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 The gastrointestinal tract is a unique, multifunctional organ in the human body. It is 
responsible for intake, digestion, and absorption of food, and excretion of bodily waste. 
It also houses a myriad of commensal and potentially pathogenic microorganisms that 
have profound effects on host development and homeostasis. Since these microorgan-
isms have to be confi ned within the gut lumen, the gastrointestinal tract serves as the 
major impediment protecting internal tissues from invasion by harmful luminal microbes 
and exposure to their toxins. The gastrointestinal tract is also the largest organ of the 
immune system and is populated by specialized cells trained for border surveillance and 
recognition of external dangers. 

 Normal function of the gastrointestinal tract is frequently compromised by genetic fac-
tors, infections, stress, life habits, etc., that give rise to various diseases. Remarkably, 
impaired functions of this organ not only result in specifi c gastrointestinal disorders such as 
gastric ulcer, infl ammatory bowel disease, or gastrointestinal tumors but also contribute to 
the development of other human pathologies including certain neurological and cardiovas-
cular diseases, as well as diabetes. Collectively, these factors establish the study of the nor-
mal functions and disorders of the gastrointestinal system as one of the most important and 
exciting topics of modern biology and medicine. 

 The aim of  Gastrointestinal Physiology and Diseases: Methods and Protocols  is to provide 
an expert, step-by-step guide to a variety of techniques for examining the activity and regu-
lation of the gastrointestinal system and for modeling the most common digestive diseases. 
This book is intended to target a large cohort of physiologists, cell and developmental 
biologists, immunologists, and physician-scientists working in the fi eld of gastroenterology 
and beyond. This volume contains comprehensive and easy to follow protocols that are 
designed to be helpful to both seasoned researchers and newcomers to the fi eld. 

 The protocols included in this volume are separated into fi ve different parts. Part I 
(Chapters   1    –  9    ) describes in vitro and ex vivo techniques to study different aspects of the func-
tions and differentiation of the gut mucosa, with particular emphasis on modern approaches 
to the growth, differentiation, and study of complex intestinal and gastric organoids. Part II 
(Chapters   10    –  15    ) outlines powerful in vivo imaging approaches to study biochemical altera-
tions in epithelial cells, and to visualize leukocyte traffi cking of in the gut during tissue infl am-
mation and neoplasia. Part III (Chapters   16    –  20    ) presents protocols for the isolation, 
characterization, and therapeutic transfer of different types of intestinal immune cells. Part IV 
(Chapters   21    –  25    ) describes different animal models of gastrointestinal mucosal infl ammation 
and injury. It describes classical models of chemically induced and infectious colitis in mice 
and also presents examples of the use of other model organisms in studying digestive disor-
ders. Part V (Chapters   26    –  29    ) presents state-of-the-art animal models for studying tumor 
induction and development in the colon, stomach, and oral cavity. 

 I would like to thank all of the contributors for sharing their expertise and for carefully 
guiding readers through all the nuanced details of their respective techniques. I am very 
grateful to the series editor, Dr. John Walker, for his help during the editing process.  

  Richmond, VA, USA     Andrei I.     Ivanov     
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    Chapter 1   

 CRISPR/Cas9-Mediated Genome Editing of Mouse Small 
Intestinal Organoids                     

     Gerald     Schwank      and     Hans     Clevers      

  Abstract 

   The CRISPR/Cas9 system is an RNA-guided genome-editing tool that has been recently developed based 
on the bacterial CRISPR-Cas immune defense system. Due to its versatility and simplicity, it rapidly became 
the method of choice for genome editing in various biological systems, including mammalian cells. Here 
we describe a protocol for CRISPR/Cas9-mediated genome editing in murine small intestinal organoids, 
a culture system in which somatic stem cells are maintained by self-renewal, while giving rise to all major 
cell types of the intestinal epithelium. This protocol allows the study of gene function in intestinal epithe-
lial homeostasis and pathophysiology and can be extended to epithelial organoids derived from other 
internal mouse and human organs.  

  Key words     Small intestinal organoids  ,   Intestinal stem cells  ,   CRISPR/Cas9  ,   Genome editing  

1      Introduction 

   Clustered regularly interspaced short palindromic repeats (CRISPRs) 
are classes of repeated DNA sequences found in bacteria and archaea. 
Together with CRISPR-associated (Cas) genes they are part of an 
adaptive bacterial immune defense system, which confers resistance 
to foreign genetic elements such as phages [ 1 ]. The CRISPR/Cas 
immune defense process involves three steps. First, upon infection 
foreign DNA sequences are inserted as new spacers into the CRISPR 
locus. Second, the locus is transcribed into a single noncoding pre-
cursor CRISPR RNA (pre-crRNA) and is processed into short 
stretches of mature crRNA. Third, the mature crRNA forms a ribo-
nucleoprotein complex with Cas proteins, which specifi cally recog-
nizes and destroys the invading foreign DNA [ 2 ]. 

 So far, three types of CRISPR systems have been discovered. 
In contrast to the type I and type III CRISPR/Cas systems, the 
type II system relies on a single Cas protein for DNA interference, 
but—in addition to the crRNA—requires a tracrRNA bound to 
Cas9 [ 3 ]. The specifi city of the CRISPR/Cas9 ribonucleoprotein 

1.1  The CRISPR/
Cas9 Genome- Editing 
Tool
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complex to the invading DNA is mediated through Watson-Crick 
base pairing of a 20-nucleotide long stretch that is complementary 
between the crRNA and the invading DNA. The HNH and RuvC- 
like nuclease domains of the Cas9 protein then eliminate the for-
eign DNA by generating a double-strand break (DSB). In principle, 
any DNA sequence that is followed by a protospacer-associated 
motif (PAM), a conserved sequence of 2–5 nucleotides, can be 
recognized and cut by the CRISPR/Cas9 complex [ 3 ]. 

 In 2012, the labs of Emanuelle Charpentier and Jennifer 
Doudna together adapted the type II CRISPR system for genome 
editing [ 4 ]. By combining the tracrRNA with the scRNA, a syn-
thetic single guide RNA (sgRNA) was generated, which effectively 
targets Cas9 to a DNA sequence of interest and leads to the site- 
specifi c generation of a DSB [ 4 ]. Like in previously developed 
genome-editing tools, DSBs generated by CRISPR/Cas9 can 
modify the targeted DNA locus in two ways. First, in the absence 
of a homologous DNA template the DSBs can generate small 
insertions or deletions, as they are repaired by the error-prone 
non-homologous end-joining (NHEJ) pathway [ 5 ]. Second, in 
the presence of an exogenous homologous DNA template, the 
DSBs can be repaired by the homology directed repair pathway 
(HDRP), which allows to introduce specifi c DNA sequences and 
thus to precisely modify the genomic region [ 5 ]. In 2013, several 
research groups have demonstrated successful CRISPR/Cas9- 
mediated genome editing in a number of different organisms, 
ranging from plants to human cells [ 6 ,  7 ]. The easy design, high 
targeting effi ciency, and low off-target mutation frequency of the 
CRISPR/Cas9 system rapidly made it the most commonly used 
genome-editing tool [ 3 ].  

   Mouse small intestinal organoids are in vitro-grown three- dimensional 
epithelial structures that closely resemble the in vivo gut epithelium. 
They can be established from single Lgr5+ stem cells, which are 
embedded  in   Matrigel and supplied with a cocktail of tissue-specifi c 
growth factors [ 8 ]. Like the in vivo gut epithelium, intestinal organ-
oids contain a crypt-like compartment with self-renewing Lgr5+ 
stem cells, and a villus-like compartment with differentiated entero-
cytes, paneth cells, and enteroendocrine cells [ 8 ]. Minor changes in 
growth factor composition allow the growth of organoids from a 
range of human epithelial tissues [ 9 – 12 ]. Epithelial organoids are 
genetically and phenotypically stable [ 13 ] and can be genetically 
modifi ed by CRISPR/Cas9-based genome editing [ 14 – 16 ]. 

 In this protocol, we describe step by step how to edit the 
genomes of mouse small intestinal organoids using CRISPR/
Cas9 in combination with DNA templates for homologous recom-
bination (HR). In addition, we provide information on how to 
adapt the protocol for genome editing in organoids derived from 
different tissues.   

1.2  Mouse Small 
Intestinal Organoids

Gerald Schwank and Hans Clevers
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2    Materials 

       1.    ECM matrix ( see   Note 1 ).
   (a)    Corning ®     Matrigel ®  Growth Factor Reduced (GFR) 

Basement 
 Membrane Matrix, cat no. 356231, or   

  (b)    Cultrex ®  BME2 RGF organoid matrix, cat no. 
3533-005-02.    

      2.    Intestinal organoid medium ( see   Note 2 ).
   (a)    Advanced DMEM/F12 (Life Technologies).   
  (b)    GlutaMax (Life Technologies).   
  (c)    HEPES.   
  (d)    Penicillin-Streptomycin.   
  (e)    N2 supplement (Life Technologies, cat no. 17502–044).   
  (f)    B27 supplement (Life Technologies, cat no. 17504–044).   
  (g)     N –Acetylcysteine.   
  (h)    Murine recombinant EGF (Life Technologies, cat no. 

PMG8044).   
  (i)    Murine recombinant Noggin (PeproTech, cat no. 250–38).   
  (j)    Human recombinant R-spondin1 (PeproTech, cat no. 

120–38).    
      Preparation of the intestinal organoid medium: First supple-

ment 500 ml of Advanced DMEM/F12 with 5 ml 100× Glutamax, 
5 ml 1 M HEPES, and 5 ml 100× Penicillin-Streptomycin. This 
Advanced DMEM/F12+++ medium is stable at 4 C° for at least 
one month. To prepare 20 ml of intestinal organoid medium, sup-
plement the Advanced DMEM/F12+++ medium with 400 μl of 
50× B27, 200 μl of 100× N2, 50 μl of 500 μg/ml  N -acetylcysteine, 
2 μl of 500 μg/ml mouse EGF, 20 μl of 100 μg/ml mouse recom-
binant Noggin, and 20 μl of 1 mg/ml human recombinant 
R-spondin1. Intestinal organoid medium is stable for at least two 
weeks at 4 C°.

    3.    Recovery™ Cell Culture Freezing Medium (Life Technologies).   
   4.    Cryopreservation cell freezing containers.   
   5.    24-well and 48-well cell culture plates.    

         1.    Lipofectamine 2000 (Life Technologies).   
   2.    Opti-MEM (Life Technologies).   
   3.    Y-27632 dihydrochloride (Sigma-Aldrich).   
   4.    CRISPR/Cas9 plasmids: pSpCas9(BB)-2A-GFP(PX458), 

pSpCas9(BB)-2A-Puro (PX459) V2.0 (available via Addgene).   

2.1  Small Intestinal 
Organoid Culture 
Components

2.2  Transfection 
and Clonal Selection 
of Small  Intestinal 
  Organoids

CRISPR/Cas9 in Intestinal Organoids
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   5.    Trypsin replacement solution (TrypLE) (Life Technologies).   
   6.    Murine recombinant Wnt-3a (Millipore, cat no. GF154).   
   7.    4-Hydroxytamoxifen (Sigma-Aldrich).   
   8.    Purelink Genomic DNA Extraction kit.   
   9.    Puromycin.   
   10.    Nicotinamide.   
   11.    Parafi lm.   
   12.    Refrigerated centrifuge with microtiter plate carrier.   
   13.    Thermal cycler.       

3    Methods 

   For the design and the cloning of CRISPR/Cas9 vectors, we advise 
to follow the Nature Protocol from the Zhang lab [ 5 ]. We gener-
ally use the pSpCas9(BB)-2A-GFP CRISPR/Cas9 plasmid, and 
insert the specifi c target sequence as described in their protocol. 

 The design of the template DNA for homologous recombination 
depends on the application. We generally synthesize plasmids with a 
500 bp homology region up- and downstream of the desired nucleo-
tide change. Close to the modifi ed nucleotide (<50 bp), we insert a 
puromycin resistance cassette fl anked with loxP sites. This setup allows 
effi cient screening for homologous recombination events using anti-
biotics and subsequent cassette excision ( see   Note 3 ).  

   The establishment of organoid cultures from freshly isolated 
murine small intestinal crypts is described in Sato and Clevers, 
2013 [ 17 ]. This protocol explains all experimental steps in detail 
and lists all required reagents. Please follow this protocol to estab-
lish and passage murine small intestinal organoids.  

   After establishing a new organoid line, we recommend cryopre-
serving the line, and always starting from an early passage when 
gene-editing experiments are repeated.

    1.    After establishing a new organoid line, passage the culture 
once or twice prior to cryopreservation ( see   Note 4 ).   

   2.    Approximately 7 days after seeding, replace the mouse small 
intestinal organoid medium with 1–2 ml of cold basal culture 
medium, and  disrupt   Matrigel by gently pipetting with a 
p1000 pipette.   

   3.    Transfer organoids from one well into a 15 ml falcon tube, and 
disrupt them by gently pipetting 10–15 times with a fi re- 
polished Pasteur pipette.   

3.1  Design 
and Generation 
of CRISPR/Cas9 
Genome-Editing 
Vectors

3.2  Establishment 
of Small Intestinal 
Crypt Cultures

3.3  Cryopreservation 
of Organoids

Gerald Schwank and Hans Clevers
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   4.    Centrifuge organoids at 150 ×  g  for 5 min at 4 C°, remove the 
supernatant, and resuspend the cell pellet in 0.5 ml of ice-cold 
Recovery™ Cell Culture Freezing Medium.   

   5.    Transfer the cell suspension into 1.5 ml cryogenic storage 
tube and put the tubes in a CoolCell ®  cryopreservation con-
tainer. Immediately transfer the container to the −80 C° 
freezer, and keep it at −80 C° for 24 h. Afterwards tubes can 
be moved to the liquid nitrogen container for long-term 
storage.      

       1.    Start with organoids from an early passage. If cryopreserved 
organoids are used, thaw a vial in a 37 C° water bath and 
immediately suspend in 10 ml of basal culture medium con-
taining 10 % FBS. Centrifuge at 150 ×  g  for 5 min at 4 C°, 
remove supernatant, repeat the washing step with basal culture 
medium, and resuspend the pellet in 150 μl of ice- cold 
  Matrigel.   

   2.    Divide the Matrigel cell suspension as hemispheric droplets 
into three wells of a 24-well plate, and incubate in a 37 C° 
incubator for 10 min for Matrigel polymerization ( see   Note 5 ).   

   3.    Add mouse intestinal organoid medium supplemented with 
Wnt-3a (100 ng/ml) and nicotinamide (10 mM) to the wells, 
and change medium every 2–3 days ( see   Notes 6  and  7 ). 
Approximately once a week organoids can be passaged.   

   4.    After two passages organoids should be cystic, and are ready 
for transfection.   

   5.    Replace the intestinal organoid medium with 1 ml of cold 
basal culture medium, and  disrupt   Matrigel by gently pipet-
ting with a p1000 pipette. Transfer organoids from four 
wells (~100 organoids per well) into one 15 ml falcon tube, 
and break them by gently pipetting with a fi re-polished 
Pasteur pipette.   

   6.    Centrifuge at 150 ×  g  for 5 min, and wash the pellet with 5 ml 
of ice-cold basal culture medium to fully  remove   Matrigel ( see  
 Note 8 ).   

   7.    Resuspend the pellet in 4 ml of pre-warmed TrypLE and incu-
bate at 37 C° for 5 min in a water bath ( see   Note 9 ).   

   8.    Centrifuge at 150 ×  g  for 5 min at 4 C°, and resuspend the pel-
let in 450 μl mouse small intestinal organoid medium supple-
mented with Wnt-3a (100 ng/ml), nicotinamide (10 mM), 
and the Rho kinase inhibitor Y-27632 (10 nM).   

   9.    Transfer the cell suspension into one well of a 48-well plate, let 
the cells sink to the bottom, and analyze cell density under the 
microscope. Cells should be 70–90 % confl uent.      

3.4  Preparation 
of Organoids 
 for   Lipofection

CRISPR/Cas9 in Intestinal Organoids
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   We recommend also reading the Lipofectamine ®  2000 reagent proto-
col on the Life Technologies webpage:   http://tools.lifetechnologies.
com/content/sfs/manuals/Lipofectamine_2000_Reag_protocol.pdf    

    1.    Dilute 2 μl of Lipofectamine reagent in 25 μl of Opti-MEM ®  
medium.   

   2.    Dilute plasmids (0.5 μg CRISPR/Cas9 vector and 0.5 μg 
HDR plasmid) in 25 μl of Opti-MEM ®  medium.   

   3.    Mix diluted DNA and diluted Lipofectamine reagent, and 
incubate for 5 min.   

   4.    Add the 50 μl Lipofectamine-DNA complex gently to one well 
of dissociated organoids.   

   5.    Seal the plate with parafi lm, and centrifuge 60 min at 600 ×  g  at 
32 °C.   

   6.    Discard the parafi lm, and incubate the plate for another 2–4 h 
in a tissue culture incubator.   

   7.    Collect the transfected cells in a 15 ml falcon tube, spin at 
150 ×  g  for 5 min, and resuspend the pellet in 100 μl of ice-cold 
Matrigel.   

   8.    Divide the Matrigel cell suspension into two wells of a 24-well 
plate, and incubate in the 37 C° incubator for 10 min for 
Matrigel polymerization.   

   9.    Add mouse small intestinal organoid medium supplemented 
with Wnt-3a (100 ng/ml), nicotinamide (10 mM), and 
Y-27632 (10 nM), and place the plate into the tissue culture 
incubator.    

         1.    3 days after transfection start with the antibiotics selection 
(500 ng/ml puromycin) ( see   Note 10 ).   

   2.    When drug-sensitive organoids start to grow out, pick indi-
vidual organoids from  the   Matrigel under a binocular micro-
scope using a p200 pipette, transfer them individually into 
1.5 ml tubes, and split them by pipetting with the p200 pipette.   

   3.    Centrifuge for 5 min at 900 ×  g , resuspend in 100 μl ice- cold 
  Matrigel, and plate cells in a 24-well plate. After Matrigel 
polymerization add normal small intestinal organoid medium 
( see   Note 11 ).   

   4.    After expansion of clonal organoids, use 1–2 wells for genomic 
DNA isolation. For the isolation you can use the PureLink ®  
Genomic DNA extraction kit from Life Technologies or other 
standard genomic DNA isolation procedures.   

   5.    Analyze the genome  by   PCR and Sanger sequencing to identify 
clones with correct HR events. Use primer pairs that bind within 
the puromycin resistance cassette and up- or downstream of the 

3.5     Lipofection 
of Organoids 
with CRISPR/Cas9 
Plasmids

3.6  Selection 
of Genome- Modifi ed 
Organoids

Gerald Schwank and Hans Clevers
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