing Vitamin D Status $Cl_{n}11$

Main Challenges in the Epidemiologic Study of Vitamin D and
Disease
Summary of Study Designs of Vitamin D
Conclusions

References

59. Worldwide Vitamin D Status

NATASJA VAN SCHOOR AND PAUL LIPS

Introduction	15
Vitamin D Status in North America (Including Canada	
and Mexico)	16
Vitamin D Status in South America	21
Vitamin D Status in Europe	21
Vitamin D Status in Middle East	21
Vitamin D Status in Asia	21
Vitamin D Status in Africa	21
Vitamin D Status in Oceania	26
Multicenter and Global Studies Using a Central	
Laboratory Facility	26
Ethnicity/Migration	34
Nutrition	34
Risk Groups	34
Implications	34
Conclusions	35
References	35

60. Vitamin D in Foods: An Evolution of Knowledge

JANET M. ROSELAND, KATHERINE M. PHILLIPS, KRISTINE Y. PATTERSON, PAMELA R. PEHRSSON AND CHRISTINE L. TAYLOR

Introduction
Challenges in Assessing the Vitamin D Content of Foods
Methods of Analysis for Vitamin D in Foods
Food Composition Data
Implications and Future Directions
Appendix A
References

61.	Determinants of Vitamin D Deficiency	From	Sun
	Exposure: A Global Perspective		

WILLIAM B. GRANT, HARJIT P. BHATTOA AND PAWEL PLUDOWSKI

Background	79
Factors Affecting 25-Hydroxyvitamin D Concentrations	80
Predicting Vitamin D Deficiency	86
Conclusion	86
References	86

62. Vitamin D Fortification and Supplementation Policies to Correct Vitamin D Insufficiency/ **Deficiency** Globally

SUSAN J. WHITING AND MONA S. CALVO

Introduction	91
Recommendations for Vitamin D Status	94
Strategies to Improve Nutrient Intakes	99
Public Health Measures for Reducing D Deficiency	104
Summary	106
References	106

63. Vitamin D and Food Fortification

KEVIN D. CASHMAN AND MAIREAD KIELY

Introduction	109
Current Intakes of Vitamin D in Young and Adult Populations	
in North America and Europe and How These Compare	
Against Dietary Targets?	112
Dietary Strategies for Increasing Vitamin D Intake: Bridging	
the Gap By Food Fortification	112
Consideration of Other Vitamin D-Fortified Foods	120
Vitamin D-Biofortified Foods	121
Safety Considerations and Prerequisite Data Required Prior to	
Initiating Public Health Measures	123
Concluding Remarks	124
References	125

64. Bariatric Surgery, Vitamin D, and Bone Loss

TIFFANY Y, KIM AND ANNE L. SCHAFER

Introduction	129
Skeletal Effects of Bariatric Surgery	131
Potential Mechanisms of Bone Loss	134
Prevention and Treatment of Skeletal Effects	143
Acknowledgments	145
References	145

65. Genetics of the Vitamin D Endocrine System ANDRÉ G. UITTERLINDEN

151
153
157
162
162
162

66. Randomized Clinical Trials of Vitamin D for the Primary Prevention of Cancer and Cardiovascular Disease With a Focus on the VITamin D and OmegA-3 TriaL (VITAL)

SHARI S. BASSUK AND JOANN E. MANSON

Introduction	167
Vitamin D and Omega-3 Trial Study Design	168
Baseline Characteristics of VITAL Participants	170
Other Ongoing and Recently Completed Large and Midsized	
Trials of Vitamin D	173
Conclusion	174
Acknowledgments	174
References	175

VIII

DISORDERS

67. Vitamin D Deficiency and Nutritional Rickets in Children

JOHN M. PETTIFOR, KEBASHNI THANDRAYEN AND THOMAS D. THACHER

Introduction	179
Historical Perspective	179
The Epidemiology of Vitamin D Deficiency and	
Nutritional Rickets	180
Clinical Presentation	182
Biochemical Abnormalities	184
Radiologic Changes	185
The Growth Plate in Rickets	186
Treatment and Prevention	187
Dietary Calcium Deficiency	190
The Pathogenetic Spectrum of Nutritional Rickets	192
Conclusions	193
References	194

68. Vitamin D and Osteoporosis

PETER R. EBELING AND JOHN A. EISMAN

Effects of Vitamin D on the Skeleton
The Role of Vitamin D Genetic Factors in Osteoporosis
and Possible Interactions With Vitamin D Therapy
Determining Optimal Serum 25 Hydroxyvitamin D
Concentrations for Musculoskeletal Health
Effects of Vitamin D Alone or Calcium and Vitamin D on
Bone Mineral Density
Primary Fracture Prevention With Vitamin D or Calcium and
Vitamin D
Effect of Vitamin D Alone on Fractures
Single High Annual or Monthly Doses of Vitamin D
Primary Fracture Prevention With Calcium and
Vitamin D
Metaanalyses
Safety
Secondary Fracture Prevention With Vitamin D or Calcium
and Vitamin D
Effects of Active Vitamin D Analogs on Fractures

The Anabolic Vitamin D Analogs, 2MD	215
The Vitamin D Analogs, Eldecalcitol	215
Ongoing Large Randomized Controlled Trials of Vitamin D	
Supplementation	216
Future Directions for Vitamin D in Osteoporosis	216
References	216

69. Adult Vitamin D Deficiency: Fracture and Fall Prevention

BESS DAWSON-HUGHES AND HEIKE A. BISCHOFF-FERRARI

Vitamin D: Muscle and Balance	221
Vitamin D and Falls	222
Vitamin D: Bone Mineral Density and Fracture Risk	224
Trials Testing Higher Doses of Vitamin D Given at Infrequent	
Intervals	225
Conclusions	226
References	226

70. Clinical Disorders of Phosphate Homeostasis EVA S. LIU AND HARALD JÜPPNER

Phosphate Homeostasis	229
Regulation of Phosphate Homeostasis	230
Phosphate and Vitamin D Metabolism	231
Clinical Symptoms of Hypophosphatemia and	
Hyperphosphatemia	231
Disorders of Phosphate Homeostasis	232
Genetic Hypophosphatemic Disorders With Low Fibroblast	
Growth Factor 23 Levels	239
Acquired Hypophosphatemic Disorders With Elevated	
Fibroblast Growth Factor 23 Levels	239
Genetic Hyperphosphosphatemic Disorders	240
Disorders of Altered Phosphate Load	240
References	241

71. Vitamin D Hydroxylation–Deficient Rickets, Type 1A: CYP27B1 Mutations

FRANCIS H. GLORIEUX AND RENÉ ST-ARNAUD

Introduction	249
Clinical Manifestations	250
Biochemical Findings	251
Genetic and Molecular Studies	252
Treatment of VDDR1A	255
Evolution of VDDR1A Under Treatment From Childhood to	
Adulthood	255
Perspective and Conclusions	258
References	260

72. Hereditary 1,25-Dihydroxyvitamin D Resistant Rickets

PETER J. MALLOY, DOV TIOSANO AND DAVID FELDMAN

·		
	Introduction	264
	The Clinical Features of HVDRR	264
Ļ	Mechanism of 1,25(OH) ₂ D Action	270
	Cellular Basis of HVDRR	272

204

205

207

207

209 209

210

211

212 213

214 215

Molecular Basis for HVDRR	278
Therapy of HVDRR	289
Alopecia	292
Concluding Remarks	293
References	294

73. The Role of Genetic Variation in CYP2R1, the Principal Vitamin D 25-Hydroxylase, in Vitamin D Homeostasis

JEFFREY D. ROIZEN AND MICHAEL A. LEVINE

Background	303
CYP2R1 Is the Principal Human Vitamin D 25-Hydroxylase	304
CYP2R1 and Vitamin D-Dependent Rickets	307
In Vitro and In Silico Analyses of CYP2R1 Function	310
Associations Between CYP2R1 Variants and Disease	312
Conclusion and Future Directions	313
References	313

74. Infantile Hypercalcemia and CYP24A1 Mutations

KARL P. SCHLINGMANN AND MARTIN KONRAD

Infantile Hypercalcemia—Differential Diagnosis	317
Idiopathic Infantile Hypercalcemia—Historical Aspects	319
Spectrum of Disease Caused By CYP24A1 Mutations	320
Mutations In CYP24A1—Molecular Genetics	323
Functional Studies of Mutant CYP24A1	324
Measurement of CYP24A1 Activity In Vivo	324
CYP24A1 Mouse Model	325
Additional Defects Leading to an Increased Action of	
Vitamin D	325
Therapeutic Aspects	326
Summary and Conclusions	327
References	328

75. Drug and Hormone Effects on Vitamin D Metabolism

GREGORY R. EMKEY AND SOL EPSTEIN

Introduction	331
Hormone Effects on Vitamin D Metabolism	333
Drug Effects on Vitamin D Metabolism	342
Conclusion	354
References	354

76. Vitamin D and Organ Transplantation

JESSICA M. FURST, EMILY M. STEIN, JESSICA STARR AND ELIZABETH SHANE

Introduction Effects of Vitamin D on Immunity and Graft Rejection Vitamin D Deficiency Prior to Organ Transplant
Vitamin D Deficiency Following Organ Transplant
Treatment of Posttransplant Bone Loss With Vitamin D
and Analogs
Conclusions
References
Further Reading

77. The Role of Vitamin D in Type 2 Diabetes and	
Hypertension	
EDITH ANGELLOTTI AND ANASTASSIOS G. PITTAS	
Epidemiology and Burden of Type 2 Diabetes and Hypertension	388
Biologic Plausibility of an Association Between Vitamin D	
and Type 2 Diabetes and Hypertension	388
Evidence From Human Studies for a Link Between Vitamin D	
and Type 2 Diabetes	391
Evidence From Human Studies for a Link Between Vitamin D	
and Hypertension	406
Summary of Evidence From Human Studies on Type 2 Diabetes	
and Hypertension and Limitations in the Study of	
Vitamin D	410
Optimal Intake of Vitamin D in Relation to Type 2 Diabetes and	
Hypertension	414
Conclusions	415
References	415

78. Vitamin D, Obesity, and the Metabolic Syndrome

ELINA HYPPÖNEN AND BARBARA J. BOUCHER

Introduction	425
Adipose Tissue as a Vitamin D Reserve	426
Obesity and Vitamin D Deficiency	426
Obesity, Vitamin D-Binding Proteins, and "Free" Vitamin D	
Concentrations	428
The Effect of Weight Loss on Serum 25(OH)D	
Concentrations	429
Can Vitamin D Supplementation Prevent, or Reduce, Obesity?	430
Obesity and the Efficacy of Vitamin D Supplementation	431
Brown Adipose Tissue, Obesity, and Vitamin D	433
Obesity, Vitamin D, and Metabolic Syndrome	433
Importance of Early Life D Status for Obesity and Subsequent	
Risks of Metabolic Syndrome, Type 2 Diabetes Mellitus, and	
Cardiovascular Disease	437
Conclusions and Future Directions	439
References	439

79. Vitamin D and Renal Disease

ADRIANA S. DUSSO AND JORGE B. CANNATA-ANDIA

Introduction	445
Renal Maintenance of the Vitamin D Endocrine System	448
Critical Calcitriol/VDR Actions to Improve Parathyroid,	
Skeletal, Renal, and Cardiovascular Outcomes in CKD	456
Acknowledgments	463
References	463

80. Calcitriol and Analogs in the Treatment of Chronic Kidney Disease

377 ISHIR BHAN AND RAVI THADHANI

378Introduction471381Analogs of Vitamin D Used in Chronic Kidney Disease472381Analogs in Animal Models of Uremia472373Chronic Kidney Disease Stages 3–4475

375

375 376

End-Stage Renal Disease	477
Cardiovascular Disease in Chronic Kidney Disease and Different	
Forms of Vitamin D	480
Conclusions	480
References	481

81. Idiopathic Hypercalciuria and Nephrolithiasis MURRAY J. FAVUS, MELTEM ZEYTINOGLU AND FREDRIC L. COE

Introduction to Kidney Stones Idiopathic Hypercalciuria	485 487
Current View of Human Genetic Hypercalciuria	407 498
Therapeutics of Idiopathic Hypercalciuria and Effects on	790
Calcium Metabolism	498
Genetic Hypercalciuric Rats	500
Risk of Stone Formation Using Vitamin D Analogs	502
References	502
Further Reading	505

82. Hypercalcemia Due to Vitamin D Toxicity

NATALIE E. CUSANO, SUSAN THYS-JACOBS AND JOHN P. BILEZIKIAN

Introduction	507
Forms of Exogenous Vitamin D Toxicity	508
Forms of Endogenous Vitamin D Toxicity	511
Clinical Manifestations	517
Summary and Conclusions	519
References	520

83. The Hypocalcemic Disorders

RACHEL I. GAFNI, KARL L. INSOGNA AND THOMAS O. CARPENTER

Physiology	527
Clinical Manifestations of Hypocalcemia	530
Differential Diagnosis of Hypocalcemia	530
Treatment of Hypocalcemia	538
Conclusion	541
Acknowledgments	541
References	541

84. Vitamin D: Cardiovascular Effects and Vascular Calcification

CHRISTOPH ZECHNER AND DWIGHT A. TOWLER

Introduction
Vitamin D Signaling in Myocardial Remodeling and Function
Vitamin D Actions in Atherosclerosis and Arteriosclerosis
Vitamin D and Human Cardiovascular Disease:
Compelling Epidemiology and Physiology, Emerging
but Less Compelling Evidence of Interventional Benefit
Still Persists
Vitamin D Intoxication and Cardiovascular Calcification:
Pharmacological Considerations
The Impact of Calcium, Phosphate, and Vitamin D Excesses on

```
Smooth Muscle Matrix Vesicle Physiology and Vascular
Calcification
```

558
560
561
561
562
563
563

85. Vitamin D and Paget's Disease

NORIYOSHI KURIHARA AND G. DAVID ROODMAN

Introduction	571
Mechanism of Action of 1,25(OH) ₂ D ₃ on Osteoclast	
Formation	572
Increased Levels of TAF12 in Osteoclast Precursors From Paget's	
Disease Patients Contribute to Their Hyperresponsivity to	
$1,25(OH)_2D_3$	572
TAF12 Expression Is Increased in Osteoclasts From Patients	
With Paget's Disease	573
Overexpression of TAF12 Is Sufficient to Induce 1,25(OH) ₂ D ₃	
Hyperresponsivity in Human Osteoclast Precursors	574
Mechanism of Action of TAF12 in the Increased 1,25(OH) ₂ D ₃	
Responsivity of OCL Precursors From PD Patients	576
Marrow Stromal Cells Derived From p62 ^{P394L} Knock-In	
mice and p62 ^{P392L} Paget's Patients Are Hyperresponsive to	
1,25(OH) ₂ D ₃ and Display Enhanced RANKL Production in	
Response to $1,25(OH)_2D_3$	576
Serum Concentrations of 1,25(OH) ₂ D ₃ in Paget's Patients	577
Conclusion	577
References	578

IX

VITAMIN D ANALOGS

86. Analogs of Calcitriol

LIEVE VERLINDEN, ROGER BOUILLON, PIERRE DE CLERCQ AND ANNEMIEKE VERSTUYF

549		
550	Introduction	583
552	14-Epi Analogs of 1,25(OH) ₂ D ₃	584
	Decalin Analogs	587
	C- and D-Ring Analogs	588
	CF-Ring Analogs	600
554	E-Ring Analogs	601
	Acyclic Analogs	601
555	Nonsecosteroidal Compounds	601
	Gemini Analogs	609
	Conclusion	611
556	References	611

87.	Nonsecosteroidal Ligands	and	Modulators	of
	Vitamin D Receptor			

RYAN E. STITES, JAMES G. MACKRELL AND KEITH R. STAYROOK

Introduction	615
CD-Ring-Replacement Ligands	616
Diarylmethane Ligands	618
Miscellaneous Nonsecosteroids	621
Nonsecosteroidal Modulators of Vitamin D Receptor-Coregulator	
Interactions	623
Perspectives	625
References	625

88. Bile Acid-Derived Vitamin D Receptor Ligands

MAKOTO MAKISHIMA AND SACHIKO YAMADA

The Vitamin D Receptor Is a Dual-Functional Receptor for	
Vitamin D and Bile Acids	629
Bile Acids and Nuclear Receptors	631
Development of Bile Acid Derivatives	635
X-Ray Crystal Structures of Vitamin D Receptor in Complex	
With Lithocholic Acid and Its Derivatives	637
Perspectives	641
References	641

89. Bifunctional Vitamin D Hybrid Molecules

JAMES L. GLEASON AND JOHN H. WHITE

Introduction	647
Combination Therapy and Bifunctional Agents	648
Nuclear Receptor Ligands as Trojan Horses	649
Vitamin D/Histone Deacetylase Inhibitor Hybrids	649
Nonsecosteroidal Hybrids	652
Non-HDACi Hybrids	652
Conclusion	653
References	653

90. Modulating Vitamin D Receptor-Coregulator **Binding With Small Molecules**

OLIVIA B. YU AND LEGGY A. ARNOLD

Introduction	657
Vitamin D Receptor Coactivators	657
Vitamin D Receptor Corepressors	658
Inhibiting Vitamin D Receptor: VDR Antagonists Versus	
VDR–Coregulator Inhibitors	659
Peptide-Based Inhibitors of Vitamin D Receptor–Coregulator	
Interactions	661
Small Molecule-Based Inhibitors of Vitamin D	
Receptor-Coregulator Interactions	663
Conclusion and Future Direction	664
Acknowledgment	664
References	664

91. Extended-Release Calcifediol in **Renal** Disease

MARTIN PETKOVICH AND CHARLES W. BISHOP

Introduction	667
Background—Vitamin D Signaling and Metabolism	668
Treating Secondary Hyperparathyroidism Associated	
With Vitamin D Insufficiency in Chronic	
Kidney Disease	670
Summary	674
Acknowledgments	674
References	674

92. Vitamin D Receptor Antagonists

HIROSHI SAITOH

Introduction	679
ZK Series	680
Adamantyl Derivatives	683
Lactam Derivatives	684
Amide Derivative	685
TEI-9647 and Its Derivatives	686
22-Alkyl Derivatives	689
Nonsecosteroidal Vitamin D Receptor Antagonist	690
Conclusion and Directions for Future Study	691
References	691

93. Eldecalcitol and Osteoporosis

TOSHIO MATSUMOTO AND FUMIAKI TAKAHASHI

Introduction	695
Structure–Function Relationship	696
Animal Studies	698
Effect on Other Tissues	701
Clinical Studies in Osteoporotic Patients	701
Acknowledgments	705
References	705

X

VITAMIN D AND CANCER

94. Overview of Vitamin D Actions in Cancer

MARJOLEIN VAN DRIEL, JOHANNES P.T.M. VAN LEEUWEN, ALBERTO MUÑOZ AND DAVID FELDMAN

659	Introduction	711
	Vitamin D and Cancer	711
661	Vitamin D Effects on Tumor Cells	718
	Combination Therapy	724
663	Resistance and Vitamin D Metabolism	726
664	Stimulation of Proliferation	727
664	Conclusions	728
664	References	728

95. Vitamin D Status and Cancer Incidence, Mortality, and Prognosis

IRENE SHUI AND EDWARD GIOVANNUCCI

Introduction	743
Cancer Incidence	744
Cancer Mortality and Survival	746
References	753

96.	Effects of Vitamin D Derivatives on Differentiation,
	Cell Cycle, and Apoptosis in Hematological
	Malignancies

GEORGE P. STUDZINSKI, ELZBIETA (GOCEK, FREDERICK COFFMAN AND
MICHAEL DANILENKO	

Differentiation of Myeloid Leukemia Cells by Vitamin D	
Derivatives	762
Signaling and Execution of Monocytic Differentiation Induced	
by Vitamin D Derivatives	763
Transcription Factors in Vitamin D Derivative–Induced	
Differentiation	768
Role of Micro-RNAs in Hematopoiesis, Differentiation, and	
Cell Cycle Block	769
Vitamin D Derivatives–Induced Progression of Monocytic to	
Macrophage Differentiation	770
Effects of Vitamin D Derivatives on the Cell Cycle and	
Proliferation of Human Leukemia Cells	771
Efects of Vitamin D Derivatives on Cell Survival and	
Cell Death	778
Effects of Vitamin D Derivatives on Lymphoid Lineage Cells	779
Clinical Applications of Vitamin D Derivatives' Actions	
Against Hematopoietic Malignancies	780
Conclusions	787
References	787

97. Vitamin D Actions in Mammary Gland and Breast Cancer: Genomics, Metabolism, and Stem Cells

SARAH BEAUDIN AND JOELLEN WELSH

Introduction to Breast Cancer	802
Observational and Interventional Studies on Vitamin D	
and Breast Cancer	803
Expression and Function of the Vitamin D Pathway in Normal	
and Neoplastic Breast Cells/Tissues	805
Impact of Vitamin D Signaling in Animal Models of Breast Cancer	807
Genomic Profiling of Vitamin D Receptor Agonists in	
Breast Cancer Model Systems	809
New Mechanistic Insight Into Vitamin D Actions in	
Breast Cancer	811
Overall Conclusions and Remaining Research Questions	814
References	814
98. The Antitumor Effects of Vitamin D in	

Genitourinary Cancer

DONALD L. TRUMP

Introduction	821
Prostate Cancer	822
Bladder Cancer	828

Renal Cell Carcinoma	829
Summary	830
References	831
Further Reading	836

99. Vitamin D and Colon Cancer

ANTONIO BARBÁCHANO, MARÍA JESÚS LARRIBA, GEMMA FERRER-

MAYORGA, JOSÉ MANUEL GONZÁLEZ-SANCHO AND ALBERTO MUÑOZ

Introduction	838
Human Studies Expression of Vitamin D Hydroxylases and the Vitamin D	841
Receptor in Colon Cancer	842
Mechanism of Action of 1,25(OH) ₂ D ₃ in Colon Cancer	844
Animal Models	852
Conclusions	855
References	855

100. Vitamin D and Skin Cancer

KATHERINE J. RANSOHOFF, ERVIN H. EPSTEIN AND JEAN Y. TANG

Introduction Two Sources of Vitamin D: Diet or Sunlight	863 863
Vitamin D and Indoor Tanning	865
UV Exposure Contributes to the Development of Melanoma and	
Nonmelanoma Skin Cancer	866
Vitamin D in Skin Cancer: Role of Vitamin D in Keratinocytes	867
Role of Vitamin D in Squamous Cell Carcinomas	867
Role of Vitamin D in Basal Cell Carcinomas	868
Role of Vitamin D in Melanoma	869
Photoprotection and Vitamin D Levels	870
Conclusions	870
References	870

101. Vitamin D and Lung Cancer

TATIANA SHAUROVA, MUKUND SESHADRI AND PAMELA A. HERSHBERGER

Lung Cancer Overview	876
Etiology of Lung Cancer	876
Vitamin D and Chronic Obstructive Pulmonary Disease	877
Variation in Vitamin D Signaling Pathway Components and	
Lung Cancer Risk/Outcomes	878
Vitamin D and the Chemoprevention of Nonsmall Cell	
Lung Cancer	879
Vitamin D Actions in Nonsmall Cell Lung Cancer	880
Vitamin D-Based Combination Therapies for Advanced	
Nonsmall Cell Lung Cancer: Preclinical Rationale and	
Clinical Studies	884
Activity of Calcitriol Analogs in Nonsmall Cell Lung	
Cancer Models	884
Conclusions	885
Acknowledgments	885
References	885

102. Vitamin D Inflammation and Cancer

ENIKÖ KALLAY AND LAURA BUBURUZAN

22Introduction89228Vitamin D and the Vitamin D System893

904

Inflammation	
Inflammation-Associated Cancer	
Conclusions	
References	

XI

IMMUNITY, INFLAMMATION AND DISEASE

103. Vitamin D and Tuberculosis

ADRIAN R. MARTINEAU, DAVID A. JOLLIFFE AND JULIE DEMARET

Introduction	915
The Immune Response in Tuberculosis	916
Influence of Vitamin D on the Immune Response to	
Mycobacterium tuberculosis	916
Historical Studies	919
Studies With Mycobacterium tuberculosis Infection as an	
End Point	920
Studies With Active Tuberculosis Disease as End Point	921
Studies of Treatment Outcome	927
Conclusions	929
References	929

Vitamin D and Adaptive Immunology in Health and Disease

ELIZABETH H. MANN, PAUL E. PFEFFER AND CATHERINE M. HAWRYLOWICZ

Epidemiological Evidence for a Role of Vitamin D in	
Immune Disease	938
Actions of Vitamin D on Proinflammatory T Lymphocyte	
Responses	938
Actions of Vitamin D on Regulatory T Lymphocyte Responses	939
Actions of Vitamin D on B Lymphocytes	940
Actions of Vitamin D on the Immune Microenvironment and	
the Function of Antigen-Presenting Cells	940
Vitamin D and Vaccine Responses	941
Translational Studies as a Window to Study Effects of Vitamin D	
on Adaptive Immunology	942
Disparity Between Association, Translational, and	
Clinical Studies	942
Ultraviolet B Versus Oral Vitamin D Supplementation—Effects	
on the Adaptive Immune System	944
Vitamin D as a Temporal Regulator of Adaptive Immune Responses	944
Conclusions	944
References	945

105. Vitamin D and Innate Immunity

KATHRYN ZAVALA, ARIA VAZIRNIA AND PHILIP T. LIU

Introduction	951
Mycobacteria	951
Mechanisms for Pathogen Sensing	952
Barrier Function and Associated Infectious Diseases	954
Innate Immune Activity of 1,25-Dihydroxyvitamin D	954
Vitamin D Pathway and Tuberculosis	957

893	Vitamin D Pathway and Leprosy	959
896	History of Vitamin D, Sunshine, and Tuberculosis Treatment	960

896 History of Vitamin D, Sunshine, and Tuberculosis Treatment904 Conclusion960

References 961

106. Vitamin D and Diabetes

AN-SOFIE VANHERWEGEN, CONNY GYSEMANS AND CHANTAL MATHIEU

Introduction	969
Vitamin D and Genetic Predisposition to Diabetes	970
Vitamin D, the Beta Cell, and Insulin Resistance in	
Type 2 Diabetes	971
Vitamin D as an Immune Modulator in Type 1 Diabetes	974
Conclusions and Clinical Perspectives	980
References	981

107. Vitamin D and Multiple Sclerosis

COLLEEN E. HAYES AND FAYE E. NASHOLD

Introduction	990
Genes and Environment in Multiple Sclerosis	991
Vitamin D and Multiple Sclerosis Risk and Severity	992
Vitamin D Signaling in the Immune and Nervous Systems	995
Vitamin D Mechanisms of Immune Regulation	997
Vitamin D Mechanisms of Neuroprotection	1000
Rising Multiple Sclerosis Incidence in Women	1002
Sex-Based Differences in Multiple Sclerosis and the	
Role of Estrogen	1002
Vitamin D and Estrogen Synergy for T Cell Self-Tolerance	1003
Declining Vitamin D Status and Rising Multiple Sclerosis	
Incidence	1005
Vitamin D and Multiple Sclerosis Prevention	1007
Conclusions and Unanswered Questions	1009
Acknowledgments	1009
References	1010

108. Vitamin D and Inflammatory Bowel Disease

MARGHERITA T. CANTORNA AND DANNY BRUCE

Introduction	1025
What Is Inflammatory Bowel Disease?	1025
Who Gets Inflammatory Bowel Disease?	1026
The Gut Epithelium, Commensals, and Inflammatory	
Bowel Disease	1028
The Immune Response and Inflammatory Bowel Disease	1028
Vitamin D Regulates T Cell Responsiveness	1029
Experimental Models of Inflammatory Bowel Disease	1030
Vitamin D and the Microbiota	1031
Current Treatments for Inflammatory Bowel Disease	1032
Vitamin D as a Treatment Option for Inflammatory	
Bowel Disease	1033
Conclusions	1033
References	1033

109. Psoriasis and Other Skin Diseases

JÖRG REICHRATH AND MICHAEL F. HOLICK

954Introduction/Historical Overview1037957Pathogenesis of Psoriasis1038

The Vitamin D System in Normal and Psoriatic Skin	1038
Physiological and Pharmacological Actions of Vitamin D	
Analogs in Normal and Psoriatic Skin	1040
Clinical Use of 1,25(OH) ₂ D ₃ and Its Analogs in Psoriasis and	
Other Skin Diseases	1043
Vitamin D Analog Therapy in Other Skin Diseases	1045
Evaluation of New Vitamin D Analogs, With Less Calcemic	
Activity, Which Can Be Used for the Treatment of	
Hyperproliferative Skin Disorders	1046
Conclusion	1047
References	1047

XII

THERAPEUTIC APPLICATIONS AND NEW ADVANCES

110. Sunlight Protection by Vitamin D Compounds

REBECCA S. MASON, MARK S. RYBCHYN AND KATIE M. DIXON

Introduction	1056
DNA Damage by Ultraviolet Radiation	1056
DNA Repair	1058
Ultraviolet-Induced Immune Suppression	1060
Synthesis and Metabolism of Vitamin D Compounds	
in Skin	1061
The Vitamin D System and Photocarcinogenesis	1061
Vitamin D Compounds Reduce Several Types of	
Ultraviolet-Induced DNA Damage	1063
Vitamin D Compounds and UV-Induced Immune	
Suppression	1065
Pathways—Evidence for Involvement of Nonclassical	
Pathways	1066
Conclusions	1068
References	1069

111. Vitamin D, Cardiovascular Disease, and Hypertension

STEFAN PILZ

Introduction	1077
Historical Perspective	1078
Mechanistic Effects	1078
Observational Studies	1080
Mendelian Randomization Studies	1082
Randomized Controlled Trials	1083
Future Perspective	1085
Conclusions	1086
References	1087

112. Vitamin D, Acute Respiratory Infection, and Asthma/Chronic Obstructive Pulmonary Disease

CARLOS A. CAMARGO JR.

Introduction	1096
Common Respiratory Disorders	1096

8	Vitamin D and Lung Development	1099
	Vitamin D and Acute Respiratory Infection	1100
)	Vitamin D and Asthma	1103
	Vitamin D and Chronic Obstructive Pulmonary Disease	1107
3	Potential Mechanisms	1109
5	Future Research	1112
	Summary	1114
	Acknowledgments	1114
6	References	1114
_		

113. Vitamin D and Muscle Performance in Athletes LISA CEGLIA AND ROBERTO TONI

Introduction	1121
Historical Links Between Vitamin D and Athletic Performance	1121
Basic Research Influencing Interest in Vitamin D in Athletic	
Performance	1122
Clinical Research Influencing Interest in Vitamin D in Athletic	
Performance	1124
Recent Clinical Research in Athletes	1124
Conclusion	1127
References	1127

114. Vitamin D: Presence and Function in the Eye

JAWAHER A. ALSALEM, SAAEHA RAUZ AND GRAHAM R. WALLACE

1	Introduction	1131
1	Vitamin D and the Eye	1132
-	Ocular Infection	1133
3	Dry Eye Disease	1133
,	Cataract	1135
5	Glaucoma	1136
<i>,</i>	Uveitis	1136
6	Age-Related Macular Degeneration	1138
8	Diabetic Retinopathy	1141
9	Conclusion	1142
	References	1143

115. Adult Vitamin D Deficiency and Adverse Brain Outcomes

NATALIE J. GROVES, JOHN J. MCGRATH AND THOMAS H.J. BURNE

116. Vitamin D in Pregnancy and Lactation: Moving Into the Future

BRUCE W. HOLLIS AND CAROL L. WAGNER

Introduction	1159
Vitamin D Nomenclature and Metabolism	1160
Vitamin D Metabolism During Pregnancy When Compared	
With the Nonpregnant State Including Lactation	1160

CONTENTS

Obstetrical "Paranoia" Regarding Vitamin D Administration	
During Pregnancy	1162
Observational Studies Suggesting the Function of Vitamin D	
Extended Beyond Calcium Homeostasis During Pregnancy	1162
Randomized Controlled Trials Investigating Vitamin D	
Supplementation During Pregnancy	1163
Supplementing Vitamin D During Pregnancy to Prevent	
Childhood Asthma	1165
Neurodevelopment and Autoimmune Consequences	1168
Current Recommendation for Vitamin D Supplementation	
During Pregnancy	1168
Vitamin D Requirements of the Mother/Infant Dyad	
During Lactation	1169
Altering the Vitamin D Content of Human Milk	1169
Interventional and RCTs to Determine if Maternal Vitamin D	
Supplementation Can Supply Adequate Vitamin D to	
the Nursing Infant	1169
Current Recommendation for Maternal Vitamin D	
Supplementation During Lactation	1171
Summary	1171
Financial Support	1172
References	1172

117. Vitamin D and Critically Ill Intensive Care Unit Patients KENNETH B. CHRISTOPHER

Introduction	1177
Prevalence of Vitamin D Deficiency in the Critically Ill	
Patients	1178

	Vitamin D Deficiency Risk Factors in the Critically Ill	
162	Patients	1178
	Vitamin D Mechanism in Critical Illness	1179
162	Antimicrobial Peptides	1180
	β-Defensin 2	1181
163	Cathelicidin	1181
	Inflammasome Activation	1181
165	Metabolomics, Transcriptomics, and Epigenetics of Vitamin D	1182
168	Assay	1183
	Observational Data	1183
168	Vitamin D and Critical Illness Outcomes	1183
	Sepsis	1183
169	Acute Kidney Injury	1183
169	Acute Lung Injury	1184
	Interventional Data	1184
	Dose in Critical Illness	1186
169	Is Vitamin D Supplementation Safe?	1186
	Conclusions	1187
171	References	1187
171		
172 172	Index for Volume 2	1195

This page intentionally left blank

List of Contributors

- John S. Adams David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Judith E. Adams Central Manchester University Hospital NHS Foundation Trust, Manchester, United Kingdom; University of Manchester, Manchester, United Kingdom
- Jawaher A. Alsalem University of Birmingham, Birmingham, United Kingdom
- **Paul H. Anderson** University of South Australia, Adelaide, SA, Australia
- **Panagiota Andreopoulou** Hospital for Special Surgery, New York, NY, United States
- Edith Angellotti Tufts Medical Center, Boston, MA, United States
- Leggy A. Arnold University of Wisconsin-Milwaukee, Milwaukee, WI, United States
- **Gerald J. Atkins** University of Adelaide, Adelaide, SA, Australia
- Antonio Barbáchano Universidad Autónoma de Madrid (UAM), CIBER de Cáncer (CIBERONC), Madrid, Spain
- Shari S. Bassuk Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Sarah Beaudin University at Albany, Rensselaer, NY, United States
- Anna Y. Belorusova Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)/Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 7104/Université de Strasbourg, Illkirch, France
- Nancy A. Benkusky University of Wisconsin-Madison, Madison, WI, United States
- Carlos Bernal-Mizrachi Washington University, Saint Louis, MO, United States
- Ishir Bhan Harvard Medical School, Boston, MA, United States
- Harjit P. Bhattoa University of Debrecen, Debrecen, Hungary
- **Daniel D. Bikle** University of California San Francisco, San Francisco, CA, United States
- John P. Bilezikian Columbia University College of Physicians and Surgeons, New York, NY, United States
- **Neil C. Binkley** University of Wisconsin-Madison, Madison, WI, United States
- Heike A. Bischoff-Ferrari University Hospital Zurich, Zurich, Switzerland
- Charles W. Bishop OPKO Health, Miami, FL, United States
- Ida M. Boisen University of Copenhagen, København, Denmark; Harvard School of Dental Medicine, Boston, MA, United States

- Fabrizio Bonelli R&D DiaSorin Inc., Stillwater, MN, United States
- Adele L. BoskeyHospital for Special Surgery, New York, NY,
United States;United States;Weill Medical College, New York, NY,
Graduate School of Cornell University, New
York, NY, United States
- Barbara J. Boucher Queen Mary University of London, London, United Kingdom
- Roger Bouillon Katholieke Universiteit Leuven, Leuven, Belgium
- Manuella Bouttier McGill University, Montreal, QC, Canada
- Barbara D. Boyan Georgia Tech and Emory University, Atlanta, GA, United States; Virginia Commonwealth University, Richmond, VA, United States
- **Danny Bruce** Pennsylvania State University, University Park, PA, United States; University of North Carolina, Chapel Hill, NC, United States
- Laura Buburuzan University of Bucharest, Bucharest, Romania
- Andrew J. Burghardt University of California, San Francisco, CA, United States
- **Thomas H.J. Burne** The University of Queensland, St. Lucia, QLD, Australia; The Park Centre for Mental Health, Wacol, QLD, Australia
- Mona S. Calvo U.S. Food and Drug Administration, Silver Spring, MD, United States
- **Carlos A. Camargo Jr.** Harvard Medical School, Boston, MA, United States
- Jorge B. Cannata-Andia Hospital Universitario Central de Asturias, Oviedo, Spain
- Margherita T. Cantorna Pennsylvania State University, University Park, PA, United States; University of North Carolina, Chapel Hill, NC, United States
- Carsten Carlberg University of Eastern Finland, Kuopio, Finland
- **Geert Carmeliet** Katholieke Universiteit Leuven, Leuven, Belgium
- **Thomas O. Carpenter** Yale University School of Medicine, New Haven, CT, United States
- **Graham D. Carter** Charing Cross Hospital, London, United Kingdom
- Kevin D. Cashman University College Cork, Cork, Ireland
- Lisa Ceglia Tufts University, Boston, MA, United States
- Sylvia Christakos Rutgers, The State University of New Jersey, Newark, NJ, United States
- Kenneth B. Christopher Harvard Medical School, Boston, MA, United States
- **Rene F. Chun** David Geffen School of Medicine at UCLA, Los Angeles, CA, United States

Fredric L. Coe The University of Chicago Pritzker School of Medicine, Chicago, IL, United States

Frederick Coffman Rutgers School of Health Professions, Newark, NJ, United States

Juliet Compston Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom

Cyrus Cooper University of Southampton, Southampton General Hospital, Southampton, United Kingdom

Elizabeth M. Curtis University of Southampton, Southampton General Hospital, Southampton, United Kingdom

Natalie E. Cusano Columbia University College of Physicians and Surgeons, New York, NY, United States

Michael Danilenko Ben-Gurion University of the Negev, Beer-Sheva, Israel

G. David Roodman Indiana University, Indianapolis, IN, United States; Roudebush VA Medical Center, Indianapolis, IN, United States

Bess Dawson-Hughes Tufts University, Boston, MA, United States

Pierre De Clercq Universiteit Gent, Gent, Belgium

Hector F. DeLuca University of WI-Madison, Madison, WI, United States

Julie Demaret Queen Mary University of London, London, United Kingdom

Marie B. Demay Harvard Medical School, Boston, MA, United States

David W. Dempster Columbia University, New York, NY, United States

Elaine M. Dennison University of Southampton, Southampton General Hospital, Southampton, United Kingdom

Puneet Dhawan Rutgers, The State University of New Jersey, Newark, NJ, United States

Vassil Dimitrov McGill University, Montreal, QC, Canada

Katie M. Dixon University of Sydney, Sydney, NSW, Australia

Maryam Doroudi Georgia Tech and Emory University, Atlanta, GA, United States

Shevaun M. Doyle Hospital for Special Surgery, New York, NY, United States

Adriana S. Dusso Hospital Universitario Central de Asturias, Oviedo, Spain

Aleksey Dvorzhinskiy Hospital for Special Surgery, New York, NY, United States

Peter R. Ebeling Monash University Melbourne, Clayton, VIC, Australia

John A. Eisman Garvan Institute of Medical Research, Sydney, NSW, Australia

Gregory R. Emkey Pennsylvania Regional Center for Arthritis & Osteoporosis Research, Wyomissing, PA, United States

Ervin H. Epstein Jr. Children's Hospital Oakland Research Institute, Oakland, CA, United States

Sol Epstein University of Pennsylvania, Philadelphia, PA, United States

Darryl Eyles The University of Queensland, St. Lucia, QLD, Australia; The Park Centre for Mental Health, Wacol, QLD, Australia

Murray J. Favus The University of Chicago Pritzker School of Medicine, Chicago, IL, United States

David Feldman Stanford University School of Medicine, Stanford, CA, United States

Gemma Ferrer-Mayorga Universidad Autónoma de Madrid (UAM), CIBER de Cáncer (CIBERONC), Madrid, Spain

David M. Findlay University of Adelaide, Adelaide, SA, Australia

James C. Fleet Purdue University, West Lafayette, IN, United States

Brian L. Foster The Ohio State University, Columbus, OH, United States

Renny T. Franceschi University of Michigan, Ann Arbor, MI, United States

David R. Fraser The University of Sydney, Sydney, NSW, Australia

Jessica M. Furst Columbia University Medical Center, New York, NY, United States

Rachel I. Gafni National Institutes of Health, Bethesda, MD, United States

Edward Giovannucci Harvard TH Chan School of Public Health, Boston, MA, United States; Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States

Christian M. Girgis Westmead Hospital, Sydney, NSW, Australia; Royal North Shore Hospital, Sydney, NSW, Australia; University of Sydney, Sydney, NSW, Australia

James L. Gleason McGill University, Montreal, QC, Canada

Francis H. Glorieux Shriners Hospitals for Children – Canada, Montreal, QC, Canada

Elzbieta Gocek Rutgers, The State University of New Jersey, Newark, NJ, United States; University of Wroclaw, Wroclaw, Poland

David Goltzman McGill University Health Centre, McGill University, Montreal, QC, Canada

José Manuel González-Sancho Universidad Autónoma de Madrid (UAM), CIBER de Cáncer (CIBERONC), Madrid, Spain

Laura A. Graeff-Armas University of Nebraska Medical Center, Omaha, NE, United States

William B. Grant Sunlight, Nutrition, and Health Research Center, San Francisco, CA, United States

Natalie J. Groves The University of Queensland, St. Lucia, QLD, Australia

Conny Gysemans KU Leuven, Leuven, Belgium

Lasse Bøllehuus Hansen University of Copenhagen, København, Denmark; Harvard School of Dental Medicine, Boston, MA, United States

- Nicholas C. Harvey University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Catherine M. Hawrylowicz King's College London, London, United Kingdom
- **Colleen E. Hayes** University of Wisconsin–Madison, Madison, WI, United States
- **Robert P. Heaney** Creighton University, Omaha, NE, United States
- **Geoffrey N. Hendy** McGill University Health Centre, McGill University, Montreal, QC, Canada
- **Pamela A. Hershberger** Roswell Park Cancer Institute, Buffalo, NY, United States
- Martin Hewison The University of Birmingham, Birmingham, United Kingdom
- Michael F. Holick Boston University School of Medicine, Boston, MA, United States
- **Bruce W. Hollis** Medical University of South Carolina, Charleston, SC, United States
- **Philippe P. Hujoel** University of Washington, Seattle, WA, United States
- **Elina Hyppönen** University of South Australia, Adelaide, Australia
- Karl L. Insogna Yale University School of Medicine, New Haven, CT, United States
- Nina G. Jablonski The Pennsylvania State University, University Park, PA, United States
- Martin Blomberg Jensen University of Copenhagen, København, Denmark; Harvard School of Dental Medicine, Boston, MA, United States
- David A. Jolliffe Queen Mary University of London, London, United Kingdom
- Glenville Jones Queen's University, Kingston, ON, Canada
- Kerry S. Jones MRC Human Nutrition Research, Cambridge, United Kingdom
- Harald Jüppner Massachusetts General Hospital, Boston, MA, United States
- Enikö Kallay Medical University of Vienna, Währinger Gürtel, Vienna
- Andrew C. Karaplis McGill University Health Centre, McGill University, Montreal, QC, Canada
- Martin Kaufmann Queen's University, Kingston, ON, Canada
- Mairead Kiely University College Cork, Cork, Ireland
- **Tiffany Y, Kim** University of California, San Francisco, San Francisco, CA, United States; San Francisco Veterans Affairs Health Care System, San Francisco, CA, United States
- Martin Konrad University Children's Hospital Münster, Münster, Germany

- Christopher S. Kovacs Health Sciences Centre, St. John's, NL, Canada
- **Richard Kremer** McGill University Health Centre, McGill University, Montreal, QC, Canada
- **Roland Krug** University of California, San Francisco, CA, United States
- **Rajiv Kumar** Mayo Clinic College of Medicine, Rochester, MN, United States
- Noriyoshi Kurihara Indiana University, Indianapolis, IN, United States
- Emma Laing University of Georgia, Athens, GA, United States
- Joseph M. Lane Hospital for Special Surgery, New York, NY, United States
- **Dean P. Larner** The University of Birmingham, Birmingham, United Kingdom

María Jesús Larriba Universidad Autónoma de Madrid (UAM), CIBER de Cáncer (CIBERONC), Madrid, Spain

- Gilles Laverny Institute of Genetics and Molecular and Cellular Biology (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 7104/Université de Strasbourg, Illkirch, France
- Nathalie Le Roy INRA, UR83 Recherches avicoles, Fonction et Régulation des protéines de l'œuf, Développement de l'œuf, Valorisation, Évolution, Nouzilly, France
- Seong M. Lee University of Wisconsin-Madison, Madison, WI, United States
- Michael A. Levine The Children's Hospital of Philadelphia and the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Richard Lewis University of Georgia, Athens, GA, United States
- Paul Lips VU University Medical Center, Amsterdam, The Netherlands
- **Thomas S. Lisse** University of Maine GSBSE (Graduate School of Biomedical Sciences and Engineering), Bar Harbor, ME, United States
- **Eva S. Liu** Massachusetts General Hospital, Boston, MA, United States
- **Philip T. Liu** University of California, Los Angeles, CA, United States
- Yan Li University of Michigan, Ann Arbor, MI, United States
- Yan Chun Li The University of Chicago, Chicago, IL, United States
- James G. MacKrell Lilly Research Laboratories, Indianapolis, IN, United States
- Leila J. Mady Rutgers, The State University of New Jersey, Newark, NJ, United States
- Sharmila Majumdar University of California, San Francisco, CA, United States
- Makoto Makishima Nihon University School of Medicine, Tokyo, Japan

Peter J. Malloy Stanford University School of Medicine, Stanford, CA, United States

Elizabeth H. Mann King's College London, London, United Kingdom; The Francis Crick Institute, London, United Kingdom

JoAnn E. Manson Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Harvard T.H. Chan School of Public Health, Boston, MA, United States

Adrian R. Martineau Queen Mary University of London, London, United Kingdom

Rebecca S. Mason University of Sydney, Sydney, NSW, Australia

Chantal Mathieu KU Leuven, Leuven, Belgium

Toshio Matsumoto University of Tokushima, Tokushima, Japan

Donald G. Matthews University at Albany, Rensselaer, NY, United States; Oregon Health and Science University, Portland, OR, United States

John J. McGrath The University of Queensland, St. Lucia, QLD, Australia; The Park Centre for Mental Health, Wacol, QLD, Australia

Daniel Metzger Institute of Genetics and Molecular and Cellular Biology (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 7104/Université de Strasbourg, Illkirch, France

Mark B. Meyer University of Wisconsin-Madison, Madison, WI, United States

Denshun Miao McGill University Health Centre, McGill University, Montreal, QC, Canada

Mathew T. Mizwicki University of California, Riverside, CA, United States

Rebecca J. Moon University of Southampton, Southampton General Hospital, Southampton, United Kingdom

Howard A. Morris University of South Australia, Adelaide, SA, Australia

Li J. Mortensen University of Copenhagen, København, Denmark; Harvard School of Dental Medicine, Boston, MA, United States

Alberto Muñoz Universidad Autónoma de Madrid (UAM), CIBER de Cáncer (CIBERONC), Madrid, Spain

Yuko Nakamichi Matsumoto Dental University, Shiojiri, Japan

Carmen J. Narvaez University at Albany, Rensselaer, NY, United States

Faye E. Nashold University of Wisconsin–Madison, Madison, WI, United States

 Tally Naveh-Many
 Hadassah Hebrew University Medical

 Center, Jerusalem, Israel

Carrie M. Nielson Oregon Health & Science University, Portland, OR, United States

Anthony W. Norman University of California, Riverside, CA, United States

Yves Nys INRA, UR83 Recherches avicoles, Fonction et Régulation des protéines de l'œuf, Développement de l'œuf, Valorisation, Évolution, Nouzilly, France Melda Onal University of Wisconsin-Madison, Madison, WI, United States

- Lubna Pal Yale University School of Medicine, New Haven, CT, United States
- Kristine Y. Patterson U.S. Department of Agriculture, Beltsville, MD, United States

Steven Pauwels Katholieke Universiteit Leuven, Leuven, Belgium; University Hospitals Leuven, Leuven, Belgium

Pamela R. Pehrsson U.S. Department of Agriculture, Beltsville, MD, United States

Martin Petkovich Queen's University, Kingston, ON, Canada

John M. Pettifor University of the Witwatersrand, Johannesburg, South Africa

Paul E. Pfeffer King's College London, London, United Kingdom; Barts Health NHS Trust, London, United Kingdom

- Katherine M. Phillips Virginia Tech, Blacksburg, VA, United States
- J. Wesley Pike University of Wisconsin-Madison, Madison, WI, United States

Stefan Pilz Medical University of Graz, Graz, Austria

Anastassios G. Pittas Tufts Medical Center, Boston, MA, United States

Pawel Pludowski The Children's Memorial Health Institute, Warsaw, Poland

David E. Prosser Queen's University, Kingston, ON, Canada

Sri Ramulu N. Pullagura University of Maine GSBSE (Graduate School of Biomedical Sciences and Engineering), Bar Harbor, ME, United States

- L. Darryl Quarles University of Tennessee Health Science Center, Memphis, TN, United States
- Rithwick Rajagopal Washington University, Saint Louis, MO, United States

Katherine J. Ransohoff Stanford University Medical Center, Redwood City, CA, United States

Saaeha Rauz University of Birmingham, Birmingham, United Kingdom

Brian J. Rebolledo Hospital for Special Surgery, New York, NY, United States

Jörg Reichrath The Saarland University Hospital, Homburg, Germany; Boston University Medical Center, Boston, MA, United States

Sandra Rieger Kathryn W. Davis Center for Regenerative Biology and Medicine, Salisbury Cove, ME, United States

Amy E. Riek Washington University, Saint Louis, MO, United States

Natacha Rochel Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)/Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 7104/Université de Strasbourg, Illkirch, France Jeffrey D. Roizen The Children's Hospital of Philadelphia and the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States

Janet M. Roseland U.S. Department of Agriculture, Beltsville, MD, United States

Cliff Rosen Maine Medical Center Research Institute-Scarborough, ME, United States

Mark S. Rybchyn University of Sydney, Sydney, NSW, Australia

Hiroshi Saitoh Teijin Institute for Bio-medical Research, Tokyo, Japan

Reyhaneh Salehi-Tabar McGill University, Montreal, QC, Canada

Anne L. Schafer University of California, San Francisco, San Francisco, CA, United States; San Francisco Veterans Affairs Health Care System, San Francisco, CA, United States

Karl P. Schlingmann University Children's Hospital Münster, Münster, Germany

Inez Schoenmakers MRC Human Nutrition Research, Cambridge, United Kingdom; University of East Anglia, Norwich, United Kingdom

Zvi Schwartz Virginia Commonwealth University, Richmond, VA, United States

Kayla Scott Virginia Commonwealth University, Richmond, VA, United States

Christopher T. Sempos National Institutes of Health, Bethesda, MD, United States; University of Wisconsin-Madison, Madison, WI, United States

Lusia Sepiashvili Mayo Clinic, Rochester, MN, United States

Mukund Seshadri Roswell Park Cancer Institute, Buffalo, NY, United States

Elizabeth Shane Columbia University Medical Center, New York, NY, United States

Tatiana ShaurovaRoswell Park Cancer Institute, Buffalo, NY,
United States

Irene Shui Harvard School of Public Health, Boston, MA, United States

Justin Silver Hadassah Hebrew University Medical Center, Jerusalem, Israel

Ravinder J. Singh Mayo Clinic, Rochester, MN, United States

Linda Skingle Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom

René St-Arnaud Shriners Hospitals for Children – Canada, Montreal, QC, Canada

Jessica Starr Columbia University Medical Center, New York, NY, United States

Keith R. Stayrook Lilly Research Laboratories, Indianapolis, IN, United States

Emily M. Stein Columbia University Medical Center, New York, NY, United States

Ryan E. Stites Lilly Research Laboratories, Indianapolis, IN, United States

George P. Studzinski Rutgers, The State University of New Jersey, Newark, NJ, United States

Tatsuo Suda Saitama Medical University, Saitama, Japan

- **Fumiaki Takahashi** Chugai Pharmaceutical Co. Ltd., Tokyo, Japan
- Naoyuki Takahashi Matsumoto Dental University, Shiojiri, Japan

Jean Y. Tang Stanford University Medical Center, Redwood City, CA, United States

Christine L. Taylor National Institutes of Health, Bethesda, MD, United States

- **Hugh S. Taylor** Yale University School of Medicine, New Haven, CT, United States
- Peter J. Tebben Mayo Clinic College of Medicine, Rochester, MN, United States
- Thomas D. Thacher Mayo Clinic, Rochester, MN, United States

Ravi Thadhani Harvard Medical School, Boston, MA, United States

Kebashni Thandrayen University of the Witwatersrand, Johannesburg, South Africa; Chris Hani Baragwanath Academic Hospital, Johannesburg, South Africa

Susan Thys-Jacobs Columbia University College of Physicians and Surgeons, New York, NY, United States

Dov Tiosano Meyer Children's Hospital, Haifa, Israel

Roberto Toni Tufts University, Boston, MA, United States; University of Parma School of Medicine, Parma, Italy; Academy of Sciences of Bologna, Bologna, Italy

Dwight A. Towler UT Southwestern Medical Center, Dallas, TX, United States

- **Donald L. Trump** Inova Schar Cancer Institute, Fairfax, VA, United States
- Nobuyuki Udagawa Matsumoto Dental University, Shiojiri, Japan
- André G. Uitterlinden Erasmus Medical Centre, Rotterdam, The Netherlands

Aasis Unnanuntana Hospital for Special Surgery, New York, NY, United States; Mahidol University, Bangkok, Thailand

Jeroen van de Peppel Erasmus Medical Centre, Rotterdam, The Netherlands

Bram C.J. van der Eerden Erasmus Medical Centre, Rotterdam, The Netherlands

- Marjolein van Driel Erasmus MC, Rotterdam, The Netherlands
- Johannes P.T.M. van Leeuwen Erasmus MC, Rotterdam, The Netherlands

Natasja van Schoor VU University Medical Center, Amsterdam, The Netherlands

An-Sofie Vanherwegen KU Leuven, Leuven, Belgium

- Aria Vazirnia University of California, San Diego, CA, United States
- Lieve Verlinden Katholieke Universiteit Leuven, Leuven, Belgium

- Annemieke Verstuyf Katholieke Universiteit Leuven, Leuven, Belgium
- Reinhold Vieth University of Toronto, Toronto, ON, Canada
- **Carol L. Wagner** Medical University of South Carolina, Charleston, SC, United States
- **Graham R. Wallace** University of Birmingham, Birmingham, United Kingdom
- **Connie Weaver** Purdue University, West Lafayette, IN, United States
- JoEllen Welsh University at Albany, Rensselaer, NY, United States
- John H. White McGill University, Montreal, QC, Canada
- **Susan J. Whiting** University of Saskatchewan, Saskatoon, SK, Canada
- Michael P. Whyte Washington University School of Medicine at Barnes-Jewish Hospital, St Louis, MO, United States

- John J. Wysolmerski Yale University School of Medicine, New Haven, CT, United States
- Sachiko Yamada Nihon University School of Medicine, Tokyo, Japan
- **Olivia B. Yu** University of Wisconsin-Milwaukee, Milwaukee, WI, United States
- Kathryn Zavala University of California, Los Angeles, CA, United States
- **Christoph Zechner** UT Southwestern Medical Center, Dallas, TX, United States
- Meltem Zeytinoglu The University of Chicago Pritzker School of Medicine, Chicago, IL, United States
- Hengguang Zhao The First Affiliated Hospital of Chongqing Medical University, Chongqing, China

ROBERT P. HEANEY MD (1928–2016)

The field of bone/vitamin D research lost an iconic figure on August 6, 2016 when Dr. Robert P. Heaney died at age 88. Death was due to a brain tumor, which he had battled for more than a year. However, in true Heaney character, he had been returning to the laboratory several days each week, analyzing data, producing research papers, and providing advice and mentoring.

Dr. Heaney obtained his undergraduate and medical training (1951) at Creighton University in Omaha, NE and completed internship and residency in Internal Medicine at St. Louis University. His postgraduate training included a Public Health Service Postdoctoral Fellowship at the National Cancer Institute. He also was a Clinical Associate at the National Institute of Arthritis and Metabolic Diseases for 2 years. In 1957, he returned to Creighton University, as Assistant Professor, where he had an illustrious career as a scientist, while also serving in various administrative positions, including Vice President for Health Sciences. Since 1984 he was the holder of the John A. Creighton University Professorship. In 2013 Creighton University recognized Dr. Heaney with an award for Lifetime Achievement in Research.

Dr. Heaney's productivity was legend. He authored or coauthored more than 1000 papers, abstracts, review articles, books, book chapters, editorials, letters, and book reviews. His first scientific paper was published in 1956 in the journal, Cancer. It described the results of treatment with 6-mercaptopurine in human leukemia. Beginning in 1958, he published radiocalcium studies of bone formation, calcium absorption, calcium balance, bone loss, and calcium physiology in humans. This work formed the basis for recommended dietary calcium intakes for pre- and postmenopausal women. In 2008, the National Osteoporosis Foundation recognized Dr. Heaney with the first "Legends of Osteoporosis" award for his contributions to the field of osteoporosis. He focused widespread attention on the importance of osteoporosis and in recognition of this he was presented a lifetime achievement award from the US House of Representatives on November 10, 2015. In some circles, he is referred to as the "Grandfather of Osteoporosis."

By 1982 Dr. Heaney added vitamin D research to his focus, which he pursued vigorously to the end. He understood the importance of vitamin D for skeletal health but was especially captivated by the discovery of the vitamin D receptor and, subsequently, the nonskeletal effects of vitamin D. He was adamant about the importance of eliminating vitamin D deficiency in human populations and took part in many debates about the levels of serum 25(OH)D needed for optimal health (usually arguing for the higher levels). During the later years of his career, he produced prolific writings on vitamin D deficiency. In 2012 he was presented a Career Award at the 15th Workshop on Vitamin D.

Dr. Heaney recognized that published clinical vitamin D studies were often flawed, rendering interpretation of findings erroneous or inconclusive. His concern was that the traditional randomized controlled trials of nutritional supplements were inappropriate because it was impossible to have a true placebo group in which no one consumed the nutrient in his/her diet. Thus such trials were probably biased toward a "null" outcome. Dr. Heaney wrote many "persuasive" papers addressing this concern.

He passionately believed that scientific biomedical findings that benefit health needed to be communicated to the public. He often pointed out that "no research project is completed until the findings are disseminated." To this end, he published papers and accepted innumerable speaking engagements throughout the world.

Dr. Heaney's achievements have been widely recognized and his awards include the Frederic C Bartter Award from the American Society for Bone and Mineral Research, the Kappa Delta Award from the American College of Orthopedic Surgeons, the E.V. McConnell Award from American Society for Clinical and Nutrition, and the institute CANDIA Scientific Prize from France.

Dr. Heaney has mentored a large number of people including the authors of this memorial. His mentorship has been inspirational for our students, residents, and fellows at Creighton University as well as similar trainees in other institutions. He has been an enthusiastic, passionate teacher of medicine and bone pathology and physiology.

Dr. Heaney was very active in Creighton University's spiritual community. He was well known for his passion for the scripture and his contributions to "Daily Reflections" on the Creighton website. His spiritual writings have been a source of great inspiration for persons at Creighton University and beyond. He also wrote for a monthly Catholic magazine "America". Shortly before his death, he wrote a poignant piece, "Final Words," for the Creighton Magazine. http://www. creighton.edu/creightonmagazine/2016smranewsheaney/.

Dr. Heaney and his late wife, Barbara, raised 7 children, and at his death his descendants include 14 grandchildren and 3 great grandchildren. They all were a source of great pride and much enjoyment for him. Dr. Heaney will be remembered as a healer, a thinker, and a man of grace and generosity. We are all greatly saddened by his loss, and we offer our special support to his wife, Janet.

Robert R. Recker, MD Joan M. Lappe, PhD

MILAN USKOKOVIC PHD (1924–2015)

Dr. Milan Uskokovic, who made major contributions to the vitamin D scientific community, died on May 11, 2015 in Towson, Maryland, just 5 weeks after the death of his beloved wife, Nada. Born in Belgrade, Yugoslavia, on July 14, 1924, he met Nada at the Belgrade Polytechnic University where both studied chemical engineering. They immigrated to the United States after he received a scholarship to study organic chemistry at Clark University. He received his PhD from the Worcester Foundation of Experimental Biology at Clark University in 1960 and joined Hoffmann La Roche in Nutley as a senior scientist. From 1973 to 1995, he led the Roche Natural Products Department and established syntheses of natural products with promising pharmacological activities, including cinchona alkaloids, indole alkaloids, loganin, biotin, statins, and vitamin D.

Dr. Uskokovic authored 219 publications and acquired over 200 US patents. As a result of his ingenuity, he was inducted into the New Jersey Inventors Hall of Fame in 1994. He was a member of the advisory or editorial boards of six professional journals; was a member of the American Chemical Society and the New York Academy of Sciences; and was Adjunct Professor at Rutgers University. A laboratory at the Brown University, School of Medicine, Women and Infants Hospital of Rhode Island, was dedicated in honor of his research mentorship.

Dr. Uskokovic made major contributions to the vitamin D scientific community by establishing and perfecting the syntheses of vitamin D metabolites and multiple analogs. He generously provided and donated research samples of the numerous vitamin D analogs and intermediates that were synthesized in his laboratory. Prior to its commercial availability, Dr. Uskokovic provided 1,25(OH)₂D₃, at no cost, to any researcher who asked. In addition, he established strong collaborations with vitamin D scientists at Roche as well as around the world that included, among many others, Anthony W. Norman at University of California Riverside, CA, Phillip Koeffler at University of California, Los Angeles, CA, David Feldman at Stanford University, CA, Michael Sporn at National Cancer Institute, NIH, MD, Sara Peleg at MD Anderson Cancer Center, TX, Michael F. Holick at Boston University, MA, Satyanarayana G. Reddy at Brown University, RI, George Studzinski, Sylvia Christakos, Allan Conney, and Nanjoo Suh at Rutgers University, NJ, John White at McGill University, Canada, Heide Cross at Vienna Medical School, Austria, Carsten Carlberg at the University of Eastern Finland, Finland, T. Okano at Kobe University, Japan, Luciano Adorini at BioXell, Milan, Italy, and Dino Moras and Natacha Rochel, at IGBMC, France.

After his retirement form Roche in 1998, Dr. Uskokovic was instrumental in the support of Bioxell S.p.A., a new pharmaceutical company that emerged from Roche Milano. The medicinal chemistry branch, Bioxell Inc., was installed at Roche Nutley and Dr. Uskokovic headed that division until March 2010. A lead compound, Elocalcitol, a vitamin D analog with reduced calcemic activity, is in clinical trials for treatment of benign prostatic hyperplasia and overactive bladder. BXL746, another vitamin D analog, is in clinical trials for prevention of postsurgical adhesions. Dr. Uskokovic was instrumental in the discovery and development of these analogs.

Recent collaborative publications include the use of Dr. Uskokovich's vitamin D analogs to induce antimicrobial peptides, to inhibit proinflammatory cytokines from the respiratory epithelium in cystic fibrosis, to induce antileukemic activity, and to inhibit mammary carcinogenesis. In some recent studies, various analogs were shown to have activity to reduce tumor-initiating stem cell-like cell populations active in breast cancer development. His modification of structural elements in the vitamin D molecule allowed him to develop analogs that resisted degradation and therefore exhibited increased and prolonged activity. In other approaches to investigate the ligandvitamin D receptor (VDR) interaction, Dr. Uskokovic designed the Gemini analogs with two side chains. These molecules exhibited high biological activity and reduced calcemic activity and were helpful in exploring the ligand-binding pocket of the VDR as well as many other functional activities.

Dr. Uskokovic had endless curiosity. Research in vitamin D was his passion. He was always enthusiastic about discussing experiments related to the use of vitamin D analogs (particularly if those experiments had possible clinical application) and he was always generous in providing vitamin D metabolites and analogs. He often quoted his fellow New Jersey inventor, Thomas Edison "I never did a day's work in my life. It was all fun". He is survived by his daughters Moira Bogrov, MD and Lila Vidger, PhD, their husbands and five grandchildren. Dr. Milan Uskokovic will be remembered worldwide for his long-lasting contributions to natural product chemistry and especially for his contributions to the vitamin D field that enabled many of the discoveries related to the multiple functions of vitamin D. He will be sorely missed by the entire vitamin D community.

Sylvia Christakos Hubert Maehr Nanjoo Suh Rutgers University, New Jersey

Preface to the Fourth Edition

This new fourth edition of Vitamin D was written approximately 5–6 years after the third edition was published in 2011. At that time the exuberant hype about vitamin D as a "cureall" for many diseases was close to its peak. In the ensuing years the hyperbole has not appeared to continue to escalate but has also not declined substantially. Numerous studies have been published in the intervening years, but many questions remain. The clinical and population studies, many well done, continue to alternate between positive data for benefit to extraskeletal sites and findings that show no value of elevated concentrations of 25(OH)D. Some naysayers have become strident in their conviction that vitamin D benefit is overblown, even for bone. Others remain strongly supportive of the value of vitamin D based on the compelling benefits of vitamin D, which have been demonstrated over and over again in cell cultures, animal models, and other preclinical studies. The population studies are also mixed, some showing positive findings for benefit while others are negative. However, there is a growing consensus that is clearly supportive of the view that vitamin D deficiency should be avoided. Everyone hopes that the randomized controlled trials (RCTs) ongoing in multiple parts of the world will eventually provide clear-cut answers. According to the NIH clinical trial register, there are numerous ongoing RCTs with an end point foreseen in the next 5 years so that we can expect a much broader insight into the clinical implications of vitamin D status. What to advise physicians and the public while we wait for answers that we hope will be coming, however, remains controversial.

In the intervening years between the third and fourth editions, we have seen the Institute of Medicine (IOM) committee report their recommendation for daily requirement of vitamin D to avoid deficiency and their view of the optimal target for circulating concentration of 25(OH)D needed for normal bones. They designate the 25(OH)D concentration of 20 ng/ mL (50nM/L) as the cut point for adequacy and their view that 600 IU per day for most adults and 800 IU for the elderly is sufficient for normal bones. Because extraskeletal benefits have not yet been proven by RCTs, their findings were based on their view of the data showing the vitamin D requirement for normal bones. The Endocrine Society took the issue with some of these findings, and their committee concluded that 30 ng/mL (75 nM/L) of 25(OH)D was required for optimum benefits to bone and suggested that this would require 1500-2000 IU/day to achieve. With the higher cut point for adequacy, the Endocrine Society position, consequently, is that vitamin D deficiency is far more common than that would be concluded from the IOM position, and it therefore would require higher daily intakes to achieve adequate levels of circulating vitamin D for the population. This controversy is highlighted in a new chapter in this edition where well-regarded proponents of

each position lay out their arguments and supportive data. We hope the reader will be better informed after reading both the positions.

In the new edition the editors have continued to constantly renew and remodel the book with each successive edition. To this end, David Feldman continues as editor-in-chief and Wes Pike as associate editor, but we have added four new editors with broad expertise to the team. John Adams has stepped down from the editor position, and we thank him for his excellent work on the third edition. As new editors, the undersigned hope to add fresh energy and expertise and expand the skill set of the editorial team to better cover the vast areas of science, health, and disease that is required for a book of this size and breadth.

The fourth edition has 117 chapters making the book somewhat larger than the third edition. The editors have worked very hard to revise and update this edition with new material and presentation of fresh and different perspectives from respected authors. Some chapters covered in the third edition have not been continued because relatively little new research was added in those areas. We thank the authors who are no longer contributing to this edition, for their previous efforts. They may well be asked to write in the next edition as we continue our strategy of rotating authors. All chapters have been revised and updated and many new references added. In our revitalization of the material in the book, we have added 40 new chapters to cover or expand into previously uncovered areas of research or to approach the subject from a different perspective. In addition, we have changed the senior authorship of 20 additional chapters that are now written by different authors who have been charged with revising and updating previous chapters. These extensive modifications to over half of the chapters in the book, with major updates and expansion of all of the chapters, has resulted in a substantially new, modified, and modernized book compared with the third edition. Finally, the expanded Internet availability of the text and the figures will make access to the material easier and more flexible and the addition of color figures alongside the text should enhance the illustrations and make the displayed data easier to understand.

Some of the areas given new emphasis in this edition include the evolution of vitamin D as a hormone; population studies and their methods of analysis; nutrition, fortification, and worldwide vitamin D deficiency; novel and improved techniques for vitamin D metabolite measurement and dealing with assay problems; new and expanded insights into the mechanism of vitamin D action; updates on vitamin D analogs and their progress in therapeutics; expanded coverage of vitamin D actions in cancer, inflammation and the immune system, diabetes, and other diseases; newly recognized target

tissues; exploration of additional organs and diseases that may be affected by vitamin D; and new biological pathways that regulate or are regulated by vitamin D. As we more fully appreciate the varied scope of vitamin D actions, it has become clearer that the vitamin D endocrine system affects most if not all tissues in the body. In fact, it is now apparent that there are likely two vitamin D systems. First, the well-established, tightly regulated systemic/endocrine system whereby renal synthesis of 1,25(OH)₂D adjusts serum calcium concentrations and regulates bone homeostasis. However, data are accumulating for a second parallel, widespread autocrine/paracrine system that can synthesize 1,25(OH)₂D locally under separate control mechanisms determined by assorted local factors. The full physiological impact of this paracrine system on extraskeletal sites remains to be fully validated, but the system appears to have disease- and tissue-specificity regulating various functions unrelated to calcium homeostasis. We have attempted to keep up with all of these advances by increasing our coverage of these newly recognized areas. We have enlisted the leading investigators in each area to provide truly expert opinion about each field.

An innovation in this edition is that we have chosen to commemorate two giants in our field who have recently passed away. We felt that Milan Uskokovich and Robert Heaney are clearly deserving of being honored and remembered in this way for their countless contributions over many years to the field of vitamin D. We cannot attempt to cover the passing of every deserving contributor to the field, and hopefully, this can be accomplished in annual meetings or other venues that occur yearly rather than in our book that is published much less frequently. However, we are very sad to announce that two additional eminent members of the vitamin D community died recently just as our book was going to press, and we are able to add a short paragraph about each of them to recognize their passing and their contributions to the field of vitamin D.

Adele Boskey passed away in May 2017. She was a pioneer in the field of bone mineralization using biophysical and imaging technologies to define the composition, structure, and functional properties of bone of normal subjects or in cases of major bone diseases such as osteoporosis, osteogenesis imperfecta, and rickets. She worked extensively on the nature of fractures and fracture healing, as well as many aspects of bone physiology and pathology. Adele was based in the Hospital for Special Surgery, New York, where she also contributed much to the field of orthopedics and dentistry, as well as endocrinology. A full description of her outstanding career and many contributions can be found in JBMR 32:1597,2017.

Jeffrey O'Riordan who died in October 2017 was a leading figure in vitamin D research during the 1980s and 1990s. Based at the Middlesex Hospital in London, Jeffrey was a multidisciplinary mineral metabolism endocrinologist who played a pivotal role in developing novel areas of vitamin D research, including sarcoidosis and extrarenal 1α -hydroxylase, oncogenic osteomalacia, and hereditary vitamin D-resistant rickets. Jeffery was a prominent member of the international vitamin D community from the early days of its development, and the many successful trainees to come out of the O'Riordan Group in London included other notable vitamin D researchers including Larry Fraher, Tom Clemens, and Martin Hewison. A synopsis of Jeffrey's career achievements and contributions to the field of vitamin D and mineral metabolism research can be found in Journal of Endocrinology 154:S1-2, 1997.

We want to extend our thanks and appreciation to the many authors who contributed to this volume. Without their hard work there, of course, would be no new edition. We therefore wish to express our gratitude for their willingness to offer their time and knowledge to make this book a success. We would like to thank the excellent team at Elsevier/ Academic Press for their outstanding support of our efforts to produce this new edition. We especially thank Tari Broderick, Lisa Eppich, and Jeff Rossetti for their indispensable contributions to make this edition possible. Finally, we hope that this book will provide for our readers the authoritative information they seek about the significance and importance of vitamin D actions and will serve as the means to keep their knowledge current about the continuing growth of the field of vitamin D biology and its potential effects on health and disease.

> David Feldman Wes Pike Roger Bouillon Ed Giovannucci David Goltzman Martin Hewison

Abbreviations

 1α -(OH)D₃ 1α-Hydroxyvitamin D₃ 1,25(OH)₂D₃ 1α,25-Dihydroxyvitamin D₃ 24,25(OH)₂D₃ 24,25-Dihydroxyvitamin D₃ 25(OH)D₃ 25-Hydroxyvitamin D₃ 5-ASA 5-Aminosalicylic acid 7-DHC 7-Dehydrocholesterol 9-cis-RA 9-cis-retinoic acid AA Arachiadonic acid AC Adenylyl cyclase ACE Angiotensin-converting enzyme **ACF** Activation frequency ACTH Adrenocorticotropin ADH Antidiuretic hormone (vasopressin) ADHR Autosomal dominant hypophosphatemic rickets ADP Adenosine diphosphate AHO Albright's hereditary osteodystrophy AI Adequate intake AIDS Acquired immunodeficiency syndrome Aj.AR Adjusted apposition rate ALP Alkaline phosphatase ANG II Angiotensin II ANP Atrial natriuretic peptide APC Antigen-presenting cell APD Aminohydroxypropylidene bisphosphonate APL Atrichia with papular lesions AR Androgen receptor ARC Activator-recruited cofactor ATP Adenosine triphosphate ATRA All-trans-retinoic acid AUC Area under the curve $B_{\rm max}$ Maximum number of binding sites BARE Bile acid response element bFGF Basic fibroblast growth factor BFU Burst-forming unit BGP Bone Gla protein (osteocalcin) BLM Basal lateral membrane BMC Bone mineral content BMD Bone mineral density BMI Body mass index BMP Bone morphogenetic protein BMU Basic multicellular unit bp Base pairs BPH Benign prostatic hyperplasia BSA Bovine serum albumin BUA Bone ultrasound attenuation [Ca²⁺]_i Internal calcium ion molar concentration CaBP Calcium-binding protein CAD Coronary artery disease CaM Calmodulin cAMP Cyclic AMP CaSR or CaR Calcium-sensing receptor CAT Chloramphenicol acetyltransferase CBG Corticosteroid-binding globulin CBP Competitive protein-binding assay CC Chief complaint CD Crohn's disease CDCA Chenodeoxycholic acid

CDK or Cdk Cyclin-dependent kinase cDNA Complementary DNA CDP Collagenase-digestible protein Cdx-2 Caudal-related homeodomain protein CFU Colony-forming unit cGMP Cyclic GMP CGRP Calcitonin gene-related peptide CHF Congestive heart failure CK-II Casein kinase-II CLIA Competitive chemiluminescence immunoassay cM Centimorgans Cm. Ln. Cement line CNS Central nervous system CPBA Competitive protein-binding assay cpm Counts per minute CRE cAMP response element CREB cAMP response element binding protein CRF Chronic renal failure CsA Cyclosporin A CSF Colony-stimulating factor CT Calcitonin or computerized tomography CTR Calcitonin receptor CTX Cerebrotendinous xanthomatosis CVC Calcifying vascular cell CYP Cytochrome P450 CYP24 Cytochrome P450, 24-hydroxylase DAG Diacylglycerol DBD DNA-binding domain DBP Diastolic blood pressure DBP Vitamin-D-binding protein DC Dendritic cell DCA Deoxycholic acid DCT Distal convoluted tubule DEXA or DXA Dual energy X-ray absorptiometry DHEA Dehydroepiandrosterone DHT Dihydrotachysterol or dihydrotestosterone DIC Disseminated intravascular coagulation DMSO Dimethyl sulfoxide DR Direct repeat DRIP Vitamin D receptor interacting protein DSP Dental sialoprotein DSS Dextran sodium sulfate E₁ Estrone E₂ Estradiol EAE Experimental autoimmune encephalitis EBT Electron beam computed technology EBV Epstein-Barr virus EC Endothelial cells EC₅₀ or ED₅₀ Effective concentration (dose) to cause 50% effect ECaC Epithelium calcium channel ECF Extracellular fluid EDTA Ethylenediaminetetraacetic acid EGF Epidermal growth factor ELISA Enzyme-linked immunosorbent assay EMSA Electrophoretic mobility shift assay **EP**₁ PG receptor-1 ER Estrogen receptor or endoplasmic reticulum

ERE Estrogen response element ERK Extracellular signal-regulated kinase Et Endothelin FACS Fluorescence-activated cell sorting or sorter FAD Flavin adenine dinucleotide FCS Fetal calf serum FDA US Food and Drug Administration FFA Free fatty acid FIT Fracture Intervention Trial FMTC Familial medullary thyroid carcinoma FP Formation period FRAP Fluorescence recovery after photobleaching FS Fanconi syndrome FSK Forskolin FXR Farnesoid X receptor g Gram g Acceleration due to gravity G_0, G_1, G_2 Gap phases of the cell cycle GAG Glycosaminoglycan GC-MS Gas chromatography-mass spectrometry G-CSF Granulocyte colony-stimulating factor GDNF Glial-cell-derived neurotrophic factor GFP Green fluorescent protein **GFR** Glomerular filtration rate GH Growth hormone GHRH Growth-hormone-releasing hormone GIO Glucocorticoid-induced osteoporosis GM-CSF Granulocyte-macrophage colony-stimulating factor GnRH Gonadotropin-releasing hormone GR Glucocorticoid receptor GRE Glucocorticoid response element GRTH Generalized resistance to thyroid hormone GWAS Genome-wide association study HAT Histone acetvltransferase HDAC Histone deacetylase HEK Human embryonic kidney HHRH Hereditary hypophosphatemic rickets with hypercalciuria HIV Human immunodeficiency virus HNF Hepatocyte nuclear factor HPI History of present illness HPLC High-performance liquid chromatography HPV Human papilloma virus h Hour **HR** Hairless HRE Hormone response element HSA Human serum albumin Hsp Heat-shock protein HSV Herpes simplex virus HVDRR Hereditary vitamin-D-resistant rickets HVO Hypovitaminosis D osteopathy IBD Inflammatory bowel disease **IBMX** Isobutylmethylxanthine IC₅₀ Concentration to inhibit 50% effect ICA Intestinal calcium absorption ICMA Immunochemiluminometric assay IDBP Intracellular vitamin-D-binding protein IDDM Insulin-dependent diabetes mellitus **IDM** Infants of diabetic mothers **IEL** Intraepithelial cells **IFN** Interferon Ig Immunoglobulin **IGFBP** IGF-binding protein IGF-I, -II Insulin-like growth factor type I, II IGF-IR IGF-I receptor **IL** Interleukin (e.g., IL-1, IL-lβ, etc.) i.m. Intramuscular

IMCal Intestinal membrane calcium-binding complex iNKT Invariant NKT i.p. Intraperitoneal IP₃ Inositol trisphosphate **IRMA** Immunoradiometric assay IU International units IUPAC International Union of Pure and Applied Chemists i.v. Intravenous JG Juxtaglomerular JNK c-Jun NH2-terminal kinase Kd Dissociation constant Km Michaelis constant kb Kilobases kbp Kilobase pairs kDa Kilodaltons KO knockout LBD Ligand-binding domain LCA Lithocholic acid LDL Low-density lipoprotein Li. Ce. Lining cell LIF Leukemia inhibitory factor LNH Late neonatal hypocalcemia LOD Logarithm of the odds LPS Lipopolysaccharide LT Leukotriene LXR Liver X receptor M Mitosis phase of cell cycle M molar MAPK Mitogen-activated protein kinase Mab Monoclonal antibody MAR Matrix attachment region MAR Mineral apposition rate MARRS Membrane-associated rapid response steroid MCR Metabolic clearance rate M-CSF Macrophage colony-stimulating factor MEN2 Multiple endocrine neoplasia type 2 MGP Matrix Gla protein MHC Major histocompatibility complex min Minute MIU Million international units MLR Mixed lymphocyte reaction Mlt Mineralization lag time MR Mineralocorticoid receptor MRI Magnetic resonance imaging mRNA Messenger ribonucleic acid MS Multiple sclerosis MT Metric ton MTC Medullary thyroid carcinoma NADH Nicotinamide adenine dinucleotide NADPH Nicotinamide adenine dinucleotide phosphate NAF Nuclear accessory factor NBT Nitroblue tetrazolium NcAMP Nephrogenous cAMP NCP Noncollagen protein **NFκB** Nuclear factor kappa B NGF Nerve growth factor NHANES III National Health and Nutrition Examination Survey III NHL Non-Hodgkin's lymphoma NIDDM Non-insulin-dependent diabetes mellitus NIH National Institutes of Health NK cell Natural killer cell NLS Nuclear localization signal NMR Nuclear magnetic resonance NOD Nod-like NPT Sodium/phosphate cotransporter NR Nuclear receptor

Ob Osteoblast Oc Osteocalcin or osteoclast OCIF Osteoclastogenesis inhibitory factor (same as OPG) **OCT** 22-Oxacalcitriol **ODF** Osteoclast differentiation factor (same as RANKL) OHO Oncogenic hypophosphatemic osteomalacia Omt Osteoid maturation time **OPG** Osteoprotegerin **OPN** Osteopontin **OSM** Oncostatin M **OVX** Ovariectomy P_i Inorganic phosphate PA₂ Phospholipase A₂ PAD Peripheral arterial vascular disease PAM Pulmonary alveolar macrophage PBL Peripheral blood lymphocyte PBMC Peripheral blood mononuclear cells **PBS** Phosphate-buffered saline PC Phosphatidylcholine PCNA Proliferating cell nuclear antigen PCR Polymerase chain reaction PCT Proximal convoluted tubule PDDR Pseudovitamin D deficiency rickets PDGF Platelet-derived growth factor **PEIT** Percutaneous ethanol injection therapy PHEX Phosphate-regulating gene with homologies to endopeptidases on the X chromosome PG Prostaglandin PHA Phytohemagglutinin PHP Pseudohypoparathyroidism PIC Preinitiation complex **PKA** Protein kinase A PKC Protein kinase C PKI Protein kinase inhibitor PLA₂ Phospholipase A₂ PLC Phospholipase C PMA Phorbol 12-myristate 13-acetate PMCA Plasma membrane calcium pump PMH Past medical history p.o. Oral poly(A) Polyadenosine PPAR Peroxisome proliferator-activated receptor **PR** Progesterone receptor **PRA** Plasma renin activity PRL Prolactin PRR Pattern recognition receptors PSA Prostate-specific antigen PSI Psoriasis severity index **PT** Parathyroid PTH Parathyroid hormone PTHrP Parathyroid hormone-related peptide PTX Parathyroidectomy PUVA Psoralen-ultraviolet A QCT Quantitative computerized tomography QSAR Quantitative structure-activity relationship RA Retinoic acid **RA** Rheumatoid arthritis Rag Recombination-activating gene RANK Receptor activator NF-KB RANKL Receptor activator NF-KB ligand **RAP** Receptor-associated protein RAR Retinoic acid receptor RARE Retinoic acid response element RAS Rennin-angiotensin system **RBP** Retinol-binding protein RCI Relative competitive index

RDA Recommended dietary allowance RFLP Restriction fragment length polymorphism RIA Radioimmunoassay RID Receptor interacting domain **RNase** Ribonuclease ROCs Receptor-operated calcium channels ROS Reactive oxygen species RPA Ribonuclease protection assay **RRA** Radioreceptor assay RT-PCR Reverse transcriptase-polymerase chain reaction RXR Retinoid X receptor RXRE Retinoid X receptor response element SBP Systolic blood pressure SD Standard deviation SDS Sodium dodecyl sulfate SE Standard error SEM Standard error of the mean SH Social history SHBG Sex-hormone-binding globulin SLE Systematic lupus erythematosus SNP Single nucleotide polymorphism SOS Speed of sound Sp1 Selective promoter factor 1 SPF Sun protection factor SRC-1 Steroid receptor coactivator-1 SSCP Single-strand conformational polymorphism SV40 Simian virus 40 SXA Single energy X-ray absorptiometry t_{1/2} Half-time T₃ Triiodothyronine T₄ Thyroxine TBG Thyroid-binding globulin TBP TATA-binding protein TC Tumoral calcinosis TF Tubular fluid TFIIB General transcription factor IIB TG Transgenic TGF Transforming growth factor TIO Tumor-induced osteomalacia TK Thymidine kinase TLR Toll-like receptor TmP or TmPi Tubular absorptive maximum for phosphorus TNBS Trinitrobenzene sulfonic acid TNF Tumor necrosis factor TPA 12-O-tetradecanoylphorbol-13-acetate **TPN** Total parenteral nutrition TPTX Thyroparathyroidectomized **TR** Thyroid hormone receptor TRAP Tartrate-resistant acid phosphatase TRAP Thyroid hormone receptor-associated proteins TRP Transient receptor potential TRE Thyroid hormone response element TRE TPA response element TRH Thyrotropin-releasing hormone Trk Tyrosine kinase TSH Thyrotropin TSS Transcription start site UF Ultrafiltrable fluid US Ultrasonography USDA US Department of Agriculture **UTR** Untranslated region **UV** Ultraviolet VDDR-I Vitamin-D-dependent rickets type I (see PDDR) VDDR-II Vitamin-D-dependent rickets type II (see HVDRR) **VDR** Vitamin D receptor **VDRE** Vitamin D response element

VDRL Vitamin D receptor ligand

VEGF Vascular endothelial growth factor

VERT Vertebral Efficacy with Risedronate Therapy studies

 ${\bf VICCs}~{\rm Voltage}\xspace$ insensitive calcium channels

VSMC Vascular smooth muscle cell

VSSCs Voltage-sensitive calcium channels

WHI Women's Health Initiative

WRE Wilms' tumor gene, WT1, responsive element
WSTF Williams syndrome transcription factor
WT Wild-type
XLH X-linked hypophosphatemic rickets
XRD X-ray diffraction
ZEB Zinc finger, E box-binding transcription factor

Relevant Lab Values in Adults and Children

CRITERIA FOR VITAMIN D DEFICIENCY: 25(OH)D SERUM LEVELS

Recommendations for Adults

Institute of Medicine recommendations

	Conventional Units (ng/mL)	SI Units (nmol/L)
Deficient	<20	<50
Normal	≥20	≥50
Excessive	>50	>125

Approximate normal ranges for serum values in adults^a

Measure	Conventional Units	SI Units	Conversion Factor ^b
Ionized calcium	4.5–5.3 mg/dL	1.12–1.32 mmol/L	0.2495
Total calcium	8.7–10.1 mg/dL	2.17–2.52 mmol/L	0.2495
Phosphorous, inorganic	2.4-4.6 mg/dL	0.77–1.49 mol/L	0.3229
1,25(OH) ₂ D	25–45 pg/mL	60–108 pmol/L	2.40

^aNormal ranges differ in various laboratories and these values are provided only as a general guide.

^bConversion factor X conventional units = SI units.

Frequently used vitamin D cut points by many laboratories similar to the Endocrine Society guidelines

	Conventional Units (ng/mL)	SI Units (nmol/L)
Deficient	<20	<50
Insufficient	20–29.9	50-74.9
Sufficient	30	>75

Recommendations for pediatrics

nmol/L	ng/mL	Journal of Clinical Endocrinology and Metabolism ^a	Nature Rev Endo ^b
>50	20	Sufficiency	Sufficiency
30-50	12–20	Insufficiency	Deficiency
<30	12	Deficiency	Severe deficiency

^aMunns CF, et al. Global consensus recommendations on prevention and management of nutritional rickets. J Clin Endocrinol Metab 2016;101: 394–415.

^bBouillon R. Nat Rev Endocrinol August 2017;13(8):466-79.

Approximate normal ranges for serum values in children^a

Measure	Conventional Units	SI Units	Conversion Factor ^b
Ionized calcium	4.8–5.2 mg/dL	1.19–1.29 mmol/L	0.2495
Total calcium	9.0–10.5 mg/dL	2.25–2.63 mmol/L	0.2495
Phosphorous, inorganic	3.8–5.0 mg/dL	1.23–1.62 mol/L	0.3229
1,25(OH) ₂ D	27–56 pg/mL	65–134pmol/L	2.40

^aNormal ranges differ in various laboratories and these values are provided only as a general guide.

^bConversion factor X conventional units = SI units.

Useful equivalencies of different units

Vitamin D	1 µg = 40 IU
Calcium	1 mmol = 40 mg
Phosphorus	1 mmol=30 mg

This page intentionally left blank

HISTORY, CHEMISTRY METABOLISM, CIRCULATION & REGULATION

This page intentionally left blank

CHAPTER

1

Historical Overview of Vitamin D

Hector F. DeLuca University of WI-Madison, Madison, WI, United States

OUTLINE

Discovery of the Vitamins	3	Discovery of the Hormonal Form of Vitamin D	6
Early Nutritional Views	3	Early Work of Kodicek	6
McCollum and Osborne and Mendel's Discovery of		Radiolabeled Vitamin D Experiments	6
Vitamin A and B Complex	4	Isolation and Identification of the Active Form of Vitamin D	7
History of Rickets	4	Proof That $1,25(OH)_2D_3$ Is the Active Form of Vitamin D	7
Discovery of Vitamin D	4	Discovery of the Vitamin D Endocrine System	7
Discovery That Vitamin D Is Not a Vitamin	4	Other Metabolites of Vitamin D	8
Isolation and Identification of Nutritional Forms of		Discovery of the Vitamin D Receptor	8
Vitamin D	5	Acknowledgment	9
Discovery of the Physiological Functions of Vitamin D		References	9
Intestinal Calcium and Phosphorus Absorption	5	Kelerences	9
Mobilization of Calcium From Bone	5		
Renal Reabsorption of Calcium and Phosphorus	6		
Discovery of New Functions of Vitamin D	6		

DISCOVERY OF THE VITAMINS

Early Nutritional Views

The field of nutrition was largely dominated in the 19th century by German chemists, led by Justus von Liebig [1]. They taught that adequacy of the diet could be described by an analysis of protein, carbohydrate, fat, and mineral. Thus, a diet containing 12% protein, 5% mineral, 10%–30% fat, and the remainder as carbohydrate would be expected to support normal growth and reproduction. This view remained largely unchallenged until the very end of the 19th century and the beginning of the 20th century [2–5]. However, evidence opposing this view began to appear. One of the first was the famous study of Eijkman who studied prisoners in the Dutch East Indies maintained on a diet of polished rice [6]. A high incidence of the neurological disorder beriberi was recorded in these inmates. Eijkman found that either feeding whole rice or returning the hulls of the polished rice could eliminate beriberi.

Eijkman reasoned that polished rice contained a toxin that was somehow neutralized by the rice hulls. Later, a colleague, Grijns [7], revisited the question and correctly demonstrated that hulls contained an important and required nutrient that prevented beriberi.

Other reports revealed that microorganic nutrients might be present. The development of scurvy in mariners was a common problem. This disease was prevented by the consumption of limes on British ships (hence, the term "Limey" to describe British sailors) and sauerkraut and fruits on other ships. This led Holst and Frohlich to conclude that scurvy could be prevented by a nutrient present in these foods [8]. Experiments by Lunin, Magendie, Hopkins, and Funk showed that a diet of purified carbohydrate, protein, fat, and salt is unable to support growth and life of experimental animals [2–5]. This suggested that some unknown or vital factor present in natural foods was missing from the purified diets. Hopkins developed a growth test in which natural foods were found to support rapid growth of experimental animals, whereas purified materials could not [3]. Funk had found similar results for the prevention of neuritis and reasoned that there were "vital amines" present in foods from natural sources and actually provided the basis for the term "vitamins" used later to describe essential micronutrients [5].

McCollum and Osborne and Mendel's Discovery of Vitamin A and B Complex

A key experiment demonstrating essential micronutrients was one carried out at the Wisconsin Agricultural Experiment Station, engineered by Stephen Moulton Babcock and carried out by E. B. Hart supported by McCollum and Steenbock [9]. Herds of dairy cows were maintained on a diet composed individually only of corn, oats, or wheat or were fed a mixture of all of these grains, all receiving the same amount of carbohydrate, protein, fat, and salts and all providing equal analysis according to the German chemists [1]. The animals on the corn diet did very well, produced milk in large amounts, and reproduced normally. Those on the wheat diet failed to thrive and soon were unable to reproduce or lactate. The oat group was found to be intermediate between the corn and wheat groups, and the mixture approximated the growth and reproduction found with corn. Yet all these diets had the same proximate analysis.

The conclusion of the Wisconsin Experiment Station study was that there are unknown nutrients present in corn and not found in wheat that are essential for life and reproduction. This led E. B. Hart, Chairman of Agricultural Chemistry (now Biochemistry) at Wisconsin, to conceive that a search for these nutrients must begin. Professor Hart assigned this task to Professor Elmer McCollum. Professor McCollum decided to search for these nutrients using small experimental animals to minimize the cost and labor associated with large animals used in the single-grain experiments. McCollum and Davis demonstrated in rats there was present in butter fat a substance that prevented xerophthalmia and was also required for growth. They termed this "a lipid-soluble growth factor" [10]. McCollum later named this factor "vitamin A" [11]. This substance was absent from lard and other fats but was found in large amounts in cod liver oil. In constructing the diets, McCollum obtained the carbohydrates and salts from milk whey that, unknown to him, supplied the vitamin B complex group of micronutrients that permitted him to observe a vitamin A deficiency. McCollum at Wisconsin [11] and Osborne and Mendel [12] at the Connecticut Experiment Station carried out experiments in which cod liver oil was used as a source of fat in the diet, but the minerals were supplied from pure chemicals mixed to approximate the mineral composition of milk. Starch or sugar was used as the carbohydrate. These animals developed a different group of symptoms, namely, neuritis, which could be cured by the provision of the milk components. McCollum and Osborne and Mendel correctly concluded that this activity was because of a different micronutrient called "vitamin B." These experiments ushered in the concept of the organic micronutrients known as vitamins.

History of Rickets

The disease rickets was very likely known in antiquity but was described in the 15th century as revealed by later writings. Whistler first provided a clear description of rickets in which the skeleton was poorly mineralized and deformed [13]. Rickets undoubtedly in ancient times appeared only on rare occasions and hence was not considered a problem. However, at the end of the 19th century, the Industrial Revolution had taken place: a highly agrarian population had become urbanized, and smoke from the industrial plants polluted the atmosphere. Thus, in low-sunlight countries such as England, rickets appeared in epidemic proportions. In fact, it was known as the English Disease [14]. Some reports of the beneficial action of cod liver oil had appeared. However, they were not given scientific credence.

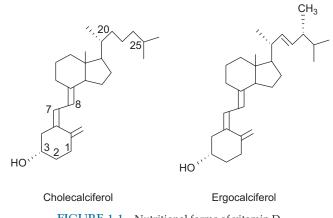
With the discovery of the vitamins, Sir Edward Mellanby in Great Britain began to reason that rickets might also be a disease caused by a dietary deficiency [15]. Mellanby fed dogs a diet composed primarily of oatmeal, which was the diet consumed where the incidence of rickets was the highest (i.e., Scotland). McCollum inadvertently maintained the dogs indoors and away from ultraviolet light. The dogs developed severe rickets. Learning from the experiments of McCollum, Mellanby provided cod liver oil to cure or prevent the disease. Mellanby could not decide whether the healing of rickets was because of vitamin A known to be present in the cod liver oil or whether it was a new and unknown substance. Therefore, the activity of healing rickets was first attributed to vitamin A.

Discovery of Vitamin D

McCollum, who had moved to Johns Hopkins from Wisconsin, continued his experiments on the fat-soluble materials. McCollum used aeration and heating of cod liver oil to destroy the vitamin A activity or the ability to support growth and prevent xerophthalmia [16]. However, cod liver oil treated in this manner still retained the ability to cure rickets. McCollum correctly reasoned that the activity in healing rickets was due to a new and heretofore unknown vitamin that became known as vitamin D. Vitamin C was assigned to the antiscorbutic substance [17]. On the basis of the experiments of McCollum and Mellanby, vitamin D became known as an essential nutrient.

Discovery That Vitamin D Is Not a Vitamin

At the same time Sir Edward Mellanby was carrying out the experiments in dogs, Huldshinsky [18] and Chick et al. [19] independently found that rickets in children could be prevented or cured by exposing them to sunlight or to artificially induced ultraviolet light. Thus, the curious findings were that sunlight and ultraviolet light somehow equaled cod liver oil. These strange and divergent results required resolution.


Steenbock and Hart had noted in 1916 the importance of sunlight in restoring positive calcium balance in goats [20]. At Wisconsin, with McCollum carrying out experiments in small

experimental animals (i.e., rats), Steenbock was required to work with larger animals. Steenbock then began to study goats because they would consume less material and could serve as better experimental animals than cows. Steenbock began to study the calcium balance of lactating goats and found that those goats maintained outdoors in the sunlight were found to be in positive calcium balance, whereas those maintained indoors lost a great deal of their skeletal calcium to lactation [20]. Steenbock and Hart, therefore, noted the importance of sunlight (or at least, outdoors) on calcium balance. This work then undoubtedly led Steenbock to realize that the ultraviolet healing properties described by Huldschinky might be related to the calcium balance experiments in goats. By irradiating the animals and diets, Steenbock and Black found that vitamin D activity could be induced and rickets could be cured [21]. A similar finding was reported soon thereafter by Hess and Weinstock [22]. Steenbock then traced this to the nonsaponifiable fraction of the lipids in foods [23]. He found that ultraviolet light activated an inactive substance to become a vitamin D-active material. Thus, ultraviolet light could be used to irradiate foods, induce vitamin D activity, and fortify foods to eliminate rickets as a major medical problem. This discovery also made available a source of vitamin D for isolation and identification.

Isolation and Identification of Nutritional Forms of Vitamin D

From irradiation of mixtures of plant sterols, Windaus and colleagues isolated a material that was active in healing rickets [24]. This substance was called "vitamin $D_{1,1}$ " but its structure was not determined. Vitamin D₁ proved to be an adduct of tachysterol and vitamin D₂, and thus vitamin D₁ was actually an error in identification. The British group led by Askew was successful in isolating and determining the structure of the first vitamin D, vitamin D₂ or ergocalciferol, from irradiation of plant sterols [25]. A similar identification by the Windaus group confirmed the structure of vitamin D₂ [26]. Windaus and Bock also isolated the precursor of vitamin D₃ from skin, namely, 7-dehydrocholesterol [27]. Furthermore, 7-dehydrocholesterol was synthesized [28] and converted to vitamin D₃ (cholecalciferol) as identified by the Windaus group [29]. Thus, the structures of nutritional forms of vitamin D became known (Fig. 1.1). Windaus and Bock, having isolated 7-dehydrocholesterol from skin, provided the presumptive evidence that vitamin D_3 is the form of vitamin D produced in skin, a discovery that was later confirmed by the chemical identification of vitamin D₃ in skin by Esvelt et al. [30] and of a previtamin D_3 in skin by Holick et al. [31]. Synthetic vitamin D as produced by the irradiation process replaced the irradiation of foods as a means of fortifying foods with vitamin D and was also rapidly applied to rickets and tetany and in the provision to domestic animals such as chickens, cows, and pigs.

Windaus' group provided chemical syntheses of the vitamin D compounds, confirming their structures and thus ending the era of the isolation and identification of nutritional

FIGURE 1.1 Nutritional forms of vitamin D.

forms of vitamin D and making them available for the treatment of disease. Although Windaus received the 1928 Nobel Prize in chemistry, it was for his general work on steroids.

DISCOVERY OF THE PHYSIOLOGICAL FUNCTIONS OF VITAMIN D

Intestinal Calcium and Phosphorus Absorption

Besides bone mineralization, the earliest discovered function of vitamin D is its important role in the absorption and utilization of calcium. The first report of this finding was in the early 1920s by Orr and colleagues [32]. Kletzien et al. [33] demonstrated that vitamin D plays an important role in the utilization of calcium from the diet, and a number of experiments were carried out on the utilization of calcium and phosphorus from cereal diets. Nicolaysen was responsible, however, for demonstrating unequivocally the role of vitamin D in the absorption of calcium and independently of phosphorus from the diet [34]. Nicolaysen also followed the early work of Kletzien et al. [33] in which animals adapted to a low-calcium diet were better able to utilize calcium than animals on an adequate calcium diet. This work was confirmed by Nicolaysen, who postulated the existence of an "endogenous factor" that would inform the intestine of the skeletal needs for calcium [35]. This endogenous factor later proved to be largely the active form of vitamin D, 1,25-dihydroxyvitamin D_3 (1,25(OH)₂ D_3) [36]. Strong support for this concept was provided by the studies of Ribovitch et al. [37], which showed animals maintained on a constant exogenous source of $1,25(OH)_2D_3$ are unable to change intestinal calcium transport in response to changes in dietary calcium levels. Chapter 20 will present a detailed review of the role of vitamin D in the regulation of intestinal calcium absorption.

Mobilization of Calcium From Bone

For many years, investigators have attempted to show that vitamin D plays a role directly on the mineralization process of the skeleton. However, early work by Howland and Kramer [38], later work by Lamm and Neuman [39], and more recent work by Underwood and DeLuca [40] demonstrated very clearly that vitamin D does not play a significant role in the actual mineralization process of the skeleton but that the failure to mineralize the skeleton in vitamin D deficiency is due to inadequate levels of calcium and phosphorus in the plasma. Thus, the action of vitamin D in mineralizing the skeleton and in preventing hypocalcemic tetany is the elevation of plasma calcium and phosphorus [41]. These discoveries laid to rest the concept of a role of vitamin D in mineralization. However, Carlsson [42] and Bauer et al. [43] were the first to realize that a major function of vitamin D is to induce the mobilization of calcium from bone when required. Thus, in animals on a low-calcium diet, the rise in serum calcium induced by vitamin D is the result of actual mobilization of calcium from bone [44]. This important function is known to be essential for the provision of calcium to meet soft tissue needs, especially those of nerves and muscle, on a minute-tominute basis when it is in insufficient supply from the diet. It is likely that the function of vitamin D in mobilizing calcium from bone is an osteoclastic-mediated process [45]. It is clear, however, that both vitamin D and parathyroid hormone are required for this function [46]. Furthermore, it is clear that vitamin D plays an important role in osteoclastic-mediated bone resorption [47], which is certainly the first and essential event in bone remodeling [48].

Renal Reabsorption of Calcium and Phosphorus

A significant site of vitamin D action to elevate plasma calcium is in the distal renal tubule. Although experiments were suggestive of a role for vitamin D in increasing renal tubule reabsorption of calcium, a clear demonstration of this did not occur until the late 1980s at the hands of Yamamoto et al. [49]. The renal tubule reabsorbs 99% of the filtered calcium even in the absence of vitamin D. However, reabsorption of the last 1% of the filtered load requires both vitamin D and parathyroid hormone. Thus, these agents work in concert in the renal reabsorption of calcium as well as in the mobilization of calcium from bone. Both agents are required to carry out this function. A review of the renal actions of vitamin D can be found in Chapters 26 and 79.

Discovery of New Functions of Vitamin D

With discovery of the receptor for the vitamin D hormone (described below) came the surprising result that this receptor could be found in a variety of tissues not previously appreciated as targets of vitamin D action. It localizes in the distal renal tubule cells, enterocytes of the small intestine, bone lining cells, osteoblasts, and osteoclasts in keeping with its known role in calcium metabolism [50,51]. However, its appearance in tissues such as parathyroid gland, islet cells of the pancreas, cells in bone marrow (i.e., promyelocytes), lymphocytes, and certain neural cells raised the question of whether the functions of vitamin D might be broader than

previously anticipated [50,51]. As a result of those findings, new functions of vitamin D have been found. For example, vitamin D plays a role in causing differentiation of promyelocytes to monocytes and the subsequent coalescing of the monocytes into multinuclear osteoclast precursors and ultimately into active osteoclasts [52,53]. The target of vitamin D in this function is the osteoblast and osteocyte. In response to the hormonal form of vitamin D (see below), RANK ligand is produced, which signals osteoclastogenesis and osteoclastic activation [52,53]. Suppression of parathyroid cell growth and suppression of parathyroid hormone gene expression represent other new vitamin D actions [54,55]. In keratinocytes of skin, vitamin D appears to play a role in suppression of growth and in cellular differentiation [56]. Likely, discoveries of many new functions of 1,25(OH)₂D₃ will be made and are well on their way, as described in the later chapters of this volume.

DISCOVERY OF THE HORMONAL FORM OF VITAMIN D

Early Work of Kodicek

The true pioneer of vitamin D metabolism was Egan Kodicek working at the Dunn Nutritional Laboratory in Cambridge. Kodicek used a bioassay at first to study the fate of the vitamin D molecule and found that much vitamin D was converted to biologically inactive products [57]. Clearly, however, this approach of assaying vitamin D activity following administration of known doses of vitamin D was of limited value in determining metabolism.

Radiolabeled Vitamin D Experiments

Professor Kodicek then began to synthesize radiolabeled vitamin D₂. Unfortunately, the degree of labeling was not sufficient to permit the administration of truly physiological doses of vitamin D. Nevertheless, Professor Kodicek continued investigations into this important area. At the conclusion of 10 years of work, he concluded that vitamin D was active without metabolic modification and that the metabolites that were found were biologically inactive [58]. This conclusion was reached even as late as 1967, when it was concluded that vitamin D₃ itself was the active form of vitamin D in the intestine [59]. However, chemical synthesis of radiolabeled vitamin D_3 of high specific activity in the laboratory of the author proved to be of key importance in the demonstration of biologically active metabolites [60]. By providing a truly physiological dose of vitamin D, it could be learned that the vitamin D itself disappeared and instead polar metabolites could be found in the target tissues before those tissues responded [61]. The polar metabolites proved to be more biologically active and acted more rapidly than vitamin D itself [62]. Thus, presumptive evidence of conversion of vitamin D to active forms had been obtained as early as 1967.