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  Pref ace   

 Transport across the cell membrane is essential for vital processes like entry of 
nutrients into the intracellular compartment, delivery of cellular products to extra-
cellular and intracellular destinations, and handling of metabolism waste products 
and toxic substances and is necessary to keep the intracellular milieu constant. 
Transport across cell membranes is mediated by a variety of different transport 
proteins. This book focusses on transporters for organic cations, which are not 
directly energy-dependent, such as organic cation transporters (OCTs), organic 
zwitterions/cation transporters (OCTNs), and multidrug extrusion proteins 
(MATEs). Because these transporters are polyspecifi c, they accept many different 
substrates of endogenous (e.g. choline, acetylcholine, histamine, and monoamine 
neurotransmitters) as well as of exogenous (e.g. drugs like metformin, quinine, 
cimetidine, and cisplatin) origin. 

 Since the cloning of the fi rst transporter for organic cations (rOCT1) in 1994, 
profound understanding of their structure, transport properties, and regulation has 
been obtained. In organs expressing these transporters at high levels, such as the 
intestine, liver, and kidney, transporters for organic cations play a pivotal role not 
only in absorption and in excretion of xenobiotics but also in their accumulation and 
toxicity. However, their expression is not restricted to organs typically involved in 
the transport of xenobiotics, but is found also in other tissues, such as the brain and 
reproductive organs. Recent studies with genetically modifi ed animals have helped 
to unveil novel physiological, pathophysiological, and pharmacological roles of 
transporters for organic cations. While there is no doubt about the pharmacological 
and toxicological implications of transporters for organic cations for the organism, 
their physiological functions had remained largely elusive. Moreover, gender- and 
species-specifi c differences in the expression and properties of these transporters as 
well as the role of single nucleotide polymorphisms on their function have become 
a focus of attention in physiology, pathophysiology, and medical care. 

 This book presents current knowledge on the expression, physiological functions 
(see Chap.   1     by G. Ciarimboli), and regulation (see Chap.   5     by E. Schlatter and 
Chap.   6     by L.M. Aleksunes) of transporters for organic cations in various organs, on 

http://dx.doi.org/10.1007/978-3-319-23793-0_1
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their gender and species dependencies (see Chap.   9     by I. Sabolić, D. Breljak, and 
T. Smital), and on their role in pathophysiological situations. This overview should 
be of high interest for researchers and students in various areas of integrative, organ, 
cell, and molecular physiology and will contribute to delineate an integrative physi-
ological interpretation of transporter function. 

 Another important aspect of the book is that it conjugates integrative transporter 
physiology with structural and molecular biology (see Chap.   2     by H. Koepsell and 
T. Keller), genetics (see Chap.   4     by M.V. Tzvetkov, N. Dalila, and F. Faltraco), 
pharmacology, and pathophysiology (see Chap.   3     by K. Inui and H. Motohashi and 
Chap.   8     by K. Tieu), offering an integration of the knowledge in these fi elds. The 
different chapters of the book present the state of the art of the research in these 
different fi elds. For this reason, the book addresses both expert readers and readers 
with a more general interest in understanding transporter function in physiology 
and pathophysiology. Hence, the book should also attract people interested in adap-
tive mechanisms of the organism to conditions, such as salt intake, anxiety, and 
stress (see Chap.   7     by A. Orrico and S. Gautron). 

 Since up to 40 % of the prescribed drugs are organic cations, this book will pro-
vide important information on the involvement of transporters for organic cations 
in determining specifi c effects but also side effects induced by particular drugs, 
offering new approaches for a successful translation from physiology to clinical 
therapy. Finally, because of the expression of transporters for organic cations in 
plants, the role of these transporters for the environmental cycling of pharmaceuti-
cal residues is also presented (see Chap.   10     by T. Eggen and C. Lillo). 

 In conclusion, we think that a book concentrating on the latest developments of 
integrative, organ, cell, and molecular aspects of function of transporters for organic 
cations will furnish an optimal platform to integrate the knowledge on these transporters 
and obtain a more comprehensive physiological understanding of their function.  

  Münster, Germany     Giuliano     Ciarimboli    
 Paris, France      Sophie     Gautron    
 Münster, Germany      Eberhard     Schlatter     
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    Chapter 1   
 Introduction to the Cellular Transport 
of Organic Cations       

       Giuliano     Ciarimboli    

    Abstract     Organic cations (OCs) are substances of endogenous and exogenous ori-
gin to which belong important neurotransmitters such as histamine and serotonin 
and also drugs such as metformin. Because OCs are positively charged they need 
membrane transporters to permeate the plasma membrane. Membrane transporters 
which translocate OCs according to their electrochemical gradient belong to the 
Solute Carrier (SLC) families 22 (organic cation transporters (OCT) 1–3, and 
organic cation transporters novel (OCTN) 1–2) and 47 (multidrug and toxin extru-
sion (MATE) 1–2). This chapter collects the information on expression and function 
of these transporters present in the literature, comparing the characteristics of 
human and rodent transporters. These data show that OCTs play an important physi-
ological role for neurotransmitter balance in the body. Moreover, they are also 
important uptake routes for intracellular drug delivery and, considering their high 
expression in excretory organs, together with MATEs are responsible for drug 
excretion. For this reason, OCTs and MATEs can be important determinants of drug 
effi cacies and also toxicities. OCTNs are transporters involved in the cellular uptake 
of substances, which are important in cell metabolism and in signal transmission, 
such as ergothioneine, carnitine and acetylcholine. Even though the expression and 
function of orthologs of transporters for OCs is generally similar, still there are 
important differences that have to be considered for a proper interpretation of trans-
lational studies. Paralogs of transporters for organic cations often display similar 
characteristics, however they show also important differences e.g. with regard to 
interaction with substrates and to regulation. Other important functional aspects of 
transporters for organic cations, such as the molecular correlates of polyspecifi city, 
regulation, interaction with drugs, genetic variations, role in the central nervous 
system, and distribution in the plants are discussed in the other sections of this book.  

  Keywords     Organic cations   •   Transporters   •   Neurotransmitters   •   Drugs   •   Plasma 
membrane  

        G.   Ciarimboli      (*) 
  Experimental Nephrology, Medical Clinic D, University of Münster , 
  Albert-Schweitzer-Campus 1/A14 ,  48149   Münster ,  Germany   
 e-mail: gciari@uni-muenster.de  

mailto:gciari@uni-muenster.de
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        Introduction 

 The development of a plasma  membrane   was a fundamental step in the evolution of 
the cell, because it allowed the separation of an internal milieau from the external 
environment, which is of special importance to protect the genetic material. 
However, this important evolutionary progress created new challenges, because 
now the cell had to fi nd solutions able to guarantee the entry of all essential nutrients 
into the cytoplasmatic compartment, the distribution of cellular products such as 
proteins, complex carbohydrates and lipids into and beyond the plasma membrane, 
and the handling of waste products and toxic substances, processes aimed at keep-
ing the intracellular milieau constant [ 1 ]. The solution of these problems was the 
development of specialized transport systems of  proteinic nature (transporters)   
embedded in the plasma membrane. Thus, it is evident that transporters are essential 
to sustain life and adaptation to changes in the environment. Their malfunction can 
result in diseases and, therefore, they are target of therapeutic intervention. Some 
transporters are also responsible for effi cacy and also dangerous side-effects of che-
motherapy [ 2 ,  3 ]. 

 A total of 40,678 transport proteins classifi ed into 134 families were predicted by 
 whole-genome transporter analysis   of 141 species, including 115 Eubacteria, 17 
Archaea and 9 Eukaryota [ 4 ]. Eukaryotic cells, especially those of multicellular 
eukaryotic organisms, express the largest total number of transporters, which dis-
play a high number of paralogs generated by gene duplication or expansion within 
certain transporter families. The formation of paralogs is a sign of specialization, 
since closely related paralog transporters become expressed in specifi c tissues or at 
specifi c subcellular localisation and developmental time points [ 4 ]. 

 Based on mode of transport and energy-coupling source, molecular phylogeny, 
and substrate specifi city, there are fi ve main recognised classes of transporters: 
pores and channels, electrochemical-potential-driven transporters, primary active 
transporters, group translocators, and transmembrane electron carriers ([ 1 ],   http://
www.tcdb.org    ). Each transporter category is further classifi ed into individual fami-
lies and subfamilies (Table  1.1    ).

   This book focuses on transporters for organic cations, which are not directly ATP 
dependent and mediate the substrate movement through the plasma membrane 
according to the electrochemical gradient. According to the “ Transporter 
Classifi cation Database ” (  http://www.tcdb.org    ), these transporters belong to the 
family 2, subfamily 2. A  (Table  1.1 ). Here a special attention will be payed at organic 
cation transporters (OCTs), novel organic cation transporters (OCTNs), and multi-
drug and toxin extrusion transporters (MATEs). 

 Basing on the amino acid sequences, the Human Genome Organisation ( HUGO        ), 
classifi ed human transporters in 54  S o l ute  C arrier (SLC) families (a transporter has 
been assigned to a specifi c family if it has at least 20–25 % amino acid sequence 
identity to other members of that family [ 5 ]). These SLC families comprise 386 
different SLC human transporters [ 6 ], additional new members being identifi ed 
constantly [ 5 ]. 

G. Ciarimboli
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 According to this classifi cation, OCTs and OCTNs belong to the SLC22 and 
MATEs to the SLC47 family  (Table  1.2    ) . The HUGO nomenclature system is also 
informally used with lowercase letters for rodents and this notation has been also 
extended to the spelling of protein (e.g.,  Slc22a1  and Oct1 denote the rodent ortho-
logs of the human  SLC22A1  gene and hOCT1 protein, respectively).

   Many of the SLC families present in  H. sapiens  (among these also the SLC22 
family) are highly evolutionary conserved in  Bilaterian species   [ 7 ]; moreover, the 
high representation of the SLC22 family in the plant  Arabidopsis thaliana , suggests 
that it has an ancient origin [ 7 ]. More information about transporters for organic cat-
ions in plants will be presented in the Chap.   10     by T. Eggen and C. Lillo in this book.  

    Table 1.1     Transporter classifi cation   (classes and subclasses) according to the International Union 
of Biochemistry and Molecular Biology (  http://www.tcdb.org    )   

 1. Pores and channels  1.A α-Helical channels 
 1.B β-Strand porins 
 1.C Pore-forming toxins 
 1.D Non-ribosomally synthesized channels 
 1.E Holins 

 These proteins catalyze facilitated diffusion by passage through a transmembrane aqueous pore 
or channel. They do not exhibit stereospecifi city but may be specifi c for a particular molecular 
species or class of molecules 
 2. Electrochemical-potential-driven 
transporters 

 2.A Transporters or carriers (uniporters, 
symporters and antiporters) 
 2.B Non-ribosomally synthesized transporters 

 These transporters utilize a carrier-mediated process not directly linked to a form of energy 
other than chemiosmotic energy to catalyze uniport (a single species is transported by facilitated 
diffusion), antiport (two or more species are transported in opposite directions) and/or symport 
(two or more species are transported together in the same direction) 
 3. Primary active transporters  3.A P–P-bond-hydrolysis-driven  transporters   

 3.B Decarboxylation-driven transporters 
 3.C Methyltransfer-driven transporters 
 3.D Oxidoreduction-driven transporters 
 3.E Light-driven transporters 

 These transporters use a primary source of energy (chemical, electrical and solar) to drive active 
transport of a solute against a concentration gradient 
 4. Group translocators  4.A Phosphotransferases 
 Transport systems of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. The 
product of the reaction, derived from extracellular sugar, is a cytoplasmic sugar-phosphate. The 
enzymatic constituents, catalyzing sugar phosphorylation, are superimposed on the transport 
process in a tightly coupled process 
 5. Transmembrane electron carriers  5.A Two-Electron Carriers 

 5.B One-Electron  Carriers   
 Systems that catalyze electron fl ow across a biological membrane, from donors localized to 
one side of the membrane to acceptors localized on the other side. These systems contribute to 
or subtract from the membrane potential, depending on the direction of electron fl ow. They are 
therefore important to cellular energetics 

1 Introduction to the Cellular Transport of Organic Cations
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    Substrates of Transporters for Organic Cations 

 The substrates of the three types of  transporters   for organic cations discussed in this 
book (OCTs, OCTNs, MATEs) are mainly organic cations, even though also inor-
ganic substances such as Cd 2+  [ 8 ] and cisplatin [ 9 ,  10 ] have been demonstrated to be 
accepted as substrate by some of these transporters. Moreover, some of these pro-
teins can transport also zwitterions such as  L -carnitine [ 11 ,  12 ] (OCTNs) and cepha-
lexin and cephradine [ 13 ] (human MATE1, hMATE1) and anionic substances such 
as estrone sulphate (hMATE1, [ 13 ]), acyclovir, and ganciclovir (hOCT1 and 
hMATE, [ 13 ,  14 ]). 

 Organic cations (OCs) can derive from endogenous and also exogenous  sources  . 
Endogenous OCs are important neurotransmitters such as histamine, serotonin and 
dopamine [ 15 ] and polyamines such as putrescine and spermidine [ 16 ], which have 
an important function in many cellular processes such as DNA stabilization, 

   Table 1.2    The  SLC22A and SLC47A families     

 Gene name  Gene locus  Protein name  Function 

  SLC22A1    6q25.3    hOCT1   Electrogenic cation transport 
  SLC22A2    6q25.3    hOCT2  
  SLC22A3    6q25.3    hOCT3  
  SLC22A4    5q23.3    hOCTN1   Carnitine and cation transport 
  SLC22A5    5q23.3    hOCTN2 / CT1  
  SLC22A16    6q21    hCT2 / hFLIPT2 / hOCT6  
  SLC22A6   11q12.3  hOAT1  Anion transport 
  SLC22A7   6q21.1  hOAT2 
  SLC22A8   11q12.3  hOAT3 
  SLC22A9   11q12.3  hOAT7 
  SLC22A11   11q13.1   hOAT4   
  SLC22A12   11q13.1  hURAT1 
  SLC22A13   3p22.2  hOAT10 
  SLC22A20   11q13.1  hOAT6 
  SLC22A10   11q12.3  hOAT5  Predominant substrates not 

yet determined   SLC22A14   3p22.2  OCTL2/hORCTL4 
  SLC22A15   1p13.1  FLIPT1 
  SLC22A17   14q11.2  BOIT/BOCT 
  SLC22A18   11p15.5  TSSC5/hORCTL2 
  SLC22A23   6p25.2 
  SLC22A24   11q12.3 
  SLC22A25   11q12.3  UST6 
  SLC22A31   16q24.3 
  SLC47A1    17p11.2    hMATE1   H + -coupled electroneutral 

exchange of organic  cations     SLC47A2    17p11.2    hMATE2  

  The transporters presented in this book are in bold characters  

G. Ciarimboli
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 regulation of ion channel activity, gene expression, and cell proliferation [ 17 ]. In 
general, neurotransmitters and polyamines seem to be low affi nity substrates of 
transporters for OCs, underlying the importance of these transport systems in places, 
where the concentration of such substances is high. Exogenous OCs are drugs (up 
to 40 % of the prescribed drugs are OCs [ 18 ]), xenobiotics such as the herbicide 
paraquat and the DNA intercalating agent ethidium bromide [ 19 ,  20 ], and also sev-
eral natural contents of fungi, fruits and vegetables. Of practical experimental inter-
est are fl uorescent OCs such as 4(4-dimethylaminostyryl)- N -methylpyridinium 
(ASP + ), and rhodamine 123, which are substrates for several transporters for OCs 
and are therefore useful for investigating transporter activity [ 21 – 24 ]. 

 OCs are also classifi ed as  type I and type II   OCs depending on their chemical 
structure. Type I OCs are small (below 500 Da), strongly hydrophilic cations, such 
as tetraethylammonium (TEA + ) and 1-methyl-4-phenylpyridinium (MPP + ), while 
Type II OCs are large, more hydrophobic and mostly polyvalent substances, such as 
 D -tubocurarine and quinine [ 25 ]. 

 Even though many substrates are common between OCTs, OCTNs, and MATEs, 
every single transporter has a specifi c interaction spectrum with the substrates and 
inhibitors. For example, TEA +  is a substrate for OCT1 and OCT2 [ 26 ], but not for 
OCT3 [ 15 ]. Some substances are known to bind to, but not to be transported by 
these transporters, as for example shown for  proton pump inhibitors   [ 27 ]. 

 From this brief description it is evident why these transporters are called  poly-
specifi c  . The translational relevance of studies on OCs with laboratory animals 
should be cautionally inferred, since rodent and human transporter orthologs can 
differ in substrate specifi city, tissue expression [ 28 ] and also regulation (see Chap. 
  5     by E. Schlatter of this book), even though the global substrate preference of the 
SLC22 family seems to be conserved over a long evolutionary time [ 7 ].  

    Integration of OC Transport 

 Since many transporters for OCs are expressed in liver and kidney, they play a piv-
otal role in  drug and xenobiotic absorption and excretion   [ 29 ]. In these organs, 
SLC22A and SLC47 transporters are expressed in hepatocytes and renal proximal 
tubules cells, which are highly polarized cells, and mediate the coordinated move-
ment of OCs across the cell by a concerted activity, mainly resulting in excretion of 
OCs into bile or urine. The fi rst step for hepatic and renal OC secretion is their 
absorption from the basolateral side into the cells. While in human kidney this pro-
cess is mainly mediated by OCT2 (Fig.  1.1 ), in rodent kidney it is supported by 
Oct1 and Oct2. OCT3 shows only a tiny expression in the basolateral membrane of 
proximal tubule cells, and for this reason is probably less important than OCT2 
under normal conditions. OCs are secreted in a second step from the tubular cell 
into the tubular lumen. In the kidney this process is mediated by different transport-
ers: the Na + -carnitine cotransporter OCTN2, and  P -glycoprotein (also named 
MDR1), an ATP-dependent transporter that probably mediates the effl ux of bulky 

1 Introduction to the Cellular Transport of Organic Cations
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hydrophobic OCs, and other H + /organic cation antiporters (OCTN1, MATE1, and 
MATE2K in Fig.  1.1 ). According to their electrochemical gradient, in the kidney 
OCs can be also reabsorbed from the lumen into the interstitium. For this process, a 
polyspecifi c cation transport system mediating their uptake across the luminal 
membrane of proximal tubular cells has been proposed, but not yet molecularly 
identifi ed (system Y in Fig.  1.1    ). The effl ux across the basolateral membrane into 
the interstitium may be mediated by OCTs. The hepatic transport pathways of OCs 
in humans are illustrated in Fig.  1.2 . The uptake of OCs into human hepatocytes is 
mediated by OCT1 present on the sinusoidal membrane. The extrusion of OCs in 
the canalicular space is mediated by  P -glycoprotein (MDR1 in Fig.  1.2    ) and 
MATE1.

        Genetic Organisation of Transporters for Organic Cations 

 Some of the   SLC22A  genes   (e.g. the genes for OCT1 and 2, OCTN1 and 2, and also 
OAT1 and 3) are organized in the mouse and in humans as tightly linked pairs [ 32 ]. 
The gene coding for OCT3 is also in close proximity of the  SLC22A1 - 2  pair, and 
also  SLC47A1  and  SLC47A2  are adjacent. The gene pairing probably originates 

  Fig. 1.1    Transport systems for organic cations  in human renal proximal tubules  . The basolateral 
uptake of organic cations (OCs) from interstitium is mainly mediated by hOCT2, where there is 
also a much lower expression of hOCT3. Secretion of OCs into the tubular fl uid is mediated by 
MATE1, MATE2K, and OCTN1 in exchange with H + . The necessary H +  gradient is substained by 
the activity of NH3, an apically expressed Na + /H +  exchanger (not shown). Bulky OCs are secreted 
into the urine under energy consumption by the Multidrug Resistance protein 1 (MDR1). OCs can 
be also reabsorbed from the tubular fl uid by an not yet identifi ed transport system (Y), and then 
transported into the interstitium by OCT. Modifi ed from Koepsell et al. [ 30 ] and Ciarimboli and 
Schlatter [ 31 ]       
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from an evolutionary duplication event, aimed at conferring the advantages of 
redundancy or broader substrate specifi city [ 33 ]. 

 The genes encoding for Oct1- 3   are clustered within a 300-kb genomic region 
between the insulin-like growth factor receptor 2 ( Igf2r ) and the  Plg  (plasminogen) 
genes on mouse chromosome 17 and on rat chromosome 1. Also in humans, the 
genes encoding for OCT1-3 are clustered in a region between the  IGF2R  and the 
 APO ( a )- like  genes on chromosome 6 [ 34 ]. 

 Interestingly, expression of  Slc22a2  and  Slc22a3  in mouse placenta is predomi-
nantly maternally imprinted, at least till embryonic day 15.5 for  Slc22a3  [ 35 ]. 
Imprinting is an epigenetic modifi cation, which leads to preferential expression of a 
determined parental allele in somatic cells of the progeny. After evolutionary diver-
gence, imprinting of only 29 transcripts has been conserved in mice and humans 
[ 36 ].  Imprinted genes   often have key roles in embryonic development, but also in 
postnatal functions including energy homeostasis and behaviour [ 37 ]. In humans, 
imprinting of the  SLC22A2  and  SLC22A3  genes in the placenta is not a general 
phenomenon, but is present only in few subjects with a temporal expression pattern 
resembling that of the murine genes [ 38 ].  

     Topology of Transporters   for Organic Cations 

 The transporters of the SLC22 family have a similar predicted membrane topology 
consisting of 12 alpha-helical transmembrane domains (TMDs), a large glycosylated 
extracellular loop between the fi rst and the second TMD, and a large intracellular 

  Fig. 1.2    Transport systems for organic cations  in human hepatocytes  . OCs are transported through 
the sinusoidal membrane (corresponding to the basolateral side) of hepatocytes by hOCT1. 
Secretion of OCs into the bile canaliculus is mediated by MATE1 expressed in the apical mem-
brane in exchange with H + . Bulky OCs are secreted into the bile under energy consumption by 
MDR1. Modifi ed from Koepsell et al. [ 30 ] and Ciarimboli and Schlatter [ 31 ]       
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loop between TMDs 6 and 7 with consensus sequences for phosphorylation (Fig. 
 1.3a ). Both the amino- and carboxy-termini are intracellularly localized.

   The topology of SLC47 transporters seems to be somewhat different, as these 
transporters possess 13 TMDs, an intracellular amino- and an extracellular carboxy- 
terminus, no glycosylation sites and few intracellularly located putative phosphory-
lation sites (Fig.  1.3b ) [ 39 ,  40 ]. However, there are data demonstrating that the 
functional core of MATE1 consists of 12 TMDs [ 41 ]. 

 In the following the basic information on OCT, OCTN, and MATE present in the 
literature will be summarized, focussing on human and rodent transporters, which 
will be separately described, because of the known differences between  species  .  

    Organic Cation Transporters ( OCTs)   

 Transport of organic cations by the three OCT  subtypes   (OCT1, OCT2, and OCT3) 
is electrogenic, Na + - and H + -independent and bidirectional [ 29 ]. The driving force is 
supplied exclusively by the electrochemical gradient of the substrate. The fi rst mem-
ber of the SLC22 transporter family was isolated and identifi ed by expression clon-
ing from rat kidney and was named rat organic cation transporter 1 (rOct1) [ 42 ]. In 
this initial study, it was shown that rOct1 has functional characteristics resembling 
those of the organic cation transport processes previously described in the basolateral 
membrane of renal proximal tubule cells and of hepatocytes. Mammalian orthologs 
of   OCT1    have been cloned also from human [ 43 ,  44 ], rabbit [ 45 ], and mouse [ 46 ]. 

  Fig. 1.3    Panel ( a ) shows the  proposed   secondary structure of OCTs and OCTNs. These transport-
ers have 12 TMD, a big extracellular and a big intracellular loop with type and subtype specifi c 
glycosylation and phosphorylation sites, respectively. Amino- and carboxy-termini are intracellu-
lar. Panel ( b ) shows the proposed secondary structure of MATEs. These transporters have 13 
TMD, an intracellular and an extracellular terminus. Modifi ed from Ciarimboli and Schlatter [ 31 ]       
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    Mouse Organic Cation Transporter 1 ( mOct1)   

 The gene  Slc22a1  encodes for a 556 amino acids (aa) protein, which is mainly 
expressed in the liver and the kidneys [ 46 ,  47 ]. Upstream sequences for  mOct1  
contain  putative binding motifs   for hepatocyte (HNF5 and H-APF-1), and mam-
mary (WAP and MGF) specifi c expression, and potential binding sites for 
metallothioneine- regulated gene expression (MBF-1, GR-MT-IIA, and AP-2) [ 48 ]. 
  Slc22a1  transcripts   have been shown to turn up in the mouse kidney at midgesta-
tion, at the time when the proximal tubules begin to differentiate, and to increase 
gradually in the course of nephron maturation.  Slc22a1  transcripts are also tran-
siently expressed in other tissues than the kidneys such as the ascending aorta and 
the atrium [ 49 ]. In the liver, ontogenic expression data showed that  Oct1 - 3  approach 
adult expression levels at an age of about 3 weeks [ 50 ]. The highest hepatic Oct1 
mRNA labelling intensity was detected in the hepatocytes which are localized in the 
proximity of the vena centralis, while in the kidney Oct1 mRNA appeared to be 
unevenly distributed throughout the renal cortex but not in glomeruli [ 51 ]. The 
mOct1 has been found to be higher expressed than mOct2 and mOct3 in the S1, S2, 
and S3 segments of the  proximal tubules   (relative mRNA expression of Oct1/Oct2/
Oct3: 1/0.3/0.01) [ 52 ]. Expression and function of mOct1 has been detected also in 
other organs: in the luminal blood-retina barrier [ 53 ] Oct1 and Oct2 have been 
found to be expressed in an age-dependent manner (with decreased expression in 
aged mice [ 54 ]) in endothelial cells of mouse brain microvessels (BMVs). Elevated 
Oct1 mRNA levels were measured in mammary glands of lactating mice, suggest-
ing that this transporter may be involved in the transfer of drugs into milk [ 55 ]. 

 Generally, when expressed in polarized cells, such as  hepatocytes and proximal 
tubule cells,   mOct1 localizes to the basolateral plasma membrane [ 56 ]. However, in 
enterocytes this transporter has been shown to be expressed on the apical plasma 
membrane [ 57 ]. 

 The transport mediated by mOct1 has been demonstrated to be pH- and Na + -
independent and potential dependent [ 58 ]. In mice, Oct1 and Oct2 have been identi-
fi ed also in the respiratory epithelium, where they seem to be involved in the 
 acetylcholine (ACh) release   [ 59 ]. Interestingly, Oct1 and Oct3 have been also found 
to be expressed in mouse urothelium, where they may mediate ACh secretion [ 60 ]. 
Transport studies showed that the mOct1 mediates the uptake of choline with a  K   m   
of 42 μM [ 61 ] and the low-affi nity transport of serotonin [ 51 ]. Moreover, mOct1 
accepts also exogenous OCs such as [ 14 C]-TEA +  and MPP +  as substrates ( K   m   = 38 
μM [ 47 ] and 10 μM [ 62 ], respectively). 

 To better understand the physiological role of Oct1, Oct1 knockout ( Slc22a1  −/− ) 
mice were generated [ 63 ]. These mice were viable, healthy, and fertile and did not 
appear to have obvious phenotypic abnormalities; they only showed a decreased 
hepatic accumulation and intestinal excretion of exogenously administered TEA +  
[ 63 ]. Further studies with  Slc22a1  −/−  mice showed that Oct1 is important for the 
hepatic and intestinal uptake of metformin, a hypoglycemic agent used for the oral 
treatment of type 2 diabetes mellitus, whereas its renal distribution and excretion are 
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