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University of Physical Education, Poznań, Poland
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Preface

Human exercise physiology has a long history of research dating back to the pioneering works carried out at the begin-

ning of the 20th century by the research teams of Archibald Vivian Hill and Schack August Steenberg Krogh (August

Krogh)—Nobel Prize winners in Physiology or Medicine. Some of their fundamental discoveries concerning exercise

physiology, such as the concept of oxygen uptake kinetics and oxygen deficit, are still valid and constitute a background

and challenge for deeper understanding of muscle energetics and human physiology. At that time, some other crucial

discoveries in muscle physiology were reported, notably the force-velocity relationship proposed by A.V. Hill and the

concept of the motor unit as a population of muscle fibers activated by a common nerve, proposed by Sir Charles Scott

Sherrington—Nobel Prize winner in Physiology or Medicine. These discoveries are among the most important achieve-

ments in this area of research. However, one more theory has been of fundamental importance for our understanding of

muscle and exercise physiology, namely the sliding filament theory of muscle contraction postulated in 1954 in Nature,

independently by two teams of scientists: Sir Andrew F. Huxley (Nobel Prize winner in Physiology or Medicine) and

Rolf Niedergerke on the one hand, and Hugh Huxley and Jean Hanson, on the other hand.

The studies concerning human exercise physiology carried out at the beginning of the 20th century were originally

associated almost exclusively with physical exercise capacity of healthy people and athletes. At this point, it is worth

mentioning Henry Briggs for his studies of exercise tolerance of industrial workers (miners) and athletes as early as in

1920. He was the first to use the time course of expired CO2 during graded exercise as the criteria of the so called “crest

point”—the predecessor of the “anaerobic” or, more appropriately, the lactate and gas exchange thresholds. On a greater

scale, testing of human exercise capacity has been successfully introduced into occupational physiology and to the

United States Army by David Bruce Dill from the Harvard Fatigue Laboratory in the 1930s. Some of the first research-

ers to successfully introduce exercise testing to evaluate exercise tolerance in patients were Malcolm B. McIlroy and

Karlman Wasserman in the 1960s. Later, together with Brian J. Whipp, protocols, instrumentation, and interpretation

were honed into the clinical cardiopulmonary exercise tests that we know today.

Human exercise physiology is present in various areas of medicine, such as cardiology, pulmonology, endocrinol-

ogy, gerontology, psychiatry, and rehabilitation, and constitutes a solid pillar of medical sciences. Nevertheless, studies

involving top-class athletes and healthy people exposed to exercise performed in extreme conditions, such as hyperther-

mia, hypothermia, high altitude, diving, or low gravity, are still very important as they provide insight into the mechan-

isms limiting human exercise tolerance in various conditions. The following key discoveries in exercise physiology

should be pointed out: (1) the finding by John O. Holloszy that endurance training increases activities of mitochondrial

enzymes (cytochrome oxidase, COX, and citrate synthase, CS), which leads to an increase in muscle metabolic stability

during exercise and to an enhancement of exercise tolerance; (2) the discovery by Greta Vrbová, Stanley Salmons, and

Dirk W.G. Pette of the potential of muscle phenotypic adaptability to various external stimulus, e.g., chronic low-

frequency stimulation (known as muscle plasticity); (3) the demonstration by Bengt Saltin that in healthy active indivi-

duals, oxygen supply by the cardiovascular system is limiting to whole-body oxygen uptake (e.g., during cycling) and,

therefore, defines mechanistically the maximum oxygen uptake ( _VO2max
); (4) the recognition, by Peter D. Wagner, that,

in healthy individuals, _VO2max
depends on the integration of perfusive and diffusive O2 conductances along the O2 trans-

port pathway between the lungs and mitochondria; (5) the demonstration by Brian J. Whipp, the role of other variables,

apart from _VO2max
, defining oxidative metabolism and exercise tolerance during exercise, such as the _VO2 kinetics and

its components, the gas exchange threshold, and critical power; and (6) the proposal by George A. Brooks of the con-

cept of the lactate shuttle, which changed our understanding of the meaning of lactate production/utilization during

exercise.

The enormous progress of knowledge achieved in the past few decades in various aspects of human physiology,

especially in skeletal muscle physiology, provides new background for the enhancement of our understanding of various

mechanisms determining human exercise tolerance in health and disease, as well as the effects of physical training. It

would be very difficult for a single person to make a satisfying synthesis of the knowledge in this field. This is why

xxi



Muscle and Exercise Physiology textbook is presented to the reader, written by a group of 60 leading international

experts who share their knowledge mainly based on their own recent scientific research in a given topic. This book con-

tains 25 chapters organized in five sections, and presents the current state of knowledge concerning both basic facts in a

given field as well as the most recent advances in research as documented by about 4000 relevant references.

This book, as expressed by its title, is focussed on different aspects of muscle and exercise physiology, including

muscle morphology, energetics, efficiency, performance, fatigue, adaptation to physical training, and aging. Moreover,

the book is devoted to various responses of the human body as an integrated system to physical exercise and training,

as well as to heart muscle physiology, including heart morphology, energetics, efficiency, and the regulation of its func-

tioning during exercise in health and disease. This book aims to be a useful source of information for students of medi-

cal and sport sciences, medical doctors and sports physicians, as well as scientists interested in the range of aspects that

encompass mechanisms determining human exercise tolerance in health and disease. This book also presents contempo-

rary knowledge concerning the factors limiting exercise performance of top athletes. Therefore, the book could be

recommended to athletes, trainers, physiotherapists, and sport scientists interested in the mechanisms determining

human physical performance.

As the editor of this book, I would like to express my deepest thanks to Prof. dr Charles Tipton—emeritus professor

of the University of Arizona, Tucson, United States, for the long-lasting friendship and his unique advice on how to

successfully accomplish the publication of this book. I would also like to thank the distinguished professors: Roberto

Bottinelli, Veronique Billat, Paolo Cerretelli, Bruno Grassi, John O. Holloszy, David A. Jones, Arnold de Haan, Hans

A. Keizer, Preben K. Pedersen, Dirk W.G. Pette, Kent Sahlin, Anthony J. Sargeant, Ronald L. Terjung, and Brian J.

Whipp for sharing with me and my colleagues their knowledge on muscle and exercise physiology, either during my

visits in their laboratories or during their visits to Kraków, Poland over the past few decades.

Prof. Jerzy A. Zoladz (Ph.D., D.Sc.)
Kraków, August 15, 2018
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Chapter 1

Human Body Composition
and Muscle Mass
Krzysztof Duda1, Joanna Majerczak2, Zenon Nieckarz3, Steven B. Heymsfield4 and Jerzy A. Zoladz2

1Intensive Care Unit, Cancer Institute, Kraków Division, Kraków, Poland, 2Department of Muscle Physiology, Chair of Physiology and

Biochemistry, Faculty of Rehabilitation, University School of Physical Education, Kraków, Poland, 3Experimental Computer Physics

Department, Institute of Physics, Jagiellonian University, Kraków, Poland, 4Pennington Biomedical Research Center, Louisiana State

University System, Baton Rouge, LA, United States

1.1 INTRODUCTION

Body shape has attracted the attention of artists since the

beginning of mankind. In Antiquity, proportions of the

human body inspired artists, especially sculptors and pain-

ters. At that time, the so-called perfect proportions of the

human body were defined (the “Polykleitos’ Canon” of

the human figure). The greatest breakthrough in introduc-

ing human anatomy into art was made by Michelangelo

Buonarroti (1475�1564, known as Michelangelo), a spec-

tacular Renaissance artist whose work has been inspiring

others until now (Hilloowala, 2009). In contrast to body

shape, however, body composition that focuses on quanti-

tative relationships between body components appeared in

medicine in modern times, and nowadays it is an impor-

tant branch of human biology (Wang et al., 1992).

The components of body composition significantly

change during a life span in the process of growing,

ageing, pregnancy, or during disease (“non-interventional”

chronic biological processes). Moreover, body composi-

tion is dependent to a major extent on two unavoidable,

“interventional” activities, namely nutrition and physical

activity. Both may significantly change body composition,

mainly in such extreme conditions as that of malnutrition,

overfeeding, immobilization, and prolonged strenuous

physical training.

Since body composition can independently influence

health, it has become a matter of interest for various spe-

cialists in medical sciences—such as endocrinology, rheu-

matology, surgery, pediatrics, or geriatrics—who deal

with a variety of medical conditions, including the meta-

bolic syndrome, degenerative diseases, reaction to injury,

osteoporosis, or sarcopenia. Studies on body composition

seem to be particularly important for prediction,

prevention as well as management of obesity, type 2 dia-

betes, and cardiovascular disease—the latter being the

main factor that increases morbidity and mortality in

modern societies (Buskirk and Mendez, 1984; Duda,

2012; Lee et al., 2012; Aleman-Mateo and Ruiz

Valenzuela, 2014; NCD Risk Factor Collaboration, 2016).

Additionally, body composition is an important topic in

sport sciences, not only when considering the selection of

candidates for different sports disciplines, but also when

evaluating the impact of training, recovery from injuries,

and ageing on athletes. Moreover, monitoring body com-

position changes resulting from combined effects of

microgravity and energy imbalance is one of the key pro-

blems to be considered during long-term space flight

(Bartok et al., 2003; Smith et al., 2005). This is why this

chapter will aim at presenting the current state of knowl-

edge concerning human body composition, with a special

focus on muscle mass.

1.2 THE ASSESSMENT OF THE SYSTEM
AS A WHOLE

From the beginning of humanity, people were interested

in expressing length in standardized units. For this pur-

pose, human body size variables such as the width of the

human palm (lat. palmus), the length of the foot (lat. pes),

the length of the ell (lat. cubitum, i.e., the distance from

the elbow to the tip of the middle finger), and fathom

(i.e., the span of man’s outstretched arms) have been used

in daily life as units of length. Nowadays, although

advanced techniques of determining body characteristics

are available, some traditional, basic human body mea-

sures—such as body mass (BM) and body height

3
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(with regard to gender and age), body circumferences

(e.g., waist circumference, hip circumference), skinfold

thickness (used to estimate regional adiposity), body sur-

face, and body volume (BV)—are still in use in clinical

practice as well as in large population studies.

1.2.1 Body Mass, Basal Metabolic Rate, and
Total Daily Energy Expenditure

BM is one of the fundamental physical characteristics of

the human body. In physics, mass is the amount of “mat-

ter” that an object has, whereas weight (also referred to as

the force of gravity) is the effect of the gravitational pull

on the mass of the object and, according to Newton’s sec-

ond law (see Eq. (1.1)), it is measured in newtons:

F ðNÞ5M ðkgÞ3 a ðm s22Þ (1.1)

where Newton (N) is the unit of force, M, mass, and a,

acceleration (Sir Isaac Newton, 1687).

However, weight is commonly expressed in kilograms,

which consciously omits multiplication of mass by the

gravitational acceleration, approximately constant on the

entire surface of the Earth (average value: 9.81 m � s22).

In this chapter, we used the term “body mass” (expressed

in kg), whereas the term “weight” (expressed in N) was

used only in the part dedicated to hydrodensitometry.

BM measurement and its monitoring is the starting

point for controlling the energy balance of the human

body. The relationship between BM and basal metabolic

rate (BMR) has been intensively examined by European

physiologists and zoologists from the beginning of the

19th century. BMR—the steady-state rate of heat

production by an entire organism under a set of standard

conditions (an individual is adult, awake, but resting,

stress-free, for at least 12 hours after his/her last meal,

maintained at a temperature that elicits no thermoregula-

tory effect on heat production)—represents the minimal

metabolic activity of all tissues in a body at rest (Rolfe

and Brown, 1997). It is usually expressed as heat produc-

tion (direct calorimetry) or oxygen consumption (indirect

calorimetry) per unit of body size (Rolfe and Brown,

1997; Henry, 2005). BMR or easier-to-assess resting

energy expenditure (REE) (typically evaluated with indi-

rect calorimetry in thermoneutrality, supine position at

least 4 hours after the last meal) in most sedentary indivi-

duals accounts for about 1 kcal per 1 kg of BM per hour

and constitutes of about 60%�80% of total daily energy

expenditure (TDEE). Two other components of TDEE

are: the rather stable cost of diet-induced thermogenesis

(DIT) (10%�12% of TDEE) and the most changeable

energy cost of physical activity (physical activity energy

expenditure, PAEE) (Lowell and Spiegelman, 2000;

Heymsfield et al., 2012a).

Organs in the human body differ according to resting

metabolic rate and they may be divided into organs with

high or low metabolic rate (Elia, 1992; Gallagher et al.,

1998; Wang et al., 2001; Heymsfield et al., 2012a). For

example, the energy cost of high metabolic rate organs

such as kidneys and heart is similar and amounts to

B440 kcal per kg per day. In another high metabolic rate

tissue such as brain it amounts to B240 kcal per kg per

day, whereas the energy cost of skeletal muscle (SM) at

rest (low metabolic rate organ) amounts to about 13 kcal

per kg per day (Elia, 1992; Wang et al., 2001). The

energy cost of organs with high metabolic rate (brain, kid-

neys, heart, endocrine glands, that weigh only about

3.5 kg, i.e., B5% of body weight of a standard man) con-

stitutes about 60% of the REE. Organs with low meta-

bolic rate such as: (1) SMs at rest, weighting about 28 kg

(B40% of BM) accounts for about 20% of the REE; and

(2) bones, fasciae, and extracellular fluid (ECF), weight-

ing about 21 kg (B30% of BM) contribute to about 1%

of the REE. Moreover, the energy cost of the digestive

system, lungs and the immune system (that weight about

3.5 kg) accounts for 15% of the REE. The remaining part

of the REE (about 4%) is completed by metabolism of

adipose tissue weighting about 15 kg (B20% of BM). It

should be underlined that, during strenuous physical exer-

cise, SM metabolism can increase more than 100 times

above its rate at rest and it constitutes about 90% of the

total energy used by the human body (for overviews see

Chapter 5: Muscle Energetics by Kemp and Chapter 18:

Metabolic Transitions and Muscle Metabolic Stability:

Effects of Exercise Training by Zoladz et al.).

In clinical practice, it is important to know BMR (as

minimum energy required to exist) to determine caloric

needs for energy balance and body weight maintenance

(Henry, 2005; Heymsfield et al., 2012b), including weight

loss programs in obesity management. Although much of

the BMR, which is a main component of TDEE, is

accounted for by the activity of organs with high

metabolic rate, variations in BMR are related mainly to

differences in body size.

One of the earliest formulas showing the relationship

between BMR and BM was developed in 1932 by Max

Kleiber (1893�1976) (Kleiber, 1932), the leader in animal

nutrition and metabolism research. He showed that BM

raised to three-fourth power is the most reliable basis for

the prediction of the BMR of mature mammals (Eq. (1.2)):

BMR5 a3BM0:75 (1.2)

where BMR is basal metabolic rate (kcal per day), BM is

body mass (kg), a is proportionality constant or normaliz-

ing coefficient (the intercept, when the equation is

graphed in log�log coordinates, for mammals, the aver-

age value of “a” is 71.8), 0.75 is scaling exponent for
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mature mammals (the slope of regression line in log�log

coordinates) (Lindsted and Schaeffer, 2002).

Kleiber’s classic equation was formulated at the whole-

body level. Wang et al. (2001) proposed a new perspective

on Kleiber’s law by reconstructing it at the organ�tissue

level. Interestingly, REE values of individual components

(liver, brain, kidneys, heart, and remaining tissues) do not

scale equally, but their combined formula was similar to

that observed by Kleiber (Wang et al., 2001).

In the past century, many formulas were used to predict

BMR in clinical practice, including Harris and Benedict

equations, Schofield, Roberston and Reid equations (see,

e.g., in Heshka et al., 1993). Roberston and Reid equations

are recommended for obese individuals, since most equa-

tions developed to predict BMR overestimate its value in

this particular group (Heshka et al., 1993).

A method of estimating BMR in larger groups of men

and women belonging to varied age ranges (0�3, 3�10,

10�18, 18�30, 30�60, .60), based only on the BM and

the so-called “Oxford equations” (Eqs. (1.3�1.8)), were

presented by Henry (2005):

BMR for men:

18� 30 years old ðn5 2821Þ:
BMR ðkcal per dayÞ5 5451 16:03BM ðkgÞ (1.3)

30� 60 years old ðn5 1010Þ:
BMR ðkcal per dayÞ5 5931 14:23BM ðkgÞ (1.4)

. 60 years old ðn5 534Þ:
BMR ðkcal per dayÞ5 5141 13:53BM ðkgÞ (1.5)

BMR for women:

182 30 years old ðn5 1664Þ:
BMR ðkcal per dayÞ5 5581 13:13BM ðkgÞ (1.6)

302 60 years old ðn5 1023Þ:
BMR ðkcal per dayÞ5 6941 9:743BM ðkgÞ (1.7)

. 60 years old ðn5 334Þ:
BMR ðkcal per dayÞ5 5691 10:13BM ðkgÞ (1.8)

The estimation of TDEE includes two major compo-

nents: BMR and physical activity energy expenditure

(Westerterp, 2013). Based on the FAO nutrition studies

(FAO, 1957), two simplified empirical equations were

developed for the first time to predict total daily energy

requirements. Those equations are easy to use since they

involve only BM measurements (Eqs. (1.9) and (1.10)):

for men: E5 1523BM0:73 (1.9)

and for women: E5 1233BM0:73 (1.10)

where E represents total daily energy requirement (kcal

per day) and BM represents body mass (kg).
An important issue in TDEE is the assessment of the

energy cost of physical activity. According to FAO/

WHO/UNU recommendations the physical activity level

(calculated as TDEE/BMR) for sedentary and light activ-

ity lifestyles ranges between 1.40 and 1.69; for moder-

ately active lifestyles between 1.70 and 1.99 and for

strenuous or heavy leisure activity between 2.0 and 2.4

(Westerterp, 2013, 2017). Hence, TDEE might be

expressed as a multiple of BMR or REE (measured by

indirect calorimetry or calculated based on the prediction

equations) by using adequate factor related to physical

activity level.

The generally accepted and indicated method of

TDEE measurements is doubly labeled water (DLW)

method, which allows the measurement of energy expen-

diture under daily living conditions including exercise

and extreme environment (Westerterp, 2013, 2017). The

DLW method (method of indirect calorimetry) is based

on the difference between the apparent turnover rates of

the hydrogen and oxygen of body water as a function of

carbon dioxide production after a loading dose of water

labeled with the stable isotopes of 2H and 18O

(Westerterp, 2017). Based on this method Redman et al.

(2014) presented normative equations to calculate TDEE

for nonobese men and women using the following basic

variables: BM, age, and sex. In this study involving a

group of 217 healthy subjects (aged 21�50 years; BMI:

22�28 kg �m22), they showed that the mean TDDE

amounts to 24436 397 kcal per day and is on average

20% (580 kcal per day) higher in men than in women (see

Eq. (1.11)):

TDEE ðkcal per dayÞ5 12791 18:33BM ðkgÞ
1 2:33 age ðyearsÞ � 3383 sex (1.11)

where TDEE represents total daily energy expenditure

(kcal per day), BM represents body mass (kg), and the

sex variable may assume the following values:

15 female, 05male.

1.2.2 Body Mass Index

BM and body height allow one to calculate other mea-

sures frequently used in epidemiology and clinical

research, namely the BMI and the body surface area

(BSA).

The BMI was introduced for the first time in whole-

body assessment in 1832, by a Belgian polymath,

Adolphe Quetelet (1796�1874), who was looking for an

index of relative BM and introduced the Quetelet Index,

Human Body Composition Chapter | 1 5



i.e., the ratio of BM in kilograms divided by the square of

height in meters (Eq. (1.12)):

BMI5BM3H22 (1.12)

where BM is body mass (kg) and H is height (m).

Ancel Keys (1904�2004), an American pioneer in

biostatistics and a physiologist, confirmed 140 years later

the validity of the Quetelet Index in epidemiological stud-

ies and named it (in 1972) “body mass index” (Eknoyan,

2008). From then on, BMI has become a standard formula

for establishing, heuristically, ideal BM. The BMI for

adult underweight people is lower than 18.5 kg �m22; for

normal weight people it ranges from 18.5 to 25 kg �m22,

for the overweight from 25 to 30 kg �m22, and it is higher

than 30 kg �m22 for the obesity. The BMI above

25 kg �m22 is associated with an increased the risk of

morbidity and mortality.

BMI may be understood as a simple sum of body fat

mass (FM) and fat-free mass (FFM) component of BM

(Eq. (1.13)), each of which divided by the square of

height in meters (Van Itallie et al., 1990):

BMI5 FM3H22 1 FFM3H22 (1.13)

BMI is often used in obesity studies as a measure of

FM, since a high correlation between BMI and total body

fat as well as BMI and the percentage of body fat have

been reported during childhood and in adult individuals.

However, BMI is neither a specific marker of body fat or

a good marker of abnormal fat accumulation (Adler et al.,

2017) and its applicability as body fat marker is question-

able, since individuals of the same age, height, and weight

(hence the same BMI) can have different body shape,

body composition, and metabolic profile. For example,

Asian people have higher body fat percentage than

Western populations with the same value of BMI (Choo,

2002). In children, BMI is not a good index of body fat-

ness because of their growth. Hence, the calculated BMI

should be compared against the percentile for children of

the same sex and age (Reilly, 2010; Laurson et al., 2011).

In other situations—when FM and FFM may get altered

due to ageing, physical training, or several diseases—BMI

alone might lead to false conclusions and should be used

with caution. Therefore, it is proposed nowadays to extend

the description of body composition with other measures,

which are based on more advanced techniques and better

describe FM and FFM in the human body.

Recently, Peterson et al. (2017) found that in the group

of non-Hispanic whites aged 8�29 (n5 2285 participants)

percent body fat scales to height with an exponent closer to

3. Therefore, they proposed tri-ponderal mass index (BM

divided by height cube) as an alternative for BMI and

more accurate measure of body fat for the group of non-

Hispanic white adolescents (aged 8�17 years).

1.2.3 Body Circumferences and Skinfolds
Measurements

It is generally accepted by clinicians and researchers that

not total amount of adipose tissue, but rather the distribu-

tion of its excess correlates better with the risk of the

occurrence of diabetes and/or cardiovascular disease.

It has been agreed that individuals with fat distribution

of the central type (android vel “apple shape”) are at

greater health risk (greater prevalence of metabolic syn-

drome, arterial hypertension, heart disease, stroke, type 2

diabetes) than those with peripheral fat distribution

(gynoid vel “pear shape”) (Vague, 1996). The use of imaging

techniques (computed tomography, CT; magnetic resonance

imaging, MRI) indicated that unhealthy “apple shape” is

associated with an internal, visceral fat deposition rather than

external subcutaneous fat depots (Browning et al., 2010;

Schneider et al., 2010). Therefore, simple anthropometric

indices that allow one to describe regional adiposity—such

as waist circumference (WC), waist-hip ratio (WHR) and

waist-to-height ratio (WHtR) —might be used as a screen-

ing tool to predict diabetes and cardiovascular disease. WC

was found to strongly correlate with abdominal fat mea-

surement by means of advanced imaging techniques.

The WHtR —as another measure of relative fat distri-

bution—was introduced by Japanese researchers in 1995

as predictor of coronary heart disease (Hsieh and

Yoshinaga 1995a; Hsieh and Yoshinaga, 1995b) and it

has received more attention in the past few years (Rodea-

Montero et al., 2014; Lo et al., 2016; Choi et al., 2017).

WHtR corrects the WC for the height of individuals and,

similarly to WC, it shows a strong positive correlation

with abdominal fat measured by means of imaging techni-

ques (Soto González et al., 2007). WHtR as a proxy for

central obesity was found to be a better predictive marker

of “early health risk” then BMI (Schneider et al., 2010;

Ashwell et al., 2014; Ashwell and Gibson, 2016). The

WHtR assuming the value of 0.5 (“keep your waist to less

than half your height”) has the character of a global

boundary. When exceeded, it indicates an increased risk

across different age groups (also in children and adoles-

cents) as well as sex and ethnic groups (Browning et al.,

2010; Mehta, 2015) (Table 1.1).

Skinfold measurements, which also belong to simple

anthropometric measurements, are typically performed at

3�9 standard anatomical sites (e.g., “triceps,” “biceps,”

“chest,” “subscapular,” “abdominal,” “suprailiac”), on the

right side of the body, by means of caliper with constant

pressure of 10 g mm22. The correct position of the cali-

pers is critical for the accuracy of the measurement and

the anatomical site should be accurately determined and

then marked. The sum of skinfolds allows one to estimate

(by means of an adequate equation) the amount of body

fat (Jackson and Pollock, 1985).
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1.2.4 Body Surface Area

Accurate determination of BSA is the essential issue in

several medical fields. The use of BSA enables standardi-

zation of certain physiological parameters, such as cardiac

function or glomerular filtration. BSA is also used to

assess drug dosage.

Typically, in clinical practice, BSA is indirectly esti-

mated on the basis of empirical formulas (Redlarski et al.,

2016). Direct methods of BSA measurement—such as

coating, surface integration, linear geometry, and touch-

less measurement (3D laser scanning) in the different

groups of subjects (varied age, sexes, ethnic populations,

different regions)—constitute the starting point for fitting

model equations for the obtained data.

The first measurements of BSA were made in England

during experiments on insensible perspiration by anato-

mist William Cruishank (1745�1800) in 1778 and by sur-

geon John Abernethy (1764�1831) in 1793. Abernethy,

by applying the coating method (with paper) and linear

geometry, calculated BSA as 2700 square inches (which

equals 1.74 m2 in the metric system) (Abernethy, 1793).

Interestingly enough, both of them were searching for the

proportion between hand area and BSA. Currently, it is

agreed that the palm (i.e., the palmar surface area, which

is the area between the interstyloid line and the palmar

digital crease of each digit) represents 0.5% of the total

BSA and the hand (i.e., the sum of the palmar surface

area and the areas of the fingers and the thumb) represents

around 0.8% of the total BSA. Both measures (hand and

palm surface areas) are suitable for assessing the size of

minor burns (,10% of total body surface) (Rhodes et al.,

2013; Thom, 2017).

In 1879, German physiologist Karl Meeh suggested,

on the basis of geometric considerations, that the BSA of

mammals could be expressed with the following equation

(Eq. (1.14)):

BSA ðm2Þ5 k3BM ðkgÞ2=3 (1.14)

where BM is the body mass, k is Meeh’s normalizing

coefficient that varies slightly between species and

amounts to 0.1053 for humans (Meeh, 1879). Nowadays,

this formula is used only in veterinary medicine.

Meeh’s formula remained a standard of BSA assessment

until 1916, when E.F. DuBois and D. DuBois (cousins)

published a new formula for BSA assessment, where they

introduced height (H) as a variable (Eq. (1.15)):

BSA ðm2Þ5 0:0071843BM ðkgÞ0:425 3H ðcmÞ0:725
ðthe originally used formÞ

or

BSA ðm2Þ5 0:202473BM ðkgÞ0:425 3H ðmÞ0:725
ðSI unitsÞ

(1.15)

The estimation of the model coefficient in BSA

assessment turned out to be an important issue. As it was

found out, DuBois’ formula underestimated BSA in obese

patients by 3%�5% (Verbraecken et al., 2006). After

almost 100 years, the DuBois and DuBois BSA equation

was corrected (Shuter and Asiani, 2000), based on a

greater number of examined persons and application of

modern statistical methods (Eq. (1.16)):

BSA ðm2Þ5 0:009493BM ðkgÞ0:441 3H ðcmÞ0:655
ðthe originally used formÞ

or

BSA ðm2Þ5 0:193763BM ðkgÞ0:441 3H ðmÞ0:655
ðSI unitsÞ

(1.16)

Since BSA scaling plays a key role in medicine—for

example, in pharmacology, toxicology, cytotoxic chemo-

therapy, nephrology, transplantology, extracorpeal circu-

lation, burns assessment and fluid resuscitation—many

studies in subsequent years tried to find more precise

BSA formulas based on more accurate methods (including

three-dimensional (3D) laser scanning techniques) and

higher numbers of subjects (see Redlarski et al., 2016).

As 3D full scan is a very fast technique that takes from a

dozen seconds up to several dozens, depending on the

type of equipment, the number of objects tested is gener-

ally much higher than in previously applied methods.

TABLE 1.1 Boundary Values of WC, WHR and WHtR

Index Value Waist Circumference (cm) Waist-hip Ratio Waist-to-Height Ratio

Men Women Men Women

No “health risk” ,94 ,80 ,0.90 ,0.85 ,0.5

“Health risk” $ 94 and # 102 $ 80 and # 88 � � $0.5 and ,0.6

Very high “health risk” .102 .88 $ 0.90 $ 0.85 $ 0.6
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It should be mentioned that the method is unable to recog-

nize overlapping parts of human skin.

Based on 3D full scanning measurements, Schlich

et al. (2010) proposed the following formula for European

men (n5 49) aged 21�68 (Eq. (1.17)):

BSA ðm2Þ5 0:0005794793BM ðkgÞ0:38 3H ðcmÞ1:24
ðthe originally used formÞ

or

BSA ðm2Þ5 0:17503BM ðkgÞ0:38 3H ðmÞ1:24
ðin SI unitsÞ

(1.17)

and for women (n5 132) aged 20�84 (Eq. (1.18)):

BSA ðm2Þ5 0:0009754823BM ðkgÞ0:46 3H ðcmÞ1:08
ðthe originally used formÞ

or

BSA ðm2Þ5 0:14103BM ðkgÞ0:46 3H ðmÞ1:08
ðin SI unitsÞ

(1.18)

Similarly, Yu et al. (2003) proposed the following for-

mula for a population of Taiwanese workers (Eq. (1.19)):

BSA ðm2Þ5 0:0159253BM ðkgÞ0:5 3H ðcmÞ0:5
ðthe originally used formÞ

or

BSA ðm2Þ5 0:159253BM ðkgÞ0:5 3H ðmÞ0:5
ðin SI unitsÞ

(1.19)

which was based on 3D measurements of a group of 3951

women and men, aged 20�91. Additionally, Yu et al.

(2003) showed different coefficients dedicated to various

subgroups, i.e., separately for men and women within dif-

ferent age ranges.

Determination of BSA is an important issue from the

point of view of diagnostic and therapeutic aspects of

pediatric medicine, since BSA increases from 0.2 m2 at

birth up to 1.73 m2 in adulthood. Only few formulas,

however, have been validated for children (Feber and

Krásnicanová, 2012). Haycock et al. (1978) developed a

formula based on the measurements of a group of sub-

jects, comprising the range from premature infants to

adults, where (Eq. (1.20)):

BSA ðm2Þ5 0:0242653BM ðkgÞ0:5378 3H ðcmÞ0:3964
ðthe originally used formÞ

or

BSA ðm2Þ5 0:15063BM ðkgÞ0:5378 3H ðmÞ0:3964
ðin SI unitsÞ

(1.20)

According to the authors, this formula gives a good fit

for all values of BSA within the range from less than

0.2 m2 up to over 2.0 m2.

In 1987, Mosteller (1987) presented a simple formula

for BSA calculation for adults, small children, and infants

(Eq. (1.21)), which is commonly accepted due to its preci-

sion and simplicity.

The originally used form:

BSA ðm2Þ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H ðcmÞ3BM ðkgÞ

3600

r

or in SI units:

BSA ðm2Þ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H ðmÞ3BM ðkgÞ

36

r
(1.21)

In clinical practice, the consequences of applying an

inadequate BSA formula might be severe, including inap-

propriate drug dosage. The choice of an adequate BSA

formula is important not only for children, but also for

people from different geographical regions and for people

with nonstandard body proportions, for example, in the

case of obesity, cachexia, or massive bone structure

(Redlarski et al., 2016).

1.2.5 Body Volume and Body Density

The total BV is an indicator of body size, which is subse-

quently used to calculate body density (BD) (Eq. (1.22)):

BD5BM3BV21 (1.22)

and in consequence, body FM.

BV can be assessed by the water-displacement technique,

also called “underwater weighting” or “hydrodensito-

metry,” or the air-displacement technique, also called

“air-displacement plethysmography” (Duren et al., 2008).

Both techniques are time-consuming, laborious and

requires demanding laboratory conditions.

Hydrodensitometry is regarded as the most reliable of

available techniques used to estimate BD. Archimedes’

principle is applied by comparing the mass of a subject in

the air (Ma) with the “mass underwater” (Mw), which is

calculated from the gravitational force (Fw) exerted on a

submerged object according to the Newton’s law

(Eq. (1.23)):

Mw 5 Fw 3 g21 (1.23)

where g is gravitational acceleration of 9.81 m � s22.

During underwater measurement, total expiration is nec-

essary and account is taken of the residual gas volume

remaining in the lungs (Vr), and an estimated volume of

gas in the intestine (Vi). Temperature, which influences

water density (WD), should be also taken into account.

BD is calculated with the following equation (Eq. (1.24),

Brodie et al., 1998):

BD5
Ma

ð Ma 2Mwð Þ=WDÞ2 Vr 1Við Þ (1.24)

The volume of gas in the intestine (Vi) included in the

calculation is usually assessed to amount to about
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100 mL, but this value should be increased for large

adults and decreased for children.

Underwater weighting (UWW)—considered to be the

“golden standard” for BV measurements—is actually

replaced by the DEXA method which does not require

lung volume measurement for body fat determination.

BV can be estimated with classic formulae. In 1959,

Sendroy and Cecchini (1959), developed a formula

(Eqs. (1.25) and (1.26)) based on the data collected for

446 men and adolescent boys [the ratio of BM (kg) to

height (cm) is between 0.2 and 0.8] as:

BV ðLÞ5BSA ðm2Þ3 60:203 ðBM=HÞ0:562 (1.25)

and for 113 adult women and adolescent girls (the ratio of

BM to H is between 0.2 and 0.8) as:

BV ðLÞ5BSA ðm2Þ3 62:903 ðBM=HÞ0:578 (1.26)

BSA and BV can be assessed on the basis of digital

data recorded with the computer tomography, magnetic

resonance imaging, or 3D scanning methods. The main

advantage of these techniques is shorter time of acquisi-

tion, resulting in less measurement noise.

1.3 BODY COMPOSITION AT VARIED
LEVELS OF COMPLEXITY

Since 1990s, a research team at Columbia University (St.

Luke’s Roosevelt Hospital) has been developing a new con-

cept of body composition research (Heymsfield and Waki,

1991; Wang et al., 1992; Wang et al., 2008). The so-called

five-level model of body composition introduced by them

(now widely accepted) organizes body components into a

sequence of increasing complexity, namely: (1) the atomic

level, where body composition is assessed in terms of the

content of elements, including potassium, sodium, chlorine,

phosphorus, calcium, nitrogen, and carbon; (2) the molecu-

lar level, at which chemical compounds such as fat, water,

proteins, minerals, and glycogen are assessed; (3) the cellu-

lar level that accounts for the presence of cell membranes

and describes extracellular and intracellular spaces; (4) the

tissue�organ level, where the distribution of adipose, SM,

bone and other tissues is described, and (5) the whole-body

level, which describes the system as a whole (presented

above) (Wang et al., 1992; Wang et al., 1998; Wang et al.,

2008).

1.3.1 Body Composition at the Atomic Level

Virtually 99% of BM is constituted by the mass of 6 ele-

ments, namely: oxygen (61%), carbon (23%), hydrogen

(10%), nitrogen (2.6%), calcium (1.4%), and phosphorus

(0.83%). The content of none of the remaining macroele-

ments exceeds 0.5% of BM: potassium 0.4%, sulphur

0.3%, sodium and chloride 0.2% each, and magnesium

0.1% (Fig. 1.1).

The atomic body composition is measured primarily

with two techniques: the whole-body counting that mea-

sures natural body radioactivity (i.e., the measurement of

natural 40K isotope) and the neutron activation analysis

(NAA) that uses neutron flux to activate atomic nuclei

(reaching excited state). The measurement of characteris-

tic gamma radiation of radionuclides enables quantitative

assessment of the content of elements—such as hydrogen,

carbon, oxygen, nitrogen, sodium, calcium, phosphorous,

and chlorine—in the human body (Kehayias et al., 1991;

Mattsson and Thomas, 2006).

1.3.1.1 Total Body Nitrogen

Nitrogen is one of the main body components, required

for protein synthesis and production of several nitroge-

nous compounds such as hormones, neurotransmitters,

and components of antioxidant defense. The measurement

of TBN, using in vivo NAA, allows one to assess body

protein content, while it is assumed that all body nitrogen

is incorporated into proteins. There is a close relationship

between TBN and body proteins: every 6.25 g of protein

contains 1 g of nitrogen. Proteins are mainly located in

FFM, hence the evaluation of TBN is an indirect measure

of FFM, and especially SM mass.

In healthy individuals (age range: from 24 to 72 years)

TBN increases with BM and decreases with age, and it

can be calculated with the following formula (Eq. (1.27))

developed on the basis of in vivo NAA measurements

(Ryde et al., 1993):

TBN ðkgÞ5 1:42 kg1 0:01093BM ðkgÞ � ðA ðyearsÞ
3 0:008 kg year21Þ � ðgender3 0:46 kgÞ

(1.27)

(gender: male5 0, female5 1).

It was postulated that the amount of nitrogen in FFM

is biologically constant and the TBN/FFM relation can be

formulated as follows (Eq. (1.28), Ryde et al., 1993):

TBN ðkgÞ5 0:0313 FFM ðkgÞ � 0:0009 kg (1.28)

1.3.1.2 Total Body Potassium

The measure of the total amount of potassium in the body

[total body potassium (TBK)] is based on the activity of

the natural 40K isotope (with 1.46 MeV gamma radiation)

as the isotope constitutes 0.0118% of potassium ion. TBK

amounts to about 47 and 36 mmol � kg21 in men and

women, respectively. TBK increases with BM and body

height (H), and decreases with age (A). According to the

formula Eq. (1.29), (Wang et al., 1992), TBK might be

estimated as follows:
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The originally used form:

TBK ðmmolÞ5 77:81 27:33BM ðkgÞ1 11:53H ðcmÞ
� 21:93A ðyearsÞ

(1.29)

or

TBK ðmmolÞ5 77:81 27:33BM ðkgÞ1 11503H ðmÞ
� 21:93A ðyearsÞ ðin SI unitsÞ

TBK can be used to assess the body cell mass (BCM),

as noticed by Francis D. Moore (1913�2001) in the mid-

20th century (see Section 1.5.3).

1.3.1.3 Total Body Calcium

The total body calcium (TBCa) content can be measured

in vivo by the delayed γ-NAA and amounts to about

1100 g in men and 800 g in women (Reid, 1986).

Based on the TBCa and TBK, it is possible to calcu-

late the total body phosphorus (TBPh, Eq. (1.30)), (Wang

et al., 1992):

TBPh ðkgÞ5 0:4563TBCa ðkgÞ1 0:0223TBK ðmolÞ
(1.30)

Since calcium constitutes a relatively constant fraction

of bone minerals (38%�39%), its content can also be

used to evaluate total body bone mineral content (see

Eq. (1.58)).

1.3.2 Body Composition
at the Molecular level

Measurements at the level of chemical molecules concern

water, fat, protein, salts and glycogen (Fig. 1.2).

1.3.2.1 Total Body Water

At the chemical level, the two largest compartments of

the system are water (approximately 60% of BM) and

anhydrous fat (20%�30% of BM). Mean values of TBW

have been reported to range from 38 to 50 L in men

(B60% of BM), whereas in women, it is between 26 and

40 L (B50% of BM), (Chumlea et al., 2001). Women

and elderly individuals have less body water, due to

greater adiposity and lower muscle mass. TBW decreases

with age. For instance, in individuals around 60 years of

age, it comprises 55% of BM in case of males, and 45%

in females.

The TBW, determined on the basis of the dilution

principle by means of labeled water isotopes (e.g., 2H2O,
3H2O, H2

18O), was used as the starting point to derive

equations that predict TBW from anthropometric mea-

surements (Watson et al., 1980; Chumlea et al., 2001).

FIGURE 1.1 Body composition at atomic level

in the reference man. Based on the data from

Snyder, W.S., et al., 1984. Report of the task

group on Reference Man. Oxford, Pergamon

Press; Wang, Z.M., et al., 1992. Am. J. Clin.

Nutr. 56, 19�28.
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Watson et al. (1980) formulated the following equa-

tions to calculate TBW (Eqs. (1.31) and 1.32):

for men (n5 458):

TBW ðLÞ5 2:447� 0:095163A ðyearsÞ1 0:1074

3H ðcmÞ1 0:33623BM ðkgÞ
ðthe originally used formÞ

(1.31)

or

TBW ðLÞ5 2:447� 0:095163A ðyearsÞ1 10:743H ðmÞ
1 0:33623BM ðkgÞ ðin SI unitsÞ

for women (n5 265):

TBW ðLÞ5 0:10693H ðcmÞ1 0:24663BM ðkgÞ � 2:097

ðthe originally used formÞ
(1.32)

or

TBW ðLÞ5 10:693H ðmÞ1 0:24663BM ðkgÞ � 2:097

ðin SI unitsÞ
Chumlea et al. (2001) presented the following race- and

gender-specific formulas (Eqs. (1.33)�(1.36)) based on a

larger group of adult subjects (age between 18 and 90):

for white men (n5 604):

TBW ðLÞ5 23:04� 0:033A ðyearsÞ
1 0:503BM ðkgÞ � 0:623BMI (1.33)

for black men (n5 128):

TBW ðLÞ52 18:37� 0:093A ðyearsÞ1 0:34

3BM ðkgÞ1 0:253H ðcmÞ
ðthe originally used formÞ (1.34)

or

TBW ðLÞ52 18:37� 0:093A ðyearsÞ1 0:34

3BM ðkgÞ1 253H ðmÞ ðin SI unitsÞ

for white women (n5 772):

TBW ðLÞ52 10:50� 0:013A ðyearsÞ1 0:20

3BM ðkgÞ1 0:183H ðcmÞ
ðthe originally used formÞ

or

TBW ðLÞ52 10:50� 0:013A ðyearsÞ1 0:20

3BM ðkgÞ1 183H ðmÞ ðin SI unitsÞ
(1.35)

for black women (n5 191):

TBW ðLÞ52 16:71� 0:013A ðyearsÞ1 0:22

3BM ðkgÞ1 0:243H ðcmÞ
ðthe originally used formÞ (1.36)

or

FIGURE 1.2 Body composition at the molecular (chemical) level in the 70 kg reference man (expressed as percentage of body mass, % BM). FM,

fat mass; TBW, total body water; TBPro, total body proteins; TBMin, total body mineral; and TBGly, total body glycogen. Based on the data from

Snyder, W.S., et al., 1984. Report of the task group on Reference Man Oxford, Pergamon Press.
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TBW ðLÞ52 16:71� 0:013A ðyearsÞ1 0:22

3BM ðkgÞ1 243H ðmÞ ðin SI unitsÞ

Total body water (TBW) consists of intracellular

(ICW) and extracellular water (ECW). Since almost all

body potassium is located in the ICW and ECW compart-

ments, assuming stable intra- and extracellular K1 con-

centration of 152 and 4 mmol � kg21 H2O, respectively,

the ICW and ECW can be calculated (Eqs. (1.37) and

(1.38)) if TBK (determined by the whole-body counting)

and TBW (determined with the dilution method) are

known (Wang et al., 2003; Silva et al., 2007):

ICW ðkgÞ5 TBK ðmmolÞ � 43TBW ðkgÞ
148

(1.37)

and

ECW ðkgÞ5 1523TBW ðkgÞ � TBK ðmmolÞ
148

(1.38)

It is worth highlighting that FFM hydration is strik-

ingly stable in mammals; as noted already in 1945 by

Pace and Rathbun (see in Wang et al., 1999). In a mature

organism, hydration rests within the range between 70%

and 75%, as confirmed by the formula for calculating the

TBW in an adult human (Eq. (1.39), Ryde et al., 1993):

TBW ðkgÞ5 0:7333 FFM ðkgÞ � 0:44 kg (1.39)

1.3.2.2 Total Body Fat

There are no direct methods of in vivo evaluation of body

fat. Fat can be determined by measuring the effect fat has

on physical properties of the body, such as BD (measured

by UWW, see Section 1.2.5) and body impedance

(Kehayias et al., 1991). Rough evaluation of body fatness

in clinical practice can be performed through easily-

accessible simple measures, namely BM, BMI, abdominal

circumference, skinfold thickness measurements. The

bioimpedance method—a low-cost and frequently used

approach to body composition measurements—differenti-

ates between FM, considered to be a non-conductor of

electric charge, and FFM, considered to be a conducting

volume that helps the passage of electric current, due to

conductivity of electrolytes dissolved in body water

(Lemos and Gallagher, 2017). Although bioimpedance is

a simple, noninvasive approach to body composition mea-

surements, it is not a reference method, as it relies on spe-

cific assumptions, the most important of which is constant

body hydration (Lemos and Gallagher, 2017). Nowadays,

methods acquiring higher precision—such as MRI, CT,

DEXA—are implemented to determine body fat and mus-

cle mass (Hellmanns et al., 2015).

Body fat is one of the most changeable elements of

body composition. It can account for 7%�10% of BM in

well-trained endurance athletes and in some extremely

well-trained marathon runners can account for less than

5% of BM (Costill, 1986; Noakes, 2003). On the other

hand in case of pathological obesity, body fat can consti-

tute up to 50% of BM (Alemán et al., 2017).

1.3.2.3 Total Body Protein

Total body protein (TBPro) accounts for about 14%�16%

of BM, that is, B11 kg in men and 9 kg in women.

TBPro is comprised in BCM (B77%), but also in extra-

cellular solids and ECF (B23%).

As mentioned above, TBPro can be calculated on the

basis of the TBN (determined by the NAA), on the

assumption that every 6.25 g of protein contains 1 g of

nitrogen (i.e., the nitrogen-to-protein ratio amounts to

0.16).

TBPro can also be estimated on the basis of the

value of TBK, measured by the whole-body counting

(40K) method, and of the content of bone minerals

assessed using the whole-body DEXA method

(Eq. (1.40), Wang et al., 2003):

TBPro ðkgÞ5 0:002523TBK ðmmolÞ
1 0:7323 bone mineral ðkgÞ (1.40)

1.3.2.4 Total Body Mineral

Total body mineral (TBMin) (B4.5% of BM) consists of

bone minerals (BoM, B4% of BM) and soft-tissue miner-

als (STM, B0.5% of BM). According to Beddoe et al.

(1984) TBMin can be estimated as 6.22% of FFM

(Eq. (1.41)):

TBMin ðkgÞ5 0:06223TBW

0:732
(1.41)

STM (B0.5 vs 0.38 kg, respectively, for men and

women) is a small molecular component which consists

of soluble minerals and electrolytes (6 main: K1, Na1,

Mg21, Cl2, H2PO
2
4 , HCO

2
3 ) and is found in the extracel-

lular and intracellular compartment of soft tissue (Wang

et al., 2002). The whole-body STM can be measured

in vivo by delayed-γ NAA and is estimated roughly to

reach 400 mg, that is, 0.5% of BM (St-Onge et al., 2004).

Its contribution to BD is very important, because of its

high density reaching 3.317 g � cm23, which is higher than

that of bone mineral (2.982 g � cm23) (Heymsfield et al.,

1991). The ratios of STM to extracelullar water and to

intracellular water are relatively stable in young adults

and whole-body STM can be calculated from TBW mass

(Eq. (1.42), Wang et al., 2008):

STM ðkgÞ5 0:01293TBW ðkgÞ (1.42)
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