
Muscle and Exercise Physiology

Edited by Jerzy A. Zoladz

Muscle and Exercise Physiology

This page intentionally left blank

Muscle and Exercise Physiology

Edited by

Prof. Jerzy A. Zoladz, Ph.D., D.Sc.

Department of Muscle Physiology, Chair of Physiology and Biochemistry, Faculty of Rehabilitation, University School of Physical Education, Kraków, Poland

An imprint of Elsevier

Academic Press is an imprint of Elsevier 125 London Wall, London EC2Y 5AS, United Kingdom 525 B Street, Suite 1650, San Diego, CA 92101, United States 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom

Copyright © 2019 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

ISBN: 978-0-12-814593-7

For Information on all Academic Press publications visit our website at https://www.elsevier.com/books-and-journals

ELSEVIER Book Aid International Working together to grow libraries in developing countries

www.elsevier.com • www.bookaid.org

Publisher: Mica Haley

Acquisition Editor: Stacy Masucci Editorial Project Manager: Megan Ashdown Production Project Manager: Poulouse Joseph Cover Designer: Miles Hitchen

Typeset by MPS Limited, Chennai, India

Cover Image Credit: Adam Marczukiewicz

Dedication

We, the contributing authors, would like to dedicate this book to the memory of our former colleagues, mentors, and friends—outstanding muscle and exercise physiologists: Erling Asmussen, Per-Olof Åstrand, John E. Greenleaf, Peter W. Hochachka, John O. Holloszy, Rodolfo Margaria, Bengt Saltin, Brian J. Whipp, and Roger C. Woledge, for their seminal contributions to our understanding of muscle and human exercise physiology.

The Authors, August 15, 2018 This page intentionally left blank

Contents

List of Contributors 22 Preface		Acknowledgment References	21 21
Section I Skeletal Muscle Morphology	1	2. Functional Morphology of the Striated Muscle	27
		Wincenty Kilarski	
1. Human Body Composition	2	2.1 Introduction	27
and Muscle Mass	3	2.2 Muscle Fibers, Basic Morphological and	
Krzysztof Duda, Joanna Majerczak,		Physiological Units	27
Zenon Nieckarz, Steven B. Heymsfield		2.2.1 Microscopic Structure of Muscle	
and Jerzy A. Zoladz		Fibers	28
1.1 Introduction	3	2.2.2 Sarcomeres, the Basic Elements of	20
1.2 The Assessment of the System as a Whole	3	Myofibrils 2.3 Regulatory Proteins	30 32
1.2.1 Body Mass, Basal Metabolic Rate, and		2.3.1 Tropomyosin	32
Total Daily Energy Expenditure	4	2.3.2 Troponin	32
1.2.2 Body Mass Index	5	2.4 The Capillary Network of the Muscle	52
1.2.3 Body Circumferences and Skinfolds		Fibers	32
Measurements	6	2.5 Sarcoplasmic Reticulum	35
1.2.4 Body Surface Area	7	2.6 Proteins of the Sarcoplasmic Reticulum	
1.2.5 Body Volume and Body Density	8	Membranes	36
1.3 Body Composition at Varied Levels of	0	2.7 Strategic Distribution of Mitochondria	37
Complexity	9	References	37
1.3.1 Body Composition at the Atomic Level	9		
1.3.2 Body Composition at the Molecular level	10	3. Mechanisms of Muscle Contraction	
	10	and Relaxation	39
1.3.3 Body Composition at the Cellular Level	13		39
1.3.4 Body Composition at the	15	Jonathan P. Davis, Svetlana B. Tikunova	
Tissue–Organ Level	15	and Paul M.L. Janssen	
1.4 Basics of Body Compartmentalization	19	3.1 Introduction	39
1.4.1 Two-Compartment Model of Body	10	3.2 The Motor—Myosin	40
Composition	20	3.3 The Road—Actin	42
1.4.2 Three-Compartment Model of Body		3.4 The Fuel—ATP	42
Composition	21	3.4.1 The Cross-Bridge Cycle	42
1.4.3 Four-Compartment Model of Body		3.5 The Sensor	44
Composition	21	3.6 The Signal	46
1.5 Conclusions	21	3.6.1 Length–Tension Relationship	46

3.7	Types	of Contractions	46
	3.7.1	Force-Frequency Relationship and	
		Recruitment	46
	3.7.2	Force-Velocity Relationship and	
		Power	47
	3.7.3	Fatigue	47
3.8	Relax	ation	47
3.9	Concl	usion	48
Refe	erence	s	48

4. Motor Units and Muscle Receptors

Jan Celichowski and Piotr Krutki

4.1	Introduction	51
4.2	Motor Innervation of Skeletal Muscles	51
	4.2.1 The Motor Unit	51
	4.2.2 Motor Unit Territory and Muscle	
	Compartments	53
	4.2.3 Classification of Motor Units	53
	4.2.4 Variability in the Contractile	
	Properties of Motor Units	54
4.3	Motoneurons	57
	4.3.1 Location, Morphology, and	
	Innervation	57
	4.3.2 Motoneuron Excitability—Diversity	
	of Motoneurons of S, FR, and FF	
	Motor Units	60
	4.3.3 Rhythmic Firing of Motoneurons—	
	Bistability and Adaptation	62
	4.3.4 Synaptic Input to Motoneurons	64
4.4	Recruitment of Motor Units	65
	4.4.1 Henneman's Size Principle	66
	4.4.2 Summation of Motor Unit Forces	67
4.5	The Rate Coding of Muscle Force	67
	4.5.1 The Force–Frequency Relationship	67
	4.5.2 Force Modulation by the Pattern of	
	Motoneuronal Firing	72
	4.5.3 Decomposition of Tetanic	
	Contractions	74
	Motor Unit Action Potentials	74
4.7	Differences in Motor Unit Properties	
4.0	Between Muscles	76
	Interspecies Differences in Motor Units The Sex Differences in Motor Units	77 79
	Plasticity of Motor Units	79 79
4.10	4.10.1 Plasticity of Motor Unit	73
	Contractile Properties	80
	4.10.2 Plasticity of Motoneurons	81
4.11		83
	4.11.1 Muscle Spindles	83
	4.11.2 Tendon Organs	85
4.12	Laboratory Methods of Experimental	05
	Research on Motor Units and Muscle	
	Receptors	86
	-	

4.12.1	Electrophysiological Investigation	
	of Functionally Isolated Motor	
	Units	86
4.12.2	Intracellular Recording of the	
	Electrophysiological Properties	
	of Motoneurons	87
4.12.3	Studies on the Function of Muscle	
	Receptors	87
4.13 Conclu	sions	87
References		87

		on II Ie Energetics and Its	
		ormance	93
5.	Μι	uscle Energetics	95
	Gra	ham J. Kemp	
		Introduction The Basic Metabolism and Physiology of	95
		Skeletal Muscle Energetics	95
		5.2.1 ATP Turnover	95
		5.2.2 Intracellular Acid-Base Balance	95
		5.2.3 Metabolic Regulation	95
	гo	5.2.4 Mitochondrial Capacity Noninvasive Access to Skeletal Muscle	96
	5.5	Metabolism	96
	5.4	Three Ways Magnetic Resonance Spectroscopy (MRS) Can Measure	50
		Metabolic Flux	97
		5.4.1 Magnetization Transfer Methods 5.4.2 ¹³ C MRS Measurement of TCA	97
		Cycle Flux	97
		5.4.3 ³¹ P MRS Kinetic Methods	98
	5.5	Interpreting ³¹ P MRS Data:	
	5.6	Measurements in Muscle at Rest Interpreting ³¹ P MRS Data: Resting	100
		Muscle Under Cuff Ischemia	101
	5.7	Interpreting ³¹ P MRS Data: Exercise	101
		Responses 5.7.1 Initial Exercise: Responses in the	101
		First Few Seconds	102
		5.7.2 Ischemic Exercise: Exercise	102
		Without a Blood Supply	102
		5.7.3 "Oxidative" Exercise, Where	102
		Glycolytic ATP Synthesis Can Be	
		Ignored	102
		5.7.4 Recovery From Exercise: Studying	
		Mitochondrial Function	103
		5.7.5 Recovery From Exercise: Studying	
		Proton Efflux	104
		5.7.6 High Intensity Exercise: Glycolytic and Oxidative ATP Synthesis	105

5.8 Approaches to Measurement of O_2	
Transport and Consumption In Vivo	106
5.8.1 Measuring Cellular PO ₂	106
5.8.2 Measuring Muscle O ₂ Content	106
5.8.3 Combining NIRS and ³¹ P MRS	106
Abbreviations and Symbols	
Acknowledgments	
References	

6. Efficiency of Skeletal Muscle

Chris J. Barclay

6.1	Introd	luction	111
6.2	Muscl	e Energetics Overview	111
	6.2.1	Biochemical Changes in Response	
		to Contractile Activity	111
	6.2.2	Time Courses of Initial and Recovery	
		Reactions	112
6.3	Thern	nodynamics of Muscle Contraction	112
	6.3.1	Energy Output From Contracting	
		Muscle	113
	6.3.2	Relationship Between Muscle	
		Biochemistry and Enthalpy Output	113
6.4	Efficie	ency of Muscle	115
	6.4.1	Efficiency of Cross-Bridge Work	
		Generation	115
	6.4.2	Overall Muscle Efficiency	120
	6.4.3	Efficiency of Mitochondrial Energy	
		Transfer	122
6.5	Efficie	ency of Exercise in Humans	122
	6.5.1	Data From Isolated Human Muscle	
		Fibers	122
	6.5.2	Estimating Muscle Efficiency From	
		Exercise Efficiency	123
6.6	Concl	usion	124
	References		125
	Appendices		126
	Appendix 6.1		126
A	ppend	ix 6.2	127

7. Muscle Function: Strength, Speed, and Fatigability

Roger M. Enoka and Jacques Duchateau

Introd	luction	129
Musc	e Activation	129
7.2.1	Muscle Unit	130
7.2.2	Muscle Fiber Types	130
7.2.3	Contractile Properties	132
7.2.4	Motor Unit Activation	133
Muscl	e Force	135
7.3.1	Sarcomere	135
7.3.2	Muscle Fiber Length	136
7.3.3	Muscle Fiber Anatomy	137
7.3.4	Force Transmission to the Skeleton	138
	Muscl 7.2.1 7.2.2 7.2.3 7.2.4 Muscl 7.3.1 7.3.2 7.3.3	Introduction Muscle Activation 7.2.1 Muscle Unit 7.2.2 Muscle Fiber Types 7.2.3 Contractile Properties 7.2.4 Motor Unit Activation Muscle Force 7.3.1 Sarcomere 7.3.2 Muscle Fiber Length 7.3.3 Muscle Fiber Anatomy 7.3.4 Force Transmission to the Skeleton

7.4 Muscle Function	138
7.4.1 Strength and Power	139
7.4.2 Speed-Related Properties	145
7.4.3 Fatigability	148
7.5 Conclusions	153
References	153

8.	Critical Power: Possibly the Most	
	Important Fatigue Threshold	
	in Exercise Physiology	159

Jesse C. Craig, Anni Vanhatalo, Mark Burnley, Andrew M. Jones and David C. Poole

8.1	Introd	luction	159
8.2	Historical Bases for the Critical Power		
	Conce	ept	159
8.3	The C	Critical Power Concept: Mechanistic	
	Bases		163
	8.3.1	Inspiratory Hyperoxia	165
	8.3.2	Inspiratory Hypoxia: Acute	166
	8.3.3	Inspiratory Hypoxia: Chronic	166
	8.3.4	Impact of Duty Cycle on Critical	
		Power	167
	8.3.5	Complete Blood Flow Occlusion	168
	8.3.6	Vascular Control Above Critical	
		Power/Critical Speed and Nitrate	
		Supplementation	168
	8.3.7	All-Out Maximal Exercise	168
	8.3.8	Peripheral Versus Central Fatigue	
		and Exhaustion	169
8.4	Applie	cation of the Critical Power	
		ept to All-Out Exercise	
		le Body, Limb, Muscle Group,	
		ed Muscle)	169
8.5		cal Applications of the Critical Power	
		ept: Athletics, Aged and Patient	
	-	ations and Laboratory Testing	171
		Athletics	171
		Aged and Patient Populations	173
	8.5.3	Why Measure Critical Power and W'	
		as a Guide for Assessing Exercise	
		Tolerance?	173
		atory Testing	175
		enges to the Critical Power Concept	175
		usions	176
Refe	erence	S	177

9. Energy Cost of Human Locomotion	
on Land and in Water	183

Pietro E. di Prampero and Cristian Osgnach

9.1 Introduction	
9.2 Locomotion on Land	184
9.2.1 The Nonaerodynamic Energy Cost	184
9.2.2 The Air Resistance	184

9.3 Walking and Running	184
9.3.1 Terrain, Locomotion Pathologies,	
Body Mass, Age	188
9.3.2 Accelerated/Decelerated Running	191
9.4 Speed Skating	193
9.5 Cycling	193
9.5.1 Mechanical Work and Energy Cost	193
9.5.2 The Efficiency of Cycling	195
9.5.3 The Rolling Resistance	196
9.5.4 The Aerodynamic Resistance	196
9.5.5 Altitude and Performance	197
9.5.6 On Sloping Grounds	200
9.6 Cross-Country Skiing	202
9.7 Locomotion in Water	203
9.7.1 The Energetics of Swimming	204
9.7.2 The Biomechanics of Swimming:	
Hydrodynamic Drag and Efficiency	206
9.7.3 Assisted Locomotion in Water	208
9.8 Conclusion and Practical Considerations	211
Acknowledgments	211
References	211

Section III

Muscle Metabolism and Exercise Physiology 215

10.	0. The Coupling of Internal and			
	External Gas Exchange During			
	Exercise	217		

T. Scott Bowen, Alan P. Benson and Harry B. Rossiter

10.1	Introdu	ıction	217
	10.1.1	Introduction to Exercise	
		Bioenergetics	217
	10.1.2	Definitions	219
10.2	Gas Exe	change During Exercise	219
	10.2.1	Exercise Intensity Domains	219
	10.2.2	Ramp-Incremental Exercise	220
	10.2.3	Constant Power Exercise and	
		$\dot{V}O_2$ Kinetics	226
10.3		ogical Mechanisms Dissociating	
	the Lur	ng and Muscle Gas Exchange	230
		Oxygen Stores	230
		Transit Delay	231
	10.3.3	Flow-Weighted Venous	
		Admixture	231
10.4		ce That Pulmonary VO ₂ Kinetics	
		Intramuscular Metabolism	
	0	Exercise	232
	10.4.1	Evidence From Computer	
		Simulation	232
	10.4.2	Evidence From Direct	
		Measurement	233
	10.4.3	Kinetic Control of Muscle $\dot{V}O_2$	234

	10.5	Aging a	ulmonary VO2 Kinetics in and Chronic Disease: What ey Tell Us About Exercise	
		Limitat		240
		10.5.1	Aging	240
		10.5.2	Chronic Heart Failure	240
		10.5.3	Chronic Obstructive Pulmonary	
			Disease	241
		10.5.4	Skeletal Muscle Myopathies	242
		Conclu	sions	242
	Refe	rences		242
11.			rate Metabolism During	
	Exer	cise		251
			nmond, Marc J. Fell, rris and James P. Morton	
	11 1	Introdu	uction	251
	11.2	Overvi	ew of Carbohydrate Storage tion of Carbohydrate	252
		Metabo		253
		11.3.1	Effects of Exercise Intensity	
			and Duration	254
		11.3.2	Effects of Substrate	
			Availability	256
			Effects of Training Status	257
	11.4		nydrate and Exercise	
		Perforr		258
		11.4.1	Muscle Glycogen and	
			Carbohydrate Loading	258
		11.4.2	Preexercise Carbohydrate	
			Availability	259
		11.4.3	Carbohydrate Feeding During	
			exercise	259
	11.5		ydrate and Training Adaptation	260
		11.5.1	Overview of Molecular	
			Regulation of Training	
			Adaptations	260
			Fasted Training	261
		11.5.3	Postexercise Carbohydrate	
			Restriction	262
		11.5.4	Twice-per-day Training Models	262
		11.5.5	Sleep-Low/Train-Low Models	262
			High-Fat Feeding	263
			Muscle Glycogen Threshold	264
			Practical Applications	266
		Conclu	sions	266
	Refe	rences		267
12.	Mus	cle Lip	oid Metabolism	271

Adrian Chabowski and	Jan Górski
12.1 Introduction	271
12.1.1 Trafficking	g of LCFA Across
Sarcolem	na 271

		12.1.2	The Effect of Physical Exercise	
			on the Transmembrane Transport	
			of LCFA	273
		12.1.3	Mechanisms of FA Transporters	
			Translocation	273
			The Involvement of FA	
			Transporters in the Mitochondrial	
			Metabolism of LCFA	274
	12.2	Glycero		274
	12.2		Glycerophospholipids	274
			Triacylglycerols	274
			Triacylglycerol lipases	276
			Perilipins	270
	12 3	Sphinge	1	277
	12.5		Metabolism of Sphingolipids	277
			Ceramide	277
			Sphingosine-1-Phosphate	278
		12.3.4	Sphingosine-1-Phosphate and	0.70
		40.0 -	Skeletal Muscle Regeneration	278
		12.3.5	Other Effects of Sphingosine-1-	
			Phosphate in Skeletal Muscles	279
		12.3.6	Effect of Exercise on	
			Sphingolipid Metabolism	279
	12.4		l Muscle Lipids and Insulin	
		Sensitiv		279
			Triacylglycerols	279
			Diacylglycerols	280
		12.4.3	Ceramides	280
		12.4.4	Sphingosine-1-Phosphate	280
		12.4.4 Conclus		280
		12.4.4		
		12.4.4 Conclus		280
13.	Refer	12.4.4 Conclus rences		280
13.	Refer Mus	12.4.4 Conclustences	sions	280 281
13.	Refer Mus Grit I	12.4.4 Conclustences	an Endocrine Organ I and Bente K. Pedersen	280 281
13.	Refer Mus Grit I 13.1	12.4.4 Conclus ences ccle as E. Legård Introdu	an Endocrine Organ I and Bente K. Pedersen Iction	280 281 285
13.	Refer Mus Grit I 13.1 13.2	12.4.4 Conclus ences ccle as E. Legård Introdu History:	an Endocrine Organ I and Bente K. Pedersen	280 281 285 285
13.	Refer Mus Grit I 13.1 13.2 13.3	12.4.4 Conclus ences ccle as E. Legård Introdu History A Yin-Ya Myokin	an Endocrine Organ <i>I and Bente K. Pedersen</i> ction : Myokines ang Concept Exists Between es and Adipokines	280 281 285 285
13.	Refer Mus Grit I 13.1 13.2 13.3	12.4.4 Conclus ences ccle as E. Legård Introdu History A Yin-Ya	an Endocrine Organ <i>I and Bente K. Pedersen</i> ction : Myokines ang Concept Exists Between es and Adipokines	280 281 285 285 285
13.	Refer Mus Grit I 13.1 13.2 13.3	12.4.4 Conclus ences ccle as E. Legård History: A Yin-Ya Myokin Myokin	an Endocrine Organ <i>I and Bente K. Pedersen</i> ction : Myokines ang Concept Exists Between es and Adipokines	280 281 285 285 285 287
13.	Refer Mus Grit I 13.1 13.2 13.3	12.4.4 Conclus rences Cele as E. Legård Introdu History: A Yin-Ya Myokin Myokin 13.4.1	an Endocrine Organ I and Bente K. Pedersen I ction : Myokines ang Concept Exists Between es and Adipokines es	280 281 285 285 285 287 287 287
13.	Refer Mus Grit I 13.1 13.2 13.3	12.4.4 Concluster conc	an Endocrine Organ <i>I and Bente K. Pedersen</i> Iction : Myokines ang Concept Exists Between es and Adipokines es Characteristics of a Myokine	280 281 285 285 285 287 287 287 287
13.	Refer Mus Grit I 13.1 13.2 13.3	12.4.4 Concluster conc	an Endocrine Organ I and Bente K. Pedersen I and Bente K. Pedersen I and Bente K. Pedersen I and Concept Exists Between I ang Concept I a	280 281 285 285 285 287 287 287 287
13.	Refer Mus Grit I 13.1 13.2 13.3	12.4.4 Concluster ences Cole as E. Legård Introdu History: A Yin-Ya Myokin 13.4.1 13.4.2 13.4.3	an Endocrine Organ <i>I and Bente K. Pedersen</i> ction : Myokines ang Concept Exists Between es and Adipokines es Characteristics of a Myokine Myostatin Brain-Derived Neurotrophic	280 281 285 285 285 287 287 287 291
13.	Refer Mus Grit I 13.1 13.2 13.3	12.4.4 Concluster ences Cole as E. Legård Introdu History: A Yin-Ya Myokin 13.4.1 13.4.2 13.4.3 13.4.4	an Endocrine Organ <i>I and Bente K. Pedersen</i> ction : Myokines ang Concept Exists Between es and Adipokines es Characteristics of a Myokine Myostatin Brain-Derived Neurotrophic Factor	280 281 285 285 285 287 287 287 291 291
13.	Refer Mus Grit I 13.1 13.2 13.3	12.4.4 Concluster ences cle as E. Legård Introdu History: A Yin-Ya Myokin 13.4.1 13.4.2 13.4.3 13.4.4 13.4.5	an Endocrine Organ <i>I and Bente K. Pedersen</i> ction : Myokines ang Concept Exists Between es and Adipokines es Characteristics of a Myokine Myostatin Brain-Derived Neurotrophic Factor Interleukin-7	280 281 285 285 285 287 287 291 291 293
13.	Refer Mus Grit I 13.1 13.2 13.3	12.4.4 Conclus ences ccle as E. Legård Introdu History: A Yin-Ya Myokin Myokin 13.4.1 13.4.2 13.4.3 13.4.4 13.4.5 13.4.6	an Endocrine Organ <i>I and Bente K. Pedersen</i> ction : Myokines ang Concept Exists Between es and Adipokines es Characteristics of a Myokine Myostatin Brain-Derived Neurotrophic Factor Interleukin-7 Interleukin-8	280 281 285 285 285 287 287 287 291 291 293 293
13.	Refer Mus Grit I 13.1 13.2 13.3	12.4.4 Conclus ences ccle as E. Legård Introdu History: A Yin-Ya Myokin Myokin 13.4.1 13.4.2 13.4.3 13.4.4 13.4.5 13.4.6	an Endocrine Organ <i>I and Bente K. Pedersen</i> ction : Myokines ang Concept Exists Between es and Adipokines es Characteristics of a Myokine Myostatin Brain-Derived Neurotrophic Factor Interleukin-7 Interleukin-7 Interleukin-8 Interleukin-15 Leukemia Inhibitory Factor	280 281 285 285 285 287 287 287 287 291 293 293 293 294
13.	Refer Mus Grit I 13.1 13.2 13.3 13.4	12.4.4 Conclus ences cle as E. Legård Introdu History: A Yin-Ya Myokin 13.4.1 13.4.2 13.4.3 13.4.4 13.4.5 13.4.6 13.4.7 13.4.8	an Endocrine Organ <i>I and Bente K. Pedersen</i> ction : Myokines ang Concept Exists Between es and Adipokines es Characteristics of a Myokine Myostatin Brain-Derived Neurotrophic Factor Interleukin-7 Interleukin-7 Interleukin-8 Interleukin-15 Leukemia Inhibitory Factor	280 281 285 285 285 287 287 287 291 293 293 293 294 295
13.	Refer Mus Grit I 13.1 13.2 13.3 13.4	12.4.4 Conclus ences cle as E. Legård Introdu History: A Yin-Ya Myokin 13.4.1 13.4.2 13.4.3 13.4.4 13.4.5 13.4.6 13.4.7 13.4.8	an Endocrine Organ I and Bente K. Pedersen ction : Myokines ang Concept Exists Between es and Adipokines es Characteristics of a Myokine Myostatin Brain-Derived Neurotrophic Factor Interleukin-7 Interleukin-7 Interleukin-8 Interleukin-15 Leukemia Inhibitory Factor Irisin Myokines with Metabolic	280 281 285 285 285 287 287 287 291 293 293 293 294 295
13.	Refer Mus Grit I 13.1 13.2 13.3 13.4	12.4.4 Conclus ences cle as <i>E. Legård</i> Introdu History: A Yin-Ya Myokin 13.4.1 13.4.2 13.4.3 13.4.4 13.4.5 13.4.6 13.4.7 13.4.8 Other <i>N</i> Functio	an Endocrine Organ I and Bente K. Pedersen ction : Myokines ang Concept Exists Between es and Adipokines es Characteristics of a Myokine Myostatin Brain-Derived Neurotrophic Factor Interleukin-7 Interleukin-7 Interleukin-8 Interleukin-15 Leukemia Inhibitory Factor Irisin Myokines with Metabolic	280 281 285 285 285 287 287 291 291 293 293 294 295 296
13.	Refer Mus Grit I 13.1 13.2 13.3 13.4	12.4.4 Conclus ences cle as E. Legård Introdu History: A Yin-Ya Myokin 13.4.1 13.4.2 13.4.3 13.4.4 13.4.5 13.4.6 13.4.7 13.4.8 Other M Functio 13.5.1	an Endocrine Organ <i>I and Bente K. Pedersen</i> ction : Myokines ang Concept Exists Between es and Adipokines es Characteristics of a Myokine Myostatin Brain-Derived Neurotrophic Factor Interleukin-7 Interleukin-7 Interleukin-8 Interleukin-15 Leukemia Inhibitory Factor Irisin Myokines with Metabolic ns	280 281 285 285 285 287 287 287 291 291 293 294 295 296 297
13.	Refer Mus Grit I 13.1 13.2 13.3 13.4	12.4.4 Concluster ences Concluster ences Concluster ences Concluster ences Concluster Ences Myokin Myokin 13.4.1 13.4.2 13.4.3 13.4.4 13.4.5 13.4.6 13.4.7 13.4.8 Other M Functio 13.5.1 13.5.2	an Endocrine Organ <i>I and Bente K. Pedersen</i> ction : Myokines ang Concept Exists Between es and Adipokines es Characteristics of a Myokine Myostatin Brain-Derived Neurotrophic Factor Interleukin-7 Interleukin-7 Interleukin-8 Interleukin-15 Leukemia Inhibitory Factor Irisin Myokines with Metabolic ns Myonectin	280 281 285 285 285 287 287 291 291 293 293 293 294 295 296 297 297
13.	Refer Mus Grit I 13.1 13.2 13.3 13.4	12.4.4 Concluster ences cle as E. Legård Introdu History: A Yin-Ya Myokin 13.4.1 13.4.2 13.4.3 13.4.4 13.4.5 13.4.6 13.4.7 13.4.8 Other M Functio 13.5.1 13.5.2 13.5.3	an Endocrine Organ <i>I and Bente K. Pedersen</i> ction : Myokines ang Concept Exists Between es and Adipokines es Characteristics of a Myokine Myostatin Brain-Derived Neurotrophic Factor Interleukin-7 Interleukin-7 Interleukin-8 Interleukin-15 Leukemia Inhibitory Factor Irisin Myokines with Metabolic ns Myonectin Follistatin-Like 1	280 281 285 285 285 287 287 291 291 293 293 294 293 294 295 296 297 297 297

	13.6 Myokines with Anticancer Effect13.7 Myokine Screening13.8 ConclusionsAcknowledgmentsReferences	298 298 300 300 300
14.	The Role of Reactive Oxygen	
	and Nitrogen Species in Skeletal	200
	Muscle	309
	Zsolt Radak and Erika Koltai	
	14.1 Introduction	309
	14.2 Differentiation of Fiber Types and	
	Biogenesis of Mitochondria	309
	14.3 Muscle Contraction and Reactive	
	Oxygen and Nitrogen Species	310
	14.4 RONS-Associated Oxidative Damage	
	and Repair	312
	14.5 Conclusions	313
	References	314
15.	Exercise, Immunity, and Illness	317
15.	Exercise, Immunity, and Illness Arwel Wyn Jones and Glen Davison	317
15.		317 317
15.	Arwel Wyn Jones and Glen Davison 15.1 Introduction	
15.	Arwel Wyn Jones and Glen Davison	
15.	Arwel Wyn Jones and Glen Davison 15.1 Introduction 15.2 Exercise and Upper Respiratory	317 317
15.	Arwel Wyn Jones and Glen Davison 15.1 Introduction 15.2 Exercise and Upper Respiratory Illness	317 317
15.	Arwel Wyn Jones and Glen Davison 15.1 Introduction 15.2 Exercise and Upper Respiratory Illness 15.2.1 Beneficial Effects with Modera	317 317 te
15.	Arwel Wyn Jones and Glen Davison 15.1 Introduction 15.2 Exercise and Upper Respiratory Illness 15.2.1 Beneficial Effects with Modera Exercise 15.2.2 Effects With Strenuous	317 317 te
15.	Arwel Wyn Jones and Glen Davison 15.1 Introduction 15.2 Exercise and Upper Respiratory Illness 15.2.1 Beneficial Effects with Modera Exercise 15.2.2 Effects With Strenuous Training/in Athletes	317 317 te 317
15.	Arwel Wyn Jones and Glen Davison 15.1 Introduction 15.2 Exercise and Upper Respiratory Illness 15.2.1 Beneficial Effects with Modera Exercise 15.2.2 Effects With Strenuous	317 317 te 317 317
15.	Arwel Wyn Jones and Glen Davison 15.1 Introduction 15.2 Exercise and Upper Respiratory Illness 15.2.1 Beneficial Effects with Modera Exercise 15.2.2 Effects With Strenuous Training/in Athletes 15.3 Etiology of Upper Respiratory Illness	317 317 te 317 317 319
15.	Arwel Wyn Jones and Glen Davison 15.1 Introduction 15.2 Exercise and Upper Respiratory Illness 15.2.1 Beneficial Effects with Modera Exercise 15.2.2 Effects With Strenuous Training/in Athletes 15.3 Etiology of Upper Respiratory Illness 15.4 Immune System and Exercise	317 317 317 317 317 319 321 321
15.	Arwel Wyn Jones and Glen Davison 15.1 Introduction 15.2 Exercise and Upper Respiratory Illness 15.2.1 Beneficial Effects with Modera Exercise 15.2.2 Effects With Strenuous Training/in Athletes 15.3 Etiology of Upper Respiratory Illness 15.4 Immune System and Exercise 15.4.1 Moderate Exercise 15.4.2 Strenuous or Intensive Exercise	317 317 317 317 319 321 321 22
15.	Arwel Wyn Jones and Glen Davison 15.1 Introduction 15.2 Exercise and Upper Respiratory Illness 15.2.1 Beneficial Effects with Modera Exercise 15.2.2 Effects With Strenuous Training/in Athletes 15.3 Etiology of Upper Respiratory Illness 15.4 Immune System and Exercise 15.4.1 Moderate Exercise	317 317 317 317 319 321 321 22
15.	 Arwel Wyn Jones and Glen Davison 15.1 Introduction 15.2 Exercise and Upper Respiratory Illness 15.2.1 Beneficial Effects with Modera Exercise 15.2.2 Effects With Strenuous Training/in Athletes 15.3 Etiology of Upper Respiratory Illness 15.4 Immune System and Exercise 15.4.1 Moderate Exercise 15.4.2 Strenuous or Intensive Exercise 15.4.3 Exercise Training and Immune 	317 317 317 317 319 321 321 22

Section IV

Body Adaptation to Exercise 345

16.	16. The Evolution of Skeletal Muscle Plasticity in Response to Physical Activity and Inactivity		
	Kenneth M. Baldwin and Fadia Haddad		
	 16.1 Introduction 16.2 Key Discoveries Between 1910 and 1950: The Origin of Motor Units and Intrinsic Contractile 	347	
	Properties of Skeletal Muscle	347	
	16.2.1 The Motor Unit	347	

	16.2.2	Fast- and Slow-Type Muscle: Connecting a Functional Link	
		of the Muscle Fiber to Its Motor	
			247
	1(2)	Neuron	347
	16.2.3	The Contributions of Archibald	
		Vivian Hill to Fundamental	
46.0	K D'	Muscle Contraction Processes	350
16.3		scoveries Between 1950	
		70: Building a Foundation cle Plasticity via Histochemical	
		ochemical Techniques	351
		Muscle Histochemistry	551
	10.5.1	and the Biochemistry of Myosin	351
	1632	The Early Science of Muscle	551
	10.5.2	Plasticity: Adaptive Responses	
		of Muscle Fibers to Simulated	
		Physical Activity	351
	1622	, ,	551
	16.3.3	/	252
16 /		Adaptations in Skeletal Muscle scoveries Between 1970 and	352
10.4		Contributions of Exercise	
		mistry to Studying Muscle	
		tions to Physical Activity	353
		Fiber-Type Characterization	
		of Mammalian Skeletal Muscle:	
		Linking Biochemistry to Muscle	
		Function	353
	16.4.2	Adaptive Responses of Motor	
		Units to Endurance Exercise	353
	16.4.3	Impact of Training on Skeletal	
		Muscle Fiber Types During	
		Acute Bouts of Exercise	354
	16.4.4	Can Fast-Type Fibers Become	55.
		Converted Into Slow-Type	
		Fibers by Physical Activity	
		Paradigms?	355
	16.4.5	Polymorphism of Myofibril	000
	101115	Proteins and Role of Myosin	356
16.5	Discov	eries From 1980 to 2000: Myosin	000
		n Gene Discovery, Analytical	
		logical Advancements, and	
		ion of Activity Models to	
		ome the Atrophy of Inactivity	356
	16.5.1	0 0	
		and Identification of the Myosin	
		Heavy Chain Gene Family	356
	16.5.2	New Approaches to Identify	
		Myosin Heavy Chain Proteins	
		and Fiber Typing at the Protein	
		and Molecular Level	358
	16.5.3	Functional Properties of the	
		Myosin Heavy Chain Isoforms	358
	16.5.4	New Activity/Inactivity	
		Paradigms Involving Animal	
		Models	359

16.5.5	Single-Fiber Myosin Heavy Chain Polymorphism: How Many Patterns and the Role of Loading	
	Conditions	360
	Present: Mechanisms Regulating	
	Balance and Muscle Mass,	
	ondrial Biosynthesis, and	361
	ctile Phenotype Switching Mechanisms of Altered Protein	301
16.6.1		261
16.6.0	Balance Affecting Muscle Mass	361
16.6.2	Are Satellite Cells Required for	
	Skeletal Muscle Hypertrophy?	361
16.6.3	The Role of Activity in Reversing	
	Atrophy Responses to Unloading	
	Stimuli: Importance of Resistance	
	Exercise	363
16.6.4	Mechanisms of Mitochondrial	
	Biosynthesis Regulation Muscle	
	Performance	364
16.6.5	Transcriptional Regulation of	
	Contractile Phenotype Switching	
	in Response to Altered Activity	
	and Loading States	365
16.6.6	Epigenetics and Muscle Gene	
	Regulation in Response	
	Unloading and to Exercise	367
16.6.7	Role of Noncoding Antisense	
	RNA During Altered Loading	
	States	368
16.6.8	Role of MicroRNA	369
	Mechanisms of Mitochondrial	
	Biogenesis and Degradation	369
16.7 Conclu		370
References		371

17. Muscle Blood Flow and Vascularization in Response to Exercise and Training 379

Bruno Tesini Roseguini and M. Harold Laughlin

17.1	Introduction	379
17.2	Anatomy and Functional	
	Organization of the Skeletal	
	Muscle Vasculature	380
17.3	Local Control of Microvascular	
	Perfusion During Exercise	381
17.4	Interaction Between Metabolic and	
	Sympathetic Control of Muscle	
	Blood Flow	381
17.5	Muscle Blood Flow Heterogeneity	382
17.6	Impact of Exercise Training on	
	Skeletal Muscle Blood Flow	383
17.7	Effects of Exercise Training on Skeletal	
	Muscle Arteriolar Density	385

17.8 Impact of Exercise Training on	
Skeletal Muscle Capillarization	385
17.9 Effects of Exercise Training on	
Skeletal Muscle Vascular Control	386
17.10 Conclusions	387
References	387

18.	Metabolic Transitions and Muscle	
	Metabolic Stability: Effects	
	of Exercise Training	391

Jerzy A. Zoladz, Zbigniew Szkutnik and Bruno Grassi

18.1	Introduction		
18.2	The O	kygen Uptake–Power Output	
	Relatio	nship	393
18.3	Measu	rement, Modeling, and Analysis	
		nonary VO ₂ On-Kinetics	396
		Overall \dot{VO}_2 Kinetics	396
	18.3.2	Three Phases of Pulmonary \dot{VO}_2	
		Responses	398
	18.3.3	Modeling of the Pulmonary \dot{VO}_2	
		Responses	399
18.4		nary VO ₂ On-Kinetics	399
	18.4.1	Primary Component of the	
		Pulmonary VO ₂ On-Kinetics	399
	18.4.2	The Slow Component of	
		Pulmonary VO ₂ On-Kinetics	400
18.5		lationship Between Pulmonary	
		uscle VO ₂ On-Kinetics	401
	18.5.1	The Primary Phase of \dot{VO}_2	101
	40 - 0	On-Kinetics	401
	18.5.2	The Slow Component of $\dot{V}O_2$	
10 C	0	On-Kinetics	401
18.6		n Deficit and Oxygen Debt	401
		Oxygen Deficit	401
	18.6.2	The Rate of Adjustment	
		of the \dot{VO}_2 On-Kinetics and	
		the Size of the O_2 Deficit: What	
		Do They Tell Us?	402
	18.6.3	Oxygen Debt or the Excess	
		Postexercise Oxygen	
		Consumption	403
	18.6.4	A Small Versus Large Muscle	
		O ₂ Debt: What Does It Tell Us?	405
	18.6.5	VO_2 Off-Kinetics: Other	
		Approaches	405
18.7		ctors Determining VO ₂	400
	On-Kir		406
	18./.1	The Primary Component	100
	10 7 0	of the $\dot{V}O_2$ On-Kinetics	406
	18.7.2	The Slow Component of	100
		the $\dot{V}O_2$ On-Kinetics	406

 18.7.3 General Mechanisms for the Slow Component of Muscle VO₂ On-Kinetics 18.8 The Impact of Endurance Trainin on Muscle Metabolic Stability and Muscle and Pulmonary VO₂ 	408
On-Kinetics	408
18.8.1 Endurance Training and N	Auscle
Metabolic Stability	408
18.8.2 Endurance Training and	
the $\dot{V}O_2$ On-Kinetics	409
18.8.3 The Mechanisms Underly	ing
the Training-Induced	
Acceleration of \dot{VO}_2	
On-Kinetics	410
18.8.4 The Effect of Physical	
Training on the Slow	
Component of the Pulmor	nary
\dot{VO}_2 On-Kinetics	413
18.9 Conclusions	415
Acknowledgment	415
References	415

19.			geing: Impact on Muscle Power	423
	Hans	Degens	5	
	19.1 Introduction			
	19.2		Ageing and Daily Life	
		Activiti		423
	19.3		Muscle Power During	
		Ageing		424
	19.4		Generating Capacity	424
		19.4.1	Age-Related Loss of Muscle	
			Mass	424
		19.4.2	Decreased Volume Proportion	
of fast fibers			425	
		19.4.3	Muscle Architecture	425
		19.4.4	Muscle Ultrastructure	425
		19.4.5	Reductions in Single Fiber	
			Specific Tension	425
		19.4.6	Neural Control	425
	19.5	Change	es in Maximal Shortening	
		Velocit		426
	19.6	Muscle	Wasting and Function:	
		Causes	and Mechanisms	426
		19.6.1	Causes of Muscle Weakness	
			in Old Age	427
19.6.2 Mechanisms of Muscle			Mechanisms of Muscle	
			Weakness	428
	19.7	Conclu	sions	429
	Refer	rences		429

20.	. The Role of Exercise on Fracture Reduction and Bone Strengthening			
	Wolf	gang Kei	mmler and Simon von Stengel	
			e Strategies and Optimum	433
			ols for Bone Strengthening Step One: Determinants of Fractures and Fracture	435
		20.2.2	Prevention Step Two: Individual Status	435
			of the Subject With Respect to Fracture Risk	437
		20.2.3	Step Three: Defining the Most Relevant Primary Aims(s) of the Exercise Protocol	437
		20.2.4	Step Four: Application of the	
		20.2.5	Exercise Protocol Step Five: Validation of Training	438
		20.2.6	Aims; Reappraisal Step Six: Definition of Other	447
			Dedicated Training Aims	448
		Conclu ences	sion	448 448

Section V Heart Muscle and Exercise 457

21.	Functional Morphology of the Cardiac Myocyte		459
	Nich	olas J. Severs	
		Introduction	459
		Morphology of the Cardiac Myocyte and its Contractile Machinery	459
	21.3	The Lateral Plasma Membrane and Transverse Tubules	460
	21.4	Sarcoplasmic Reticulum and its	
	21.5	Couplings to the Plasma Membrane Intercellular Junctions Linking	461
		Cardiomyocytes	461
	21.6	Intermediate Filaments, Costameres, and the Plasma Membrane	
		Skeleton	464
	21.7	Variation in Morphology Among	
		Different Cardiac Myocyte Types	465
		Conclusions	465
	Refe	rences	466

22. Exercise and the Coronary Circulation 467 Dirk J. Duncker, Robert J. Bache, Daphne Merkus and M. Harold Laughlin 22.1 Introduction 467 22.2 The Coronary Circulation in Acute 467 Exercise 22.2.1 Myocardial O₂ Demand 467 22.2.2 Myocardial O₂ Supply 468 22.2.3 Determinants of Coronary **Blood Flow** 470 22.2.4 Transmural Distribution of Left Ventricular Myocardial Blood Flow 472 22.2.5 Coronary Blood Flow to the Right Ventricle 475 22.2.6 Control of Coronary Vascular Resistance 476 22.2.7 Epicardial Coronary Arteries 487 22.2.8 The Coronary Circulation in Acute Exercise: Summary and Conclusions 488 22.3 The Coronary Circulation in Exercise 489 Training 22.3.1 Structural Vascular Adaptations in the Heart 489 22.3.2 Adaptations in Coronary Vascular Control 491 22.3.3 Exercise Training Increases Coronary Transport Capacity 492 22.3.4 Coronary Circulation in Exercise Training: Summary and Conclusions 492 Acknowledgments 492 References 493 23. Cardiac Energetics 505 June-Chiew Han, Kenneth Tran, Andrew J Taberner, Brian Chapman and Denis S. Loiselle 23.1 Introduction 505 23

J. I	muouu		202
3.2	Cardia	c Thermodynamics	505
	23.2.1	Defining "Efficiency"	506
	23.2.2	Heat Production	506
	23.2.3	Free Energy and Bound Energy	507
	23.2.4	Thermodynamic Efficiency and	
		Entropy Creation	507
	23.2.5	Heat Production From Oxidative	
		Phosphorylation	508

		23.2.6	Total Cardiac Heat Production	508
		23.2.7	Mechanical Efficiency	508
		23.2.8	Cross-Bridge Efficiency	508
	23.3		nental Techniques of Measuring	
			c Energetics	509
		23.3.1	In vivo Measurement of Cardiac	
			Energetics	509
		23.3.2	Ex Vivo Measurement	
			of Cardiac Energetics	509
		23.3.3	In Vitro Measurement of Cardiac	
			Energetics	512
		23.3.4	"Total" Versus "Mechanical"	
			Versus "Cross-Bridge" Efficiency	517
		23.3.5	Stress-length Area and Stress-Time	
			Integral: Their Energetic	
			Equivalence	518
	23.4		ning of Global Cardiac	- 10
		Energe		519
			Basal Metabolism	519
			Activation Metabolism	521
	00 F		Cross-Bridge Heat	523
	23.5		natical Modeling of Cardiac	
		and Exe	no-Energetics During Rest	525
			The Cross-Bridge Cycle	525
		23.3.1	Ca^{2+} Activation	525
			Cross-Bridge Cycling	525
			Metabolic Considerations	525
			Model Details	526
			Regulation of Energy Supply	520
		23.3.0	and Demand	527
		32 E 7	In Silico Simulation of Exercise	527
	23.6		of Acute Exercise on Global	527
	23.0		c Energetics	530
			Basal Metabolism	531
			Activation Metabolism	531
			Cross-Bridge Metabolism	532
			Total Efficiency	532
			Summary	532
	23.7	Conclu		532
		owledgi		533
		ences		533
24.			n of Heart Rate and	
			ssure During Exercise	
	in H	uman	S	541

James P. Fisher and Niels H. Secher

24.1	Introdu	iction	541
24.2	Static E	Static Exercise	
	24.2.1	Onset of exercise	542
	24.2.2	Sustained Static Exercise	546

	24.2.3	Central Command Versus	
		the Exercise Pressor Reflex	547
	24.2.4	Autonomic Control of Heart	
		Rate and Blood Pressure	549
	24.2.5	Arterial Baroreceptors	549
	24.2.6	Standing	550
	24.2.7	Breath Hold	551
24.3	Dynam	ic Exercise	551
	24.3.1	Onset of Exercise	551
	24.3.2	Sustained (Steady-State) Exercise	552
	24.3.3	Arterial Baroreceptors	553
	24.3.4	Central Command Versus	
		the Exercise Pressor Reflex	553
	24.3.5	Autonomic Control of Heart	
		Rate and Blood Pressure	555
24.4	Conclu	sions	556
Refer	ences		556

25.	Sympatho-Excitation in Heart	
	Failure: Contribution of Skeletal	
	Muscle Reflexes and the Protective	/
	Role of Exercise Training	561
	Hanjun Wang, Lie Gao and Irving H. Zucker	

25.1 Introduction	561
25.2 Skeletal Myopathy in Chronic Heart	
Failure: From Functional	
Maladaptation to Structure Damage	562
25.2.1 Exercise Intolerance	
in Chronic Heart Failure	562
25.2.2 Oxidative Stress Contributes	
to Skeletal Myopathy in	
Chronic Heart Failure	563
25.2.3 Skeletal Muscle Atrophy	
and the Ubiquitin Proteasome	
System	563
25.3 Exercise Training Ameliorates	
Skeletal Muscle Atrophy of	
Chronic Heart Failure via	
Antioxidant/Ubiquitin Proteasome	
System	564
25.4 Sympatho-Excitation and Blood	
Flow Regulation During Exercise	564
25.4.1 Neural Control Mechanisms	
During Exercise	564
25.5 Abnormalities of Exercise Pressor	
Reflex in Cardiovascular Diseases	566
25.5.1 The Exercise Pressor Reflex	
in Chronic Heart Failure	566
25.5.2 The Exercise Pressor Reflex	
in Hypertension	568

25.6	Exercis	of Exercise Training on the e Pressor Reflex in Health		25.7.2 T R
	and Dis	sease	568	T
	25.6.1	Effect of Exercise Training		A
		on the Exercise Pressor Reflex		Fa
		in Health	568	25.7.3 T
	25.6.2	Effect of Exercise Training on the		Ir
		Exercise Pressor Reflex in		b
		Chronic Heart Failure and		P
		Hypertension	569	0
25.7	Mecha	nisms Underlying the Beneficial		Fa
	Effect of Exercise Training on the			25.7.4 C
	Exagge	erated Exercise Pressor Reflex in		25.8 Future D
	Chronic Heart Failure		570	25.9 Conclusio
	25.7.1	Exercise Training Reversal		References
		of Muscle Type Shift in		References
		Chronic Heart Failure	571	Index

25.7.2 The Role of Purinergic Receptors on the Exercise Training Effects on Group III Afferents in Chronic Heart Failure	571
25.7.3 The TRPV1 Receptors Are	
Involved in the Mechanism	
by Which Exercise Training	
Prevents the Desensitization	
of Group IV Afferents in Heart	
Failure	571
25.7.4 Other Potential Mechanisms	572
25.8 Future Directions	574
25.9 Conclusions	574
References	574
dex	581

List of Contributors

- **Robert J. Bache**, Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, United States
- Kenneth M. Baldwin, Department of Physiology, Biophysics School of Medicine, University of California, Irvine, CA, United States
- Chris J. Barclay, Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Alan P. Benson, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- **T. Scott Bowen**, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Mark Burnley, School of Sport and Exercise Sciences, University of Kent, Kent, United Kingdom
- Jan Celichowski, Department of Neurobiology, Poznań University of Physical Education, Poznań, Poland
- Adrian Chabowski, Department of Physiology, Medical University of Białystok, Białystok, Poland
- **Brian Chapman**, School of Health and Life Sciences, Federation University, Australia
- Jesse C. Craig, Departments of Kinesiology, Anatomy and Physiology, Kansas State University, Manhattan, KS, United States
- Jonathan P. Davis, Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
- Glen Davison, Endurance Research Group, School of Sport and Exercise Sciences, The Medway Campus, University of Kent, Chatham Maritime, United Kingdom
- Hans Degens, School of Healthcare Science, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester, United Kingdom; The Lithuanian Sports University, Kaunas, Lithuania; University of Medicine and Pharmacy of Targu Mures, Romania

- **Pietro E. di Prampero**, Department of Biomedical Sciences, University of Udine, Udine, Italy
- Jacques Duchateau, Laboratory of Applied Biology and Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
- Krzysztof Duda, Intensive Care Unit, Cancer Institute, Kraków Division, Kraków, Poland
- **Dirk J. Duncker**, Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Cardiovascular Research Institute COEUR, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- **Roger M. Enoka**, Department of Integrative Physiology, University of Colorado, Boulder, CO, United States
- Marc J. Fell, Research Institute for Sport and Exercise Sciences Liverpool John Moores University, Liverpool, UK
- James P. Fisher, School of Sport, Exercise & Rehabilitation Sciences, College of Life & Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
- Lie Gao, Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
- Jan Górski, Department of Physiology, Medical University of Białystok, Białystok, Poland
- Bruno Grassi, Department of Medicine, University of Udine, Udine, Italy
- Fadia Haddad, Department of Physiology, Biophysics School of Medicine, University of California, Irvine, CA, United States
- Kelly M. Hammond, Research Institute for Sport and Exercise Sciences Liverpool John Moores University, Liverpool, UK
- June-Chiew Han, Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand

- Mark A. Hearris, Research Institute for Sport and Exercise Sciences Liverpool John Moores University, Liverpool, UK
- **Steven B. Heymsfield**, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
- **Paul M.L. Janssen**, Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
- Andrew M. Jones, School of Sport and Health Sciences, University of Exeter, Exeter, Devon, United Kingdom
- Arwel Wyn Jones, Lincoln Institute for Health, University of Lincoln, Lincoln, United Kingdom
- **Wolfgang Kemmler**, Institute of Medical Physics (IMP), Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Henkestrasse, Erlangen, Germany
- **Graham J. Kemp**, Department of Musculoskeletal Biology and Liverpool Magnetic Resonance Imaging Centre (LiMRIC), University of Liverpool, Liverpool, United Kingdom
- Wincenty Kilarski, Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland
- **Erika Koltai**, Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
- **Piotr Krutki**, Department of Neurobiology, Poznań University of Physical Education, Poznań, Poland
- **M. Harold Laughlin**, Department of Biomedical Sciences, Department of Medical Pharmacology and Physiology, and the Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
- Grit E. Legård, The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- **Denis S. Loiselle**, Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand; Department of Physiology, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Joanna Majerczak, Department of Muscle Physiology, Chair of Physiology and Biochemistry, Faculty of Rehabilitation, University School of Physical Education, Kraków, Poland
- Daphne Merkus, Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Cardiovascular Research Institute COEUR, Erasmus

MC, University Medical Center Rotterdam, Rotterdam, The Netherlands

- James P. Morton, Research Institute for Sport and Exercise Sciences Liverpool John Moores University, Liverpool, UK
- Zenon Nieckarz, Experimental Computer Physics Department, Institute of Physics, Jagiellonian University, Kraków, Poland
- Cristian Osgnach, Department of Sports Science, EXELIO srl, Udine, Italy
- Bente K. Pedersen, The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- **David C. Poole**, Departments of Kinesiology, Anatomy and Physiology, Kansas State University, Manhattan, KS, United States
- **Zsolt Radak**, Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
- **Bruno Tesini Roseguini**, Department of Health and Kinesiology, Purdue University, West Lafayette, IN, United States
- Harry B. Rossiter, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom; Rehabilitation Clinical Trials Center, Division of Pulmonary Critical Care Physiology and Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, United States
- Niels H. Secher, Department of Anesthesia, The Copenhagen Muscle Research Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Nicholas J. Severs, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- **Zbigniew Szkutnik**, Faculty of Applied Mathematics, AGH-University of Science and Technology, Kraków, Poland
- Andrew J. Taberner, Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand; Department of Engineering Science, The University of Auckland, Auckland, New Zealand
- Svetlana B. Tikunova, Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
- Kenneth Tran, Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Anni Vanhatalo, School of Sport and Health Sciences, University of Exeter, Exeter, Devon, United Kingdom

- **Simon von Stengel**, Institute of Medical Physics (IMP), Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Henkestrasse, Erlangen, Germany
- Hanjun Wang, Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, United States
- Jerzy A. Zoladz, Department of Muscle Physiology, Chair of Physiology and Biochemistry, Faculty of Rehabilitation, University School of Physical Education, Kraków, Poland
- **Irving H. Zucker**, Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States

This page intentionally left blank

Preface

Human exercise physiology has a long history of research dating back to the pioneering works carried out at the beginning of the 20th century by the research teams of Archibald Vivian Hill and Schack August Steenberg Krogh (August Krogh)—Nobel Prize winners in Physiology or Medicine. Some of their fundamental discoveries concerning exercise physiology, such as the concept of oxygen uptake kinetics and oxygen deficit, are still valid and constitute a background and challenge for deeper understanding of muscle energetics and human physiology. At that time, some other crucial discoveries in muscle physiology were reported, notably the force-velocity relationship proposed by A.V. Hill and the concept of the motor unit as a population of muscle fibers activated by a common nerve, proposed by Sir Charles Scott Sherrington—Nobel Prize winner in Physiology or Medicine. These discoveries are among the most important achievements in this area of research. However, one more theory has been of fundamental importance for our understanding of muscle and exercise physiology, namely the sliding filament theory of muscle contraction postulated in 1954 in *Nature*, independently by two teams of scientists: Sir Andrew F. Huxley (Nobel Prize winner in Physiology or Medicine) and Rolf Niedergerke on the one hand, and Hugh Huxley and Jean Hanson, on the other hand.

The studies concerning human exercise physiology carried out at the beginning of the 20th century were originally associated almost exclusively with physical exercise capacity of healthy people and athletes. At this point, it is worth mentioning Henry Briggs for his studies of exercise tolerance of industrial workers (miners) and athletes as early as in 1920. He was the first to use the time course of expired CO_2 during graded exercise as the criteria of the so called "crest point"—the predecessor of the "anaerobic" or, more appropriately, the lactate and gas exchange thresholds. On a greater scale, testing of human exercise capacity has been successfully introduced into occupational physiology and to the United States Army by David Bruce Dill from the Harvard Fatigue Laboratory in the 1930s. Some of the first researchers to successfully introduce exercise testing to evaluate exercise tolerance in patients were Malcolm B. McIlroy and Karlman Wasserman in the 1960s. Later, together with Brian J. Whipp, protocols, instrumentation, and interpretation were honed into the clinical cardiopulmonary exercise tests that we know today.

Human exercise physiology is present in various areas of medicine, such as cardiology, pulmonology, endocrinology, gerontology, psychiatry, and rehabilitation, and constitutes a solid pillar of medical sciences. Nevertheless, studies involving top-class athletes and healthy people exposed to exercise performed in extreme conditions, such as hyperthermia, hypothermia, high altitude, diving, or low gravity, are still very important as they provide insight into the mechanisms limiting human exercise tolerance in various conditions. The following key discoveries in exercise physiology should be pointed out: (1) the finding by John O. Holloszy that endurance training increases activities of mitochondrial enzymes (cytochrome oxidase, COX, and citrate synthase, CS), which leads to an increase in muscle metabolic stability during exercise and to an enhancement of exercise tolerance; (2) the discovery by Greta Vrbová, Stanley Salmons, and Dirk W.G. Pette of the potential of muscle phenotypic adaptability to various external stimulus, e.g., chronic lowfrequency stimulation (known as muscle plasticity); (3) the demonstration by Bengt Saltin that in healthy active individuals, oxygen supply by the cardiovascular system is limiting to whole-body oxygen uptake (e.g., during cycling) and, therefore, defines mechanistically the maximum oxygen uptake $(\dot{VO}_{2_{max}})$; (4) the recognition, by Peter D. Wagner, that, in healthy individuals, $\dot{VO}_{2_{max}}$ depends on the integration of perfusive and diffusive O₂ conductances along the O₂ transport pathway between the lungs and mitochondria; (5) the demonstration by Brian J. Whipp, the role of other variables, apart from $\dot{V}O_{2max}$, defining oxidative metabolism and exercise tolerance during exercise, such as the $\dot{V}O_2$ kinetics and its components, the gas exchange threshold, and critical power; and (6) the proposal by George A. Brooks of the concept of the lactate shuttle, which changed our understanding of the meaning of lactate production/utilization during exercise.

The enormous progress of knowledge achieved in the past few decades in various aspects of human physiology, especially in skeletal muscle physiology, provides new background for the enhancement of our understanding of various mechanisms determining human exercise tolerance in health and disease, as well as the effects of physical training. It would be very difficult for a single person to make a satisfying synthesis of the knowledge in this field. This is why

Muscle and Exercise Physiology textbook is presented to the reader, written by a group of 60 leading international experts who share their knowledge mainly based on their own recent scientific research in a given topic. This book contains 25 chapters organized in five sections, and presents the current state of knowledge concerning both basic facts in a given field as well as the most recent advances in research as documented by about 4000 relevant references.

This book, as expressed by its title, is focussed on different aspects of muscle and exercise physiology, including muscle morphology, energetics, efficiency, performance, fatigue, adaptation to physical training, and aging. Moreover, the book is devoted to various responses of the human body as an integrated system to physical exercise and training, as well as to heart muscle physiology, including heart morphology, energetics, efficiency, and the regulation of its functioning during exercise in health and disease. This book aims to be a useful source of information for students of medical and sport sciences, medical doctors and sports physicians, as well as scientists interested in the range of aspects that encompass mechanisms determining human exercise tolerance in health and disease. This book also presents contemporary knowledge concerning the factors limiting exercise performance of top athletes. Therefore, the book could be recommended to athletes, trainers, physiotherapists, and sport scientists interested in the mechanisms determining human physical performance.

As the editor of this book, I would like to express my deepest thanks to Prof. dr Charles Tipton—emeritus professor of the University of Arizona, Tucson, United States, for the long-lasting friendship and his unique advice on how to successfully accomplish the publication of this book. I would also like to thank the distinguished professors: Roberto Bottinelli, Veronique Billat, Paolo Cerretelli, Bruno Grassi, John O. Holloszy, David A. Jones, Arnold de Haan, Hans A. Keizer, Preben K. Pedersen, Dirk W.G. Pette, Kent Sahlin, Anthony J. Sargeant, Ronald L. Terjung, and Brian J. Whipp for sharing with me and my colleagues their knowledge on muscle and exercise physiology, either during my visits in their laboratories or during their visits to Kraków, Poland over the past few decades.

Prof. Jerzy A. Zoladz (Ph.D., D.Sc.) Kraków, August 15, 2018 Section I

Skeletal Muscle Morphology

This page intentionally left blank

Chapter 1

Human Body Composition and Muscle Mass

Krzysztof Duda¹, Joanna Majerczak², Zenon Nieckarz³, Steven B. Heymsfield⁴ and Jerzy A. Zoladz²

¹Intensive Care Unit, Cancer Institute, Kraków Division, Kraków, Poland, ²Department of Muscle Physiology, Chair of Physiology and Biochemistry, Faculty of Rehabilitation, University School of Physical Education, Kraków, Poland, ³Experimental Computer Physics Department, Institute of Physics, Jagiellonian University, Kraków, Poland, ⁴Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States

1.1 INTRODUCTION

Body shape has attracted the attention of artists since the beginning of mankind. In Antiquity, proportions of the human body inspired artists, especially sculptors and painters. At that time, the so-called perfect proportions of the human body were defined (the "Polykleitos' Canon" of the human figure). The greatest breakthrough in introducing human anatomy into art was made by Michelangelo Buonarroti (1475–1564, known as Michelangelo), a spectacular Renaissance artist whose work has been inspiring others until now (Hilloowala, 2009). In contrast to body shape, however, body composition that focuses on quantitative relationships between body components appeared in medicine in modern times, and nowadays it is an important branch of human biology (Wang et al., 1992).

The components of body composition significantly change during a life span in the process of growing, ageing, pregnancy, or during disease ("non-interventional" chronic biological processes). Moreover, body composition is dependent to a major extent on two unavoidable, "interventional" activities, namely nutrition and physical activity. Both may significantly change body composition, mainly in such extreme conditions as that of malnutrition, overfeeding, immobilization, and prolonged strenuous physical training.

Since body composition can independently influence health, it has become a matter of interest for various specialists in medical sciences—such as endocrinology, rheumatology, surgery, pediatrics, or geriatrics—who deal with a variety of medical conditions, including the metabolic syndrome, degenerative diseases, reaction to injury, osteoporosis, or sarcopenia. Studies on body composition seem to be particularly important for prediction,

Muscle and Exercise Physiology. DOI: https://doi.org/10.1016/B978-0-12-814593-7.00001-3 © 2019 Elsevier Inc. All rights reserved. prevention as well as management of obesity, type 2 diabetes, and cardiovascular disease-the latter being the main factor that increases morbidity and mortality in modern societies (Buskirk and Mendez, 1984; Duda, 2012: Lee et al., 2012: Aleman-Mateo and Ruiz Valenzuela, 2014; NCD Risk Factor Collaboration, 2016). Additionally, body composition is an important topic in sport sciences, not only when considering the selection of candidates for different sports disciplines, but also when evaluating the impact of training, recovery from injuries, and ageing on athletes. Moreover, monitoring body composition changes resulting from combined effects of microgravity and energy imbalance is one of the key problems to be considered during long-term space flight (Bartok et al., 2003; Smith et al., 2005). This is why this chapter will aim at presenting the current state of knowledge concerning human body composition, with a special focus on muscle mass.

1.2 THE ASSESSMENT OF THE SYSTEM AS A WHOLE

From the beginning of humanity, people were interested in expressing length in standardized units. For this purpose, human body size variables such as the width of the human palm (lat. *palmus*), the length of the foot (lat. *pes*), the length of the ell (lat. *cubitum*, i.e., the distance from the elbow to the tip of the middle finger), and fathom (i.e., the span of man's outstretched arms) have been used in daily life as units of length. Nowadays, although advanced techniques of determining body characteristics are available, some traditional, basic human body measures—such as body mass (BM) and body height (with regard to gender and age), body circumferences (e.g., waist circumference, hip circumference), skinfold thickness (used to estimate regional adiposity), body surface, and body volume (BV)—are still in use in clinical practice as well as in large population studies.

1.2.1 Body Mass, Basal Metabolic Rate, and Total Daily Energy Expenditure

BM is one of the fundamental physical characteristics of the human body. In physics, mass is the amount of "matter" that an object has, whereas weight (also referred to as the force of gravity) is the effect of the gravitational pull on the mass of the object and, according to Newton's second law (see Eq. (1.1)), it is measured in newtons:

$$F(N) = M(kg) \times a (m s^{-2})$$
 (1.1)

where Newton (N) is the unit of force, M, mass, and a, acceleration (Sir Isaac Newton, 1687).

However, weight is commonly expressed in kilograms, which consciously omits multiplication of mass by the gravitational acceleration, approximately constant on the entire surface of the Earth (average value: $9.81 \text{ m} \cdot \text{s}^{-2}$). In this chapter, we used the term "body mass" (expressed in kg), whereas the term "weight" (expressed in N) was used only in the part dedicated to hydrodensitometry.

BM measurement and its monitoring is the starting point for controlling the energy balance of the human body. The relationship between BM and basal metabolic rate (BMR) has been intensively examined by European physiologists and zoologists from the beginning of the 19th century. BMR-the steady-state rate of heat production by an entire organism under a set of standard conditions (an individual is adult, awake, but resting, stress-free, for at least 12 hours after his/her last meal, maintained at a temperature that elicits no thermoregulatory effect on heat production)-represents the minimal metabolic activity of all tissues in a body at rest (Rolfe and Brown, 1997). It is usually expressed as heat production (direct calorimetry) or oxygen consumption (indirect calorimetry) per unit of body size (Rolfe and Brown, 1997; Henry, 2005). BMR or easier-to-assess resting energy expenditure (REE) (typically evaluated with indirect calorimetry in thermoneutrality, supine position at least 4 hours after the last meal) in most sedentary individuals accounts for about 1 kcal per 1 kg of BM per hour and constitutes of about 60% - 80% of total daily energy expenditure (TDEE). Two other components of TDEE are: the rather stable cost of diet-induced thermogenesis (DIT) (10%-12% of TDEE) and the most changeable energy cost of physical activity (physical activity energy expenditure, PAEE) (Lowell and Spiegelman, 2000; Heymsfield et al., 2012a).

Organs in the human body differ according to resting metabolic rate and they may be divided into organs with high or low metabolic rate (Elia, 1992; Gallagher et al., 1998; Wang et al., 2001; Heymsfield et al., 2012a). For example, the energy cost of high metabolic rate organs such as kidneys and heart is similar and amounts to \sim 440 kcal per kg per day. In another high metabolic rate tissue such as brain it amounts to \sim 240 kcal per kg per day, whereas the energy cost of skeletal muscle (SM) at rest (low metabolic rate organ) amounts to about 13 kcal per kg per day (Elia, 1992; Wang et al., 2001). The energy cost of organs with high metabolic rate (brain, kidneys, heart, endocrine glands, that weigh only about 3.5 kg, i.e., $\sim 5\%$ of body weight of a standard man) constitutes about 60% of the REE. Organs with low metabolic rate such as: (1) SMs at rest, weighting about 28 kg $(\sim 40\% \text{ of BM})$ accounts for about 20% of the REE; and (2) bones, fasciae, and extracellular fluid (ECF), weighting about 21 kg ($\sim 30\%$ of BM) contribute to about 1% of the REE. Moreover, the energy cost of the digestive system, lungs and the immune system (that weight about 3.5 kg) accounts for 15% of the REE. The remaining part of the REE (about 4%) is completed by metabolism of adipose tissue weighting about 15 kg ($\sim 20\%$ of BM). It should be underlined that, during strenuous physical exercise, SM metabolism can increase more than 100 times above its rate at rest and it constitutes about 90% of the total energy used by the human body (for overviews see Chapter 5: Muscle Energetics by Kemp and Chapter 18: Metabolic Transitions and Muscle Metabolic Stability: Effects of Exercise Training by Zoladz et al.).

In clinical practice, it is important to know BMR (as minimum energy required to exist) to determine caloric needs for energy balance and body weight maintenance (Henry, 2005; Heymsfield et al., 2012b), including weight loss programs in obesity management. Although much of the BMR, which is a main component of TDEE, is accounted for by the activity of organs with high metabolic rate, variations in BMR are related mainly to differences in body size.

One of the earliest formulas showing the relationship between BMR and BM was developed in 1932 by Max Kleiber (1893–1976) (Kleiber, 1932), the leader in animal nutrition and metabolism research. He showed that BM raised to three-fourth power is the most reliable basis for the prediction of the BMR of mature mammals (Eq. (1.2)):

$$BMR = a \times BM^{0.75} \tag{1.2}$$

where BMR is basal metabolic rate (kcal per day), BM is body mass (kg), a is proportionality constant or normalizing coefficient (the intercept, when the equation is graphed in log-log coordinates, for mammals, the average value of "a" is 71.8), 0.75 is scaling exponent for mature mammals (the slope of regression line in log-log coordinates) (Lindsted and Schaeffer, 2002).

Kleiber's classic equation was formulated at the wholebody level. Wang et al. (2001) proposed a new perspective on Kleiber's law by reconstructing it at the organ-tissue level. Interestingly, REE values of individual components (liver, brain, kidneys, heart, and remaining tissues) do not scale equally, but their combined formula was similar to that observed by Kleiber (Wang et al., 2001).

In the past century, many formulas were used to predict BMR in clinical practice, including Harris and Benedict equations, Schofield, Roberston and Reid equations (see, e.g., in Heshka et al., 1993). Roberston and Reid equations are recommended for obese individuals, since most equations developed to predict BMR overestimate its value in this particular group (Heshka et al., 1993).

A method of estimating BMR in larger groups of men and women belonging to varied age ranges (0-3, 3-10, 10-18, 18-30, 30-60, >60), based only on the BM and the so-called "Oxford equations" (Eqs. (1.3-1.8)), were presented by Henry (2005):

BMR for men:

18 - 30 years old (n = 2821): BMR (kcal per day) = $545 + 16.0 \times BM$ (kg) (1.3) 30 - 60 years old (n = 1010): BMR (kcal per day) = $593 + 14.2 \times BM$ (kg) (1.4) > 60 years old (n = 534): BMR (kcal per day) = $514 + 13.5 \times BM$ (kg) (1.5) BMR for women: 18 - 30 years old (n = 1664):

BMR (kcal per day) = $558 + 13.1 \times BM$ (kg) (1.6)

30 - 60 years old (n = 1023): BMR (kcal per day) = $694 + 9.74 \times BM$ (kg) (1.7)

>60 years old (n = 334): BMR (kcal per day) = $569 + 10.1 \times BM$ (kg) (1.8)

The estimation of TDEE includes two major components: BMR and physical activity energy expenditure (Westerterp, 2013). Based on the FAO nutrition studies (FAO, 1957), two simplified empirical equations were developed for the first time to predict total daily energy

requirements. Those equations are easy to use since they involve only BM measurements (Eqs. (1.9) and (1.10)):

for men:
$$E = 152 \times BM^{0.73}$$
 (1.9)

and for women: $E = 123 \times BM^{0.73}$ (1.10)

where E represents total daily energy requirement (kcal per day) and BM represents body mass (kg).

An important issue in TDEE is the assessment of the energy cost of physical activity. According to FAO/WHO/UNU recommendations the physical activity level (calculated as TDEE/BMR) for sedentary and light activity lifestyles ranges between 1.40 and 1.69; for moderately active lifestyles between 1.70 and 1.99 and for strenuous or heavy leisure activity between 2.0 and 2.4 (Westerterp, 2013, 2017). Hence, TDEE might be expressed as a multiple of BMR or REE (measured by indirect calorimetry or calculated based on the prediction equations) by using adequate factor related to physical activity level.

The generally accepted and indicated method of TDEE measurements is doubly labeled water (DLW) method, which allows the measurement of energy expenditure under daily living conditions including exercise and extreme environment (Westerterp, 2013, 2017). The DLW method (method of indirect calorimetry) is based on the difference between the apparent turnover rates of the hydrogen and oxygen of body water as a function of carbon dioxide production after a loading dose of water labeled with the stable isotopes of ²H and ¹⁸O (Westerterp, 2017). Based on this method Redman et al. (2014) presented normative equations to calculate TDEE for nonobese men and women using the following basic variables: BM, age, and sex. In this study involving a group of 217 healthy subjects (aged 21-50 years; BMI: $22-28 \text{ kg} \cdot \text{m}^{-2}$), they showed that the mean TDDE amounts to 2443 ± 397 kcal per day and is on average 20% (580 kcal per day) higher in men than in women (see Eq. (1.11)):

TDEE (kcal per day) =
$$1279 + 18.3 \times BM$$
 (kg)
+ $2.3 \times age$ (years) - $338 \times sex$ (1.11)

where TDEE represents total daily energy expenditure (kcal per day), BM represents body mass (kg), and the sex variable may assume the following values: 1 =female, 0 =male.

1.2.2 Body Mass Index

BM and body height allow one to calculate other measures frequently used in epidemiology and clinical research, namely the BMI and the body surface area (BSA).

The BMI was introduced for the first time in wholebody assessment in 1832, by a Belgian polymath, Adolphe Quetelet (1796–1874), who was looking for an index of relative BM and introduced the Quetelet Index, i.e., the ratio of BM in kilograms divided by the square of height in meters (Eq. (1.12)):

$$BMI = BM \times H^{-2} \tag{1.12}$$

where BM is body mass (kg) and H is height (m).

Ancel Keys (1904–2004), an American pioneer in biostatistics and a physiologist, confirmed 140 years later the validity of the Quetelet Index in epidemiological studies and named it (in 1972) "body mass index" (Eknoyan, 2008). From then on, BMI has become a standard formula for establishing, heuristically, ideal BM. The BMI for adult underweight people is lower than 18.5 kg \cdot m⁻²; for normal weight people it ranges from 18.5 to 25 kg \cdot m⁻², for the overweight from 25 to 30 kg \cdot m⁻², and it is higher than 30 kg \cdot m⁻² for the obesity. The BMI above 25 kg \cdot m⁻² is associated with an increased the risk of morbidity and mortality.

BMI may be understood as a simple sum of body fat mass (FM) and fat-free mass (FFM) component of BM (Eq. (1.13)), each of which divided by the square of height in meters (Van Itallie et al., 1990):

$$BMI = FM \times H^{-2} + FFM \times H^{-2}$$
(1.13)

BMI is often used in obesity studies as a measure of FM, since a high correlation between BMI and total body fat as well as BMI and the percentage of body fat have been reported during childhood and in adult individuals. However, BMI is neither a specific marker of body fat or a good marker of abnormal fat accumulation (Adler et al., 2017) and its applicability as body fat marker is questionable, since individuals of the same age, height, and weight (hence the same BMI) can have different body shape, body composition, and metabolic profile. For example, Asian people have higher body fat percentage than Western populations with the same value of BMI (Choo, 2002). In children, BMI is not a good index of body fatness because of their growth. Hence, the calculated BMI should be compared against the percentile for children of the same sex and age (Reilly, 2010; Laurson et al., 2011). In other situations—when FM and FFM may get altered due to ageing, physical training, or several diseases-BMI alone might lead to false conclusions and should be used with caution. Therefore, it is proposed nowadays to extend the description of body composition with other measures, which are based on more advanced techniques and better describe FM and FFM in the human body.

Recently, Peterson et al. (2017) found that in the group of non-Hispanic whites aged 8-29 (n = 2285 participants) percent body fat scales to height with an exponent closer to 3. Therefore, they proposed tri-ponderal mass index (BM divided by height cube) as an alternative for BMI and more accurate measure of body fat for the group of non-Hispanic white adolescents (aged 8-17 years).

1.2.3 Body Circumferences and Skinfolds Measurements

It is generally accepted by clinicians and researchers that not total amount of adipose tissue, but rather the distribution of its excess correlates better with the risk of the occurrence of diabetes and/or cardiovascular disease.

It has been agreed that individuals with fat distribution of the central type (android vel "apple shape") are at greater health risk (greater prevalence of metabolic syndrome, arterial hypertension, heart disease, stroke, type 2 diabetes) than those with peripheral fat distribution (gynoid vel "pear shape") (Vague, 1996). The use of imaging techniques (computed tomography, CT; magnetic resonance imaging, MRI) indicated that unhealthy "apple shape" is associated with an internal, visceral fat deposition rather than external subcutaneous fat depots (Browning et al., 2010; Schneider et al., 2010). Therefore, simple anthropometric indices that allow one to describe regional adiposity-such as waist circumference (WC), waist-hip ratio (WHR) and waist-to-height ratio (WHtR) ---might be used as a screening tool to predict diabetes and cardiovascular disease. WC was found to strongly correlate with abdominal fat measurement by means of advanced imaging techniques.

The WHtR —as another measure of relative fat distribution-was introduced by Japanese researchers in 1995 as predictor of coronary heart disease (Hsieh and Yoshinaga 1995a; Hsieh and Yoshinaga, 1995b) and it has received more attention in the past few years (Rodea-Montero et al., 2014; Lo et al., 2016; Choi et al., 2017). WHtR corrects the WC for the height of individuals and, similarly to WC, it shows a strong positive correlation with abdominal fat measured by means of imaging techniques (Soto González et al., 2007). WHtR as a proxy for central obesity was found to be a better predictive marker of "early health risk" then BMI (Schneider et al., 2010; Ashwell et al., 2014; Ashwell and Gibson, 2016). The WHtR assuming the value of 0.5 ("keep your waist to less than half your height") has the character of a global boundary. When exceeded, it indicates an increased risk across different age groups (also in children and adolescents) as well as sex and ethnic groups (Browning et al., 2010; Mehta, 2015) (Table 1.1).

Skinfold measurements, which also belong to simple anthropometric measurements, are typically performed at 3-9 standard anatomical sites (e.g., "triceps," "biceps," "chest," "subscapular," "abdominal," "suprailiac"), on the right side of the body, by means of caliper with constant pressure of 10 g mm⁻². The correct position of the calipers is critical for the accuracy of the measurement and the anatomical site should be accurately determined and then marked. The sum of skinfolds allows one to estimate (by means of an adequate equation) the amount of body fat (Jackson and Pollock, 1985).

Index Value	Waist Circumference (cm)		Waist-hip Ratio		Waist-to-Height Ratio		
	Men	Women	Men	Women			
No "health risk"	<94	<80	< 0.90	< 0.85	<0.5		
"Health risk"	\geq 94 and \leq 102	\geq 80 and \leq 88	-	-	\geq 0.5 and < 0.6		
Very high "health risk"	>102	>88	≥0.90	≥0.85	≥ 0.6		

TABLE 1.1 Boundary Values of WC, WHR and WHtR

1.2.4 Body Surface Area

Accurate determination of BSA is the essential issue in several medical fields. The use of BSA enables standardization of certain physiological parameters, such as cardiac function or glomerular filtration. BSA is also used to assess drug dosage.

Typically, in clinical practice, BSA is indirectly estimated on the basis of empirical formulas (Redlarski et al., 2016). Direct methods of BSA measurement—such as coating, surface integration, linear geometry, and touchless measurement (3D laser scanning) in the different groups of subjects (varied age, sexes, ethnic populations, different regions)—constitute the starting point for fitting model equations for the obtained data.

The first measurements of BSA were made in England during experiments on insensible perspiration by anatomist William Cruishank (1745-1800) in 1778 and by surgeon John Abernethy (1764-1831) in 1793. Abernethy, by applying the coating method (with paper) and linear geometry, calculated BSA as 2700 square inches (which equals 1.74 m^2 in the metric system) (Abernethy, 1793). Interestingly enough, both of them were searching for the proportion between hand area and BSA. Currently, it is agreed that the palm (i.e., the palmar surface area, which is the area between the interstyloid line and the palmar digital crease of each digit) represents 0.5% of the total BSA and the hand (i.e., the sum of the palmar surface area and the areas of the fingers and the thumb) represents around 0.8% of the total BSA. Both measures (hand and palm surface areas) are suitable for assessing the size of minor burns (<10% of total body surface) (Rhodes et al., 2013; Thom, 2017).

In 1879, German physiologist Karl Meeh suggested, on the basis of geometric considerations, that the BSA of mammals could be expressed with the following equation (Eq. (1.14)):

BSA (m²) =
$$k \times BM (kg)^{2/3}$$
 (1.14)

where BM is the body mass, k is Meeh's normalizing coefficient that varies slightly between species and

amounts to 0.1053 for humans (Meeh, 1879). Nowadays, this formula is used only in veterinary medicine.

Meeh's formula remained a standard of BSA assessment until 1916, when E.F. DuBois and D. DuBois (cousins) published a new formula for BSA assessment, where they introduced height (H) as a variable (Eq. (1.15)):

BSA (m²) = $0.007184 \times BM (kg)^{0.425} \times H (cm)^{0.725}$ (the originally used form)

BSA (m²) =
$$0.20247 \times BM (kg)^{0.425} \times H (m)^{0.725}$$

(SI units)

The estimation of the model coefficient in BSA assessment turned out to be an important issue. As it was found out, DuBois' formula underestimated BSA in obese patients by 3%-5% (Verbraecken et al., 2006). After almost 100 years, the DuBois and DuBois BSA equation was corrected (Shuter and Asiani, 2000), based on a greater number of examined persons and application of modern statistical methods (Eq. (1.16)):

BSA (m²) =
$$0.00949 \times BM (kg)^{0.441} \times H (cm)^{0.655}$$

(the originally used form)

or

or

BSA (m²) =
$$0.19376 \times BM (kg)^{0.441} \times H (m)^{0.655}$$

(SI units)

(1.16)

(1.15)

Since BSA scaling plays a key role in medicine—for example, in pharmacology, toxicology, cytotoxic chemotherapy, nephrology, transplantology, extracorpeal circulation, burns assessment and fluid resuscitation—many studies in subsequent years tried to find more precise BSA formulas based on more accurate methods (including three-dimensional (3D) laser scanning techniques) and higher numbers of subjects (see Redlarski et al., 2016). As 3D full scan is a very fast technique that takes from a dozen seconds up to several dozens, depending on the type of equipment, the number of objects tested is generally much higher than in previously applied methods. It should be mentioned that the method is unable to recognize overlapping parts of human skin.

Based on 3D full scanning measurements, Schlich et al. (2010) proposed the following formula for European men (n = 49) aged 21–68 (Eq. (1.17)):

BSA (m²) =
$$0.000579479 \times BM (kg)^{0.38} \times H (cm)^{1.24}$$

(the originally used form)
or

BSA (m²) = $0.1750 \times BM (kg)^{0.38} \times H (m)^{1.24}$ (in SI units)

and for women (n = 132) aged 20-84 (Eq. (1.18)):

BSA $(m^2) = 0.000975482 \times BM (kg)^{0.46} \times H (cm)^{1.08}$ (the originally used form)

or

BSA (m²) = $0.1410 \times BM (kg)^{0.46} \times H (m)^{1.08}$ (in SI units)

Similarly, Yu et al. (2003) proposed the following formula for a population of Taiwanese workers (Eq. (1.19)):

which was based on 3D measurements of a group of 3951 women and men, aged 20–91. Additionally, Yu et al. (2003) showed different coefficients dedicated to various subgroups, i.e., separately for men and women within different age ranges.

Determination of BSA is an important issue from the point of view of diagnostic and therapeutic aspects of pediatric medicine, since BSA increases from 0.2 m^2 at birth up to 1.73 m^2 in adulthood. Only few formulas, however, have been validated for children (Feber and Krásnicanová, 2012). Haycock et al. (1978) developed a formula based on the measurements of a group of subjects, comprising the range from premature infants to adults, where (Eq. (1.20)):

BSA (m²) =
$$0.024265 \times BM (kg)^{0.5378} \times H (cm)^{0.3964}$$

(the originally used form)
or
BSA (m²) = $0.1506 \times BM (kg)^{0.5378} \times H (m)^{0.3964}$
(in SL units)

(in SI units)

(1.20)

According to the authors, this formula gives a good fit for all values of BSA within the range from less than 0.2 m^2 up to over 2.0 m².

In 1987, Mosteller (1987) presented a simple formula for BSA calculation for adults, small children, and infants

(Eq. (1.21)), which is commonly accepted due to its precision and simplicity.

The originally used form:

$$BSA (m2) = \sqrt{\frac{H (cm) \times BM (kg)}{3600}}$$

or in SI units:

(1.17)

(1.18)

BSA (m²) =
$$\sqrt{\frac{H(m) \times BM(kg)}{36}}$$
 (1.21)

In clinical practice, the consequences of applying an inadequate BSA formula might be severe, including inappropriate drug dosage. The choice of an adequate BSA formula is important not only for children, but also for people from different geographical regions and for people with nonstandard body proportions, for example, in the case of obesity, cachexia, or massive bone structure (Redlarski et al., 2016).

1.2.5 Body Volume and Body Density

The total BV is an indicator of body size, which is subsequently used to calculate body density (BD) (Eq. (1.22)):

$$BD = BM \times BV^{-1} \tag{1.22}$$

and in consequence, body FM.

BV can be assessed by the water-displacement technique, also called "underwater weighting" or "hydrodensitometry," or the air-displacement technique, also called "air-displacement plethysmography" (Duren et al., 2008). Both techniques are time-consuming, laborious and requires demanding laboratory conditions.

Hydrodensitometry is regarded as the most reliable of available techniques used to estimate BD. Archimedes' principle is applied by comparing the mass of a subject in the air (M_a) with the "mass underwater" (M_w), which is calculated from the gravitational force (F_w) exerted on a submerged object according to the Newton's law (Eq. (1.23)):

$$\mathbf{M}_{\mathbf{w}} = \mathbf{F}_{\mathbf{w}} \times g^{-1} \tag{1.23}$$

where g is gravitational acceleration of $9.81 \text{ m} \cdot \text{s}^{-2}$. During underwater measurement, total expiration is necessary and account is taken of the residual gas volume remaining in the lungs (V_r), and an estimated volume of gas in the intestine (V_i). Temperature, which influences water density (WD), should be also taken into account. BD is calculated with the following equation (Eq. (1.24), Brodie et al., 1998):

$$BD = \frac{M_a}{((M_a - M_w)/WD) - (V_r + V_i)}$$
(1.24)

The volume of gas in the intestine (V_i) included in the calculation is usually assessed to amount to about

100 mL, but this value should be increased for large adults and decreased for children.

Underwater weighting (UWW)—considered to be the "golden standard" for BV measurements—is actually replaced by the DEXA method which does not require lung volume measurement for body fat determination.

BV can be estimated with classic formulae. In 1959, Sendroy and Cecchini (1959), developed a formula (Eqs. (1.25) and (1.26)) based on the data collected for 446 men and adolescent boys [the ratio of BM (kg) to height (cm) is between 0.2 and 0.8] as:

and for 113 adult women and adolescent girls (the ratio of BM to H is between 0.2 and 0.8) as:

BSA and BV can be assessed on the basis of digital data recorded with the computer tomography, magnetic resonance imaging, or 3D scanning methods. The main advantage of these techniques is shorter time of acquisition, resulting in less measurement noise.

1.3 BODY COMPOSITION AT VARIED LEVELS OF COMPLEXITY

Since 1990s, a research team at Columbia University (St. Luke's Roosevelt Hospital) has been developing a new concept of body composition research (Heymsfield and Waki, 1991; Wang et al., 1992; Wang et al., 2008). The so-called five-level model of body composition introduced by them (now widely accepted) organizes body components into a sequence of increasing complexity, namely: (1) the atomic level, where body composition is assessed in terms of the content of elements, including potassium, sodium, chlorine, phosphorus, calcium, nitrogen, and carbon; (2) the molecular level, at which chemical compounds such as fat, water, proteins, minerals, and glycogen are assessed; (3) the cellular level that accounts for the presence of cell membranes and describes extracellular and intracellular spaces; (4) the tissue-organ level, where the distribution of adipose, SM, bone and other tissues is described, and (5) the whole-body level, which describes the system as a whole (presented above) (Wang et al., 1992; Wang et al., 1998; Wang et al., 2008).

1.3.1 Body Composition at the Atomic Level

Virtually 99% of BM is constituted by the mass of 6 elements, namely: oxygen (61%), carbon (23%), hydrogen (10%), nitrogen (2.6%), calcium (1.4%), and phosphorus (0.83%). The content of none of the remaining macroelements exceeds 0.5% of BM: potassium 0.4%, sulphur

0.3%, sodium and chloride 0.2% each, and magnesium 0.1% (Fig. 1.1).

The atomic body composition is measured primarily with two techniques: the whole-body counting that measures natural body radioactivity (i.e., the measurement of natural ⁴⁰K isotope) and the neutron activation analysis (NAA) that uses neutron flux to activate atomic nuclei (reaching excited state). The measurement of characteristic gamma radiation of radionuclides enables quantitative assessment of the content of elements—such as hydrogen, carbon, oxygen, nitrogen, sodium, calcium, phosphorous, and chlorine—in the human body (Kehayias et al., 1991; Mattsson and Thomas, 2006).

1.3.1.1 Total Body Nitrogen

Nitrogen is one of the main body components, required for protein synthesis and production of several nitrogenous compounds such as hormones, neurotransmitters, and components of antioxidant defense. The measurement of TBN, using in vivo NAA, allows one to assess body protein content, while it is assumed that all body nitrogen is incorporated into proteins. There is a close relationship between TBN and body proteins: every 6.25 g of protein contains 1 g of nitrogen. Proteins are mainly located in FFM, hence the evaluation of TBN is an indirect measure of FFM, and especially SM mass.

In healthy individuals (age range: from 24 to 72 years) TBN increases with BM and decreases with age, and it can be calculated with the following formula (Eq. (1.27)) developed on the basis of in vivo NAA measurements (Ryde et al., 1993):

TBN (kg) =
$$1.42 \text{ kg} + 0.0109 \times \text{BM}$$
 (kg) - (A (years)
 $\times 0.008 \text{ kg year}^{-1}$) - (gender $\times 0.46 \text{ kg}$)
(1.27)

(gender: male = 0, female = 1).

It was postulated that the amount of nitrogen in FFM is biologically constant and the TBN/FFM relation can be formulated as follows (Eq. (1.28), Ryde et al., 1993):

TBN (kg) =
$$0.031 \times FFM$$
 (kg) $- 0.0009$ kg (1.28)

1.3.1.2 Total Body Potassium

The measure of the total amount of potassium in the body [total body potassium (TBK)] is based on the activity of the natural ⁴⁰K isotope (with 1.46 MeV gamma radiation) as the isotope constitutes 0.0118% of potassium ion. TBK amounts to about 47 and 36 mmol·kg⁻¹ in men and women, respectively. TBK increases with BM and body height (H), and decreases with age (A). According to the formula Eq. (1.29), (Wang et al., 1992), TBK might be estimated as follows:

FIGURE 1.1 Body composition at atomic level in the reference man. Based on the data from Snyder, W.S., et al., 1984. Report of the task group on Reference Man. Oxford, Pergamon Press; Wang, Z.M., et al., 1992. Am. J. Clin. Nutr. 56, 19–28.

The originally used form:

TBK (mmol) =
$$77.8 + 27.3 \times BM$$
 (kg) + $11.5 \times H$ (cm)
- $21.9 \times A$ (years)

or

TBK (mmol) =
$$77.8 + 27.3 \times BM$$
 (kg) + $1150 \times H$ (m)
- $21.9 \times A$ (years) (in SI units)

TBK can be used to assess the body cell mass (BCM), as noticed by Francis D. Moore (1913–2001) in the mid-20th century (see Section 1.5.3).

1.3.1.3 Total Body Calcium

The total body calcium (TBCa) content can be measured in vivo by the delayed γ -NAA and amounts to about 1100 g in men and 800 g in women (Reid, 1986).

Based on the TBCa and TBK, it is possible to calculate the total body phosphorus (TBPh, Eq. (1.30)), (Wang et al., 1992):

TBPh (kg) =
$$0.456 \times \text{TBCa}$$
 (kg) + $0.022 \times \text{TBK}$ (mol)
(1.30)

Since calcium constitutes a relatively constant fraction of bone minerals (38%-39%), its content can also be

used to evaluate total body bone mineral content (see Eq. (1.58)).

1.3.2 Body Composition at the Molecular level

(1.29)

Measurements at the level of chemical molecules concern water, fat, protein, salts and glycogen (Fig. 1.2).

1.3.2.1 Total Body Water

At the chemical level, the two largest compartments of the system are water (approximately 60% of BM) and anhydrous fat (20%-30% of BM). Mean values of TBW have been reported to range from 38 to 50 L in men (~60% of BM), whereas in women, it is between 26 and 40 L (~50% of BM), (Chumlea et al., 2001). Women and elderly individuals have less body water, due to greater adiposity and lower muscle mass. TBW decreases with age. For instance, in individuals around 60 years of age, it comprises 55% of BM in case of males, and 45% in females.

The TBW, determined on the basis of the dilution principle by means of labeled water isotopes (e.g., ${}^{2}\text{H}_{2}\text{O}$, ${}^{3}\text{H}_{2}\text{O}$, $\text{H}_{2}{}^{18}\text{O}$), was used as the starting point to derive equations that predict TBW from anthropometric measurements (Watson et al., 1980; Chumlea et al., 2001).

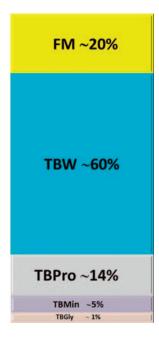


FIGURE 1.2 Body composition at the molecular (chemical) level in the 70 kg reference man (expressed as percentage of body mass, % BM). FM, fat mass; TBW, total body water; TBPro, total body proteins; TBMin, total body mineral; and TBGly, total body glycogen. Based on the data from Snyder, W.S., et al., 1984. Report of the task group on Reference Man Oxford, Pergamon Press.

Watson et al. (1980) formulated the following equations to calculate TBW (Eqs. (1.31) and 1.32): for men (n = 458):

TBW (L) =
$$2.447 - 0.09516 \times A$$
 (years) + 0.1074
× H (cm) + 0.3362 × BM (kg)
(the originally used form)

(1.31)

or

or

TBW (L) = $2.447 - 0.09516 \times A$ (years) + $10.74 \times H$ (m) $+0.3362 \times BM$ (kg) (in SI units)

for women (n = 265):

TBW (L) = $0.1069 \times H (cm) + 0.2466 \times BM (kg) - 2.097$ (the originally used form)

TBW (L) = $10.69 \times H (m) + 0.2466 \times BM (kg) - 2.097$

TBW (L) =
$$-10.50 - 0.01 \times A$$
 (years) + 0.20
× BM (kg) + 18 × H (m) (in SI units)
(1.35)

for black women (n = 191):

TBW (L) =
$$-16.71 - 0.01 \times A$$
 (years) + 0.22
 \times BM (kg) + 0.24 \times H (cm)
 (the originally used form) (1.36)

for white men (n = 604):

(in SI units)

TBW (L) =
$$23.04 - 0.03 \times A$$
 (years)
+ $0.50 \times BM$ (kg) - $0.62 \times BMI$ (1.33)

Chumlea et al. (2001) presented the following race- and gender-specific formulas (Eqs. (1.33)-(1.36)) based on a larger group of adult subjects (age between 18 and 90):

for black men (n = 128):

TBW (L) =
$$-18.37 - 0.09 \times A$$
 (years) + 0.34
 \times BM (kg) + 0.25 \times H (cm)
(the originally used form) (1.34)

or

TBW (L) =
$$-18.37 - 0.09 \times A$$
 (years) + 0.34
 $\times BM$ (kg) + 25 $\times H$ (m) (in SI units)

for white women (n = 772):

TBW (L) =
$$-10.50 - 0.01 \times A$$
 (years) + 0.20
 \times BM (kg) + 0.18 \times H (cm)
 (the originally used form)

or

or

TBW (L) =
$$-16.71 - 0.01 \times A$$
 (years) + 0.22
× BM (kg) + 24 × H (m) (in SI units)

Total body water (TBW) consists of intracellular (ICW) and extracellular water (ECW). Since almost all body potassium is located in the ICW and ECW compartments, assuming stable intra- and extracellular K^+ concentration of 152 and 4 mmol·kg⁻¹ H₂O, respectively, the ICW and ECW can be calculated (Eqs. (1.37) and (1.38)) if TBK (determined by the whole-body counting) and TBW (determined with the dilution method) are known (Wang et al., 2003; Silva et al., 2007):

$$ICW (kg) = \frac{TBK (mmol) - 4 \times TBW (kg)}{148} \qquad (1.37)$$

and

$$ECW (kg) = \frac{152 \times TBW (kg) - TBK (mmol)}{148} \quad (1.38)$$

It is worth highlighting that FFM hydration is strikingly stable in mammals; as noted already in 1945 by Pace and Rathbun (see in Wang et al., 1999). In a mature organism, hydration rests within the range between 70% and 75%, as confirmed by the formula for calculating the TBW in an adult human (Eq. (1.39), Ryde et al., 1993):

TBW (kg) =
$$0.733 \times FFM$$
 (kg) $- 0.44$ kg (1.39)

1.3.2.2 Total Body Fat

There are no direct methods of in vivo evaluation of body fat. Fat can be determined by measuring the effect fat has on physical properties of the body, such as BD (measured by UWW, see Section 1.2.5) and body impedance (Kehayias et al., 1991). Rough evaluation of body fatness in clinical practice can be performed through easilyaccessible simple measures, namely BM, BMI, abdominal circumference, skinfold thickness measurements. The bioimpedance method-a low-cost and frequently used approach to body composition measurements-differentiates between FM, considered to be a non-conductor of electric charge, and FFM, considered to be a conducting volume that helps the passage of electric current, due to conductivity of electrolytes dissolved in body water (Lemos and Gallagher, 2017). Although bioimpedance is a simple, noninvasive approach to body composition measurements, it is not a reference method, as it relies on specific assumptions, the most important of which is constant body hydration (Lemos and Gallagher, 2017). Nowadays, methods acquiring higher precision-such as MRI, CT, DEXA-are implemented to determine body fat and muscle mass (Hellmanns et al., 2015).

Body fat is one of the most changeable elements of body composition. It can account for 7%-10% of BM in

well-trained endurance athletes and in some extremely well-trained marathon runners can account for less than 5% of BM (Costill, 1986; Noakes, 2003). On the other hand in case of pathological obesity, body fat can constitute up to 50% of BM (Alemán et al., 2017).

1.3.2.3 Total Body Protein

Total body protein (TBPro) accounts for about 14%-16% of BM, that is, ~11 kg in men and 9 kg in women. TBPro is comprised in BCM (~77\%), but also in extracellular solids and ECF (~23\%).

As mentioned above, TBPro can be calculated on the basis of the TBN (determined by the NAA), on the assumption that every 6.25 g of protein contains 1 g of nitrogen (i.e., the nitrogen-to-protein ratio amounts to 0.16).

TBPro can also be estimated on the basis of the value of TBK, measured by the whole-body counting $({}^{40}\text{K})$ method, and of the content of bone minerals assessed using the whole-body DEXA method (Eq. (1.40), Wang et al., 2003):

$$TBPro (kg) = 0.00252 \times TBK (mmol) + 0.732 \times bone mineral (kg) (1.40)$$

1.3.2.4 Total Body Mineral

Total body mineral (TBMin) ($\sim 4.5\%$ of BM) consists of bone minerals (BoM, $\sim 4\%$ of BM) and soft-tissue minerals (STM, $\sim 0.5\%$ of BM). According to Beddoe et al. (1984) TBMin can be estimated as 6.22% of FFM (Eq. (1.41)):

TBMin (kg) =
$$\frac{0.0622 \times \text{TBW}}{0.732}$$
 (1.41)

STM (~0.5 vs 0.38 kg, respectively, for men and women) is a small molecular component which consists of soluble minerals and electrolytes (6 main: K⁺, Na⁺, Mg²⁺, Cl⁻, H₂PO₄⁻, HCO₃⁻) and is found in the extracellular and intracellular compartment of soft tissue (Wang et al., 2002). The whole-body STM can be measured in vivo by delayed- γ NAA and is estimated roughly to reach 400 mg, that is, 0.5% of BM (St-Onge et al., 2004). Its contribution to BD is very important, because of its high density reaching 3.317 g · cm⁻³, which is higher than that of bone mineral (2.982 g · cm⁻³) (Heymsfield et al., 1991). The ratios of STM to extracelullar water and to intracellular water are relatively stable in young adults and whole-body STM can be calculated from TBW mass (Eq. (1.42), Wang et al., 2008):

STM (kg) =
$$0.0129 \times \text{TBW}$$
 (kg) (1.42)