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Preface

The significant changes in the fifth edition of Fundamental  
Neuroscience for Basic and Clinical Applications take into  
consideration (1) new discoveries in the basic neurosciences, (2) 
how these may be applied to educating students in the clinical 
setting, (3) new observations in the clinical neurosciences, and of 
particular importance (4) how this information may be used to 
understand and diagnose the neurologically compromised patient. 
These concepts recognize two important points essential to medical  
education. First, the contemporary approach allows educators 
to integrate basic and clinical science information, rather than 
to just teach anatomy or connections within the nervous system  
for their own sake. The clinical observation is a springboard for 
students to understand and apply basic science concepts to a 
neurologically compromised patient. Second, accrediting and 
licensing bodies that govern the various branches of medicine, 
dentistry, and allied health have clearly indicated that the inte-
gration of basic science and clinical information is an integral part 
of the contemporary educational experience.

The significant changes and additions to Fundamental Neuro-
science (both great and small) emphasize the intimate interaction 
between the basic and clinical neurosciences. The main goals are 
to introduce additional and relevant clinical information, to inte-
grate clinical and basic science information in a seamless fashion, 
and to introduce new anatomic information when it enhances the 
understanding of clinical concepts. The emphasis is clearly shifted 
to an even more clinically oriented approach. Of particular note is 
the fact that of the approximate 598 illustrations in this new edi-
tion, about 48%, are new/revised (artwork, CT, MRI): labels have 
been changed, artwork was modified, and many drawings were 
recast so as to now appear in color.

In addition, about 275 general Review Questions with explana-
tory answers are available online on the Student Consult website 
(www.studentconsult.com) for review, practice, or assessment.

It is not possible to describe each individual change, modifica-
tion, or addition; only the more significant are mentioned here.

First, key words, phrases, and concepts appear in boldface. 
This expedites quick and easy access.

Second, the presentation, or availability, of anatomic informa-
tion in a “clinical orientation” is an essential feature of contem-
porary neuroscience education; it prepares the student for the 
significant realities of the clinical environment where viewing the 
central nervous system in MRI and CT in a “clinical orientation” 
is the established standard. This is especially true for images such 
as stained sections or artwork of the spinal cord or brainstem, 
when they are presented in an axial plane. For example, in an axial 
MRI of the midbrain, its dorsal aspect (the colliculi) is “down” in  

the image, and its ventral portion (the crus and interpeduncular  
fossa) is “up” in the image. This is opposite the “anatomic  
orientation.” Because the MRI/clinical orientation is opposite  
the anatomic orientation (commonly used in the instructional 
setting), a method is incorporated into this edition that allows 
the reader to easily flip selected images from the anatomic orien-
tation to the clinical orientation and thereby view the anatomy as 
it is presented in MRI and CT. Images that are identified by a flip 

 

symbol in the figure description within the book can be viewed 
in either anatomic or clinical orientation with online resources at 
www.studentconsult.com. The availability of this feature accom-
modates a wide variety of educational approaches and review 
opportunities but especially prepares the user for the expecta-
tions and requirements of the clinical experience.

Third, the relevance of clinical information and its integration 
with basic neuroscience concepts is an absolutely essential com-
ponent of the contemporary educational process. To this end, all 
clinical information, including reflexes, appears in a light blue 
highlight throughout the book. This approach allows the clinical  
correlations to remain in their proper textual context within 
the natural flow of structural and functional information. At the 
same time, it also allows the reader to immediately identify what 
text on any given page is clinical in nature.

Fourth, new clinical and anatomic terminology is introduced 
that reflects a contemporary, and more correct, usage of classic 
terms. This also has allowed existing concepts and interpreta-
tions to be clarified and corrected.

Fifth, new clinical information in the form of MRI and CT, 
clinical examples, line drawings, and related information is intro-
duced. A special effort has been made to fully integrate this 
information with existing text and new basic neuroscience data.

Sixth, throughout the book, a significant number of anatomic 
and clinical drawings are corrected; modified to increase their 
clarity; replaced with new artwork; correlated with clinical 
images such as MRI, CT, and angiograms; or otherwise improved.

This edition follows the official international list of anatomic 
terms for neuroanatomy (Terminologia Anatomica, Thieme, 
1998) or draws on recent publications that provide particular 
clarity. We have made a concerted effort to include the most cur-
rent and most correct terminology; if some terms have eluded us, 
these will be corrected in future printings.

To further improve this work, the editor and contributors wel-
come comments, corrections, and suggestions from students, our 
colleagues, and any other readers of this book.

http://www.studentconsult.com/
http://www.studentconsult.com/
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3

Our nervous system makes us what we are. Personality, outlook, 
intellect, coordination, and the many other characteristics are the 
result of complex interactions within our nervous system. Infor-
mation is received from the environment and transmitted into 
the brain or spinal cord. Once this sensory information is pro-
cessed and integrated, an appropriate motor response is initiated.

The nervous system can be viewed as a scale of structural com-
plexity. At the microscopic level, the individual structural and 
functional unit of the nervous system is the neuron (the cell body 
and its processes), or nerve cell. Interspersed among the neurons 
of the central nervous system are supportive elements called glial 
cells. At the macroscopic end of the scale are the large divisions (or 
parts) of the nervous system that can be handled and studied with-
out magnification. These two extremes are not independent but 
form a continuum; functionally related neurons aggregate to form 
small structures that combine to form larger structures. Commu-
nication takes place at many different levels, the end result being a 
wide range of productive or life-sustaining nervous activities.

OVERVIEW
Central, Peripheral, and Visceromotor Nervous 
Systems
The human nervous system is divided into the central nervous 
system (CNS) and the peripheral nervous system (PNS) (Fig. 
1.1A). The CNS consists of the brain and spinal cord. Because 

of their locations in the skull and vertebral column, these struc-
tures are the most protected in the body. The PNS is made up 
of nerves that connect the brain and spinal cord with periph-
eral structures. These nerves innervate muscle (skeletal, cardiac, 
smooth) and glandular epithelium and contain a variety of sen-
sory fibers. These sensory fibers enter the spinal cord through 
the posterior (dorsal) root, and motor fibers exit through the 
anterior (ventral) root. The spinal nerve is formed by the joining 
of posterior (sensory) and anterior (motor) roots and is, conse-
quently, a mixed nerve (Fig. 1.1B). In the case of mixed cranial 
nerves, the sensory and motor fibers are combined into a single 
root.

The visceromotor nervous system (also called visceral motor) 
is a functional division of the nervous system that has parts in 
both the CNS and the PNS (Fig. 1.1). It is made up of neu-
rons that innervate smooth muscle, cardiac muscle, or glandular 
epithelium or combinations of these tissues. These individual 
visceral tissues, when combined, make up visceral organs such 
as the stomach and intestines. The visceromotor nervous system 
is also called the autonomic nervous system because it regulates 
visceral motor responses normally outside the realm of conscious 
control. 

Neurons
At the histologic level, the nervous system is composed of neu-
rons and glial cells. As the basic structural and functional units 
of the nervous system, neurons are specialized to receive infor-
mation, to transmit electrical impulses, and to influence other 
neurons or effector tissues. In many areas of the nervous system, 
neurons are structurally modified to serve particular functions. 
At this point, we consider the neuron only as a general concept 
(see Chapter 2).

A neuron consists of a cell body (perikaryon or soma) and 
the processes that emanate from the cell body (Fig. 1.2A). Col-
lectively, neuronal cell bodies constitute the gray matter of the 
CNS. Named and usually function-specific clusters of cell bod-
ies in the CNS are called nuclei (singular, nucleus). Typically, 
dendrites are those processes that ramify in the vicinity of the 
cell body, whereas a single, longer process called the axon carries 
impulses to a more remote destination. The white matter of the 
CNS consists of bundles of axons that are wrapped in a sheath of 
insulating lipoprotein called myelin.

In general, there is a direct relationship between (1) the diam-
eter of the axon, (2) the thickness of the myelin sheath, (3) the 
distance between the nodes of the myelin sheath (nodes of Ran-
vier), and (4) the conduction velocity of the nerve fiber. Axons 
with a large diameter have thick myelin sheaths with longer inter-
nodal distances and therefore exhibit faster conduction veloci-
ties. Likewise, axons with a thin diameter that have thin myelin 
sheaths with shorter internodal distances have slower conduction 
velocities. The axon terminates at specialized structures called 
synapses or, if they innervate muscles, motor end plates (neuro-
muscular junctions), which function much like synapses.

The generalized synapse (Fig. 1.2A) is the most common type 
seen in the CNS and is sometimes called an electrochemical syn-
apse. It consists of a presynaptic element, which is part of an 

Chapter 1

Orientation to the Structure and Imaging of the 
Central Nervous System

D.E. Haines and A.C. Terrell

Overview-3
Central, Peripheral, and Visceromotor Nervous 

Systems-3
Neurons-3
Reflexes and Pathways-4

Regions of the Central Nervous System-4
Spinal Cord-4
Medulla Oblongata-5
Pons and Cerebellum-5
Midbrain-5
Thalamus-5
Cerebral Hemispheres-6

Functional Systems and Regions-6
Localizing Signs and Localization-7

Concept of Afferent and Efferent-7

Posterior (Dorsal), Anterior (Ventral), and Other 
Directions in the Central Nervous System-8

Symptom or Sign?-8
Symptom-8
Sign-8

Clinical Images of the Brain and Skull-8
Computed Tomography-9
Magnetic Resonance Imaging-10
Image Density and Intensity-11
Imaging of the Brain and Skull-11



Essential Concepts4

axon, a gap called the synaptic cleft, and the postsynaptic region 
of the innervated neuron or effector structure. Communica-
tion across this synapse is accomplished as follows. An electrical 
impulse (the action potential) causes the release of a neuroactive 
substance (a neurotransmitter, neuromodulator, or neuromedia-
tor) from the presynaptic element into the synaptic cleft. This 
substance is stored in synaptic vesicles in the presynaptic ele-
ment and is released into the synaptic space by the fusion of 
these vesicles with the presynaptic membrane (Fig. 1.2A).

The neurotransmitter diffuses rapidly across the synaptic space 
and binds to receptor sites on the postsynaptic membrane. On 
the basis of the action of the neurotransmitter at receptor sites, 
the postsynaptic neuron may be excited (lead to generation of 
an action potential) or inhibited (prevent generation of an action 
potential). Neurotransmitter residues in the synaptic cleft are 
rapidly inactivated by other chemicals found in this space. In this 

brief example, we see that (1) the neuron is structurally special-
ized to receive and propagate electrical signals, (2) this propaga-
tion is accomplished by a combination of electrical and chemical 
events, and (3) the transmission of signals across the synapse is in 
one direction (unidirectional), that is, from the presynaptic neu-
ron to the postsynaptic neuron. There are a number of neurologic 
disorders, such as myasthenia gravis, Lambert-Eaton syndrome, 
or botulism, that represent a failure of neurotransmitter action 
at the presynaptic membrane, synapse, or at the receptors on the 
postsynaptic membrane. 

Reflexes and Pathways
The function of the nervous system is based on the interactions 
between neurons. Fig. 1.2B illustrates one of the simplest types 
of neuronal circuits, a reflex arc composed of only two neurons. 
This is called a monosynaptic reflex arc because only one synapse 
is involved. In this example, the peripheral end of a sensory fiber 
responds to a particular type of input. The resulting action poten-
tial is conducted by the sensory fiber into the spinal cord, where 
it influences a motor neuron. The axon of the motor neuron con-
ducts a signal from the spinal cord to the appropriate skeletal 
muscle, which responds by contracting. This is an example of 
a muscle stretch reflex, which is actually one of the more com-
monly tested reflexes in clinical medicine. Reflexes are involun-
tary responses to a particular bit of sensory input. For example, 
the physician taps on the patellar tendon, and the leg quickly 
extends at the knee without the patient consciously controlling 
the movement. The lack of a reflex (areflexia), an obviously 
weakened reflex (hyporeflexia), or an excessively active reflex 
(hyperreflexia) is usually indicative of a neurologic disorder.

By building on these summaries of the neuron and of the basic 
reflex arc, we shall briefly consider what neuronal elements con-
stitute a neural pathway. If the patient bumps his or her knee 
and not only hits the patellar tendon but also damages the skin 
over the tendon, two things happen (Fig. 1.2C). First, impulses 
from receptors in the muscle stretched by the tendon travel 
through a reflex arc that causes the leg to extend (knee jerk, or 
patellar reflex). The synapse for this reflex arc is located in the 
lumbosacral spinal cord. Second, impulses from pain receptors 
in the damaged skin are transmitted in the lumbosacral cord to 
a second set of neurons that convey them via ascending axons 
to the forebrain (Fig. 1.2C). As can be seen in Fig. 1.2C, these 
axons cross the midline of the spinal cord and form an ascend-
ing tract on the contralateral side. In the forebrain, these signals 
are passed to a third group of neurons that distribute them to a 
region of the cerebral cortex specialized to interpret them as pain 
from the knee.

This three-neuron chain constitutes a pathway, a series of neu-
rons designed to carry a specific type of information from one 
site to another (Fig. 1.2C). Some pathways carry information to 
a level of conscious perception (we not only recognize pain but 
know that it is coming from the knee), and others convey infor-
mation that does not reach the conscious level. It is common to 
refer to all the neurons comprising a pathway and conducting a 
specific type of information as a system. For example, the antero-
lateral system conducts pain and thermal information, whereas 
the posterior column–medial lemniscus system conducts body 
position and vibratory sense, and the corticospinal system con-
ducts descending information from the cerebral cortex to spinal 
cord motor neurons. 

REGIONS OF THE CENTRAL NERVOUS SYSTEM
Spinal Cord
The spinal cord is located inside the vertebral canal and is ros-
trally continuous with the medulla oblongata of the brain (Fig. 
1.3). An essential link between the PNS and the brain, it conveys 
sensory information originating from the body wall, extremities, 
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and gut and distributes motor impulses to these areas. Impulses 
enter and leave the spinal cord through the 31 pairs of spinal 
nerves (Fig. 1.1; see also Fig. 9.2). The spinal cord contains sen-
sory fibers and motor neurons involved in reflex activity and 
ascending and descending pathways or tracts that link spinal cen-
ters with other parts of the CNS. Ascending pathways convey 
sensory information to higher centers, whereas descending path-
ways influence neurons in the spinal cord or brainstem. 

Medulla Oblongata
At the level of the foramen magnum, the spinal cord is continu-
ous with the most caudal part of the brain, the medulla oblon-
gata, commonly called the medulla (Fig. 1.3). The medulla 
consists of (1) neurons that perform functions associated with 
the medulla and (2) ascending (generally sensory) and descend-
ing (generally motor) tracts that pass through the medulla on 
their way from or to the spinal cord. Some of the neuronal cell 
bodies of the medulla are organized into nuclei associated with 
specific cranial nerves. The medulla contains the nuclei for the 
glossopharyngeal (cranial nerve IX), vagus (X), and hypoglossal 
(XII) nerves as well as portions of the nuclei for the trigemi-
nal (V) and vestibulocochlear (VIII) nerves; the nucleus of the 
accessory nerve (XI) is located in cervical levels of the spinal 
cord. It also contains important relay centers and nuclei that are 
essential to the regulation of respiration, heart rate, and various 
visceral functions. 

Pons and Cerebellum
The pons and cerebellum originate embryologically from the 
same segment of the developing neural tube. However, in the 
adult, the pons forms part of the brainstem (the other parts 
being the midbrain and medulla) and the cerebellum is a supra-
segmental structure because it is located posterior (dorsal) to the 
brainstem (Fig. 1.3).

Like the medulla, the pons contains many neuronal cell 
bodies, some of which are organized into cranial nerve nuclei, 

and it is traversed by ascending and descending tracts. The 
pons contains the nuclei of the abducens (VI) and facial (VII) 
nerves and portions of the nuclei for the trigeminal (V) and 
vestibulocochlear (VIII) nerves. The anterior (ventral) part 
of the pons contains large populations of neurons (pontine 
nuclei) that form a relay station between the cerebral cortex 
and cerebellum and descending motor fibers that travel to all 
spinal levels.

The cerebellum is connected with diverse regions of the CNS 
and is considered part of the motor system. It serves to coordi-
nate the activity of individual muscle groups to produce smooth, 
purposeful, synergistic movements. 

Midbrain
Rostrally, the pons is continuous with the midbrain (Fig. 1.3). 
This part of the brain is, quite literally, the link between the 
brainstem and the forebrain. Ascending or descending pathways 
to or from the forebrain must traverse the midbrain. The nuclei 
for the oculomotor (III) and trochlear (IV) cranial nerves as well 
as part of the trigeminal (V) complex are found in the midbrain. 
Other midbrain centers are concerned with visual and auditory 
reflex pathways, motor function, transmission of pain, and vis-
ceral functions. 

Thalamus
The forebrain consists of the cerebral hemispheres, large groups 
of neurons that comprise the basal nuclei, and the thalamus (Fig. 
1.3). We shall see later that the thalamus actually consists of sev-
eral regions—for example, the hypothalamus, subthalamus, epi-
thalamus, and dorsal thalamus. The thalamus is also commonly 
called the diencephalon, a term that reflects its embryologic 
origin.

The thalamus is rostral to the midbrain and almost completely 
surrounded by elements of the cerebral hemisphere. Individual 
parts of the thalamus can be seen in detail only when the brain is 
cut in coronal or axial planes.
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With the exception of olfaction (sense of smell), all sensory 
information that eventually reaches the cerebral cortex must syn-
apse in the thalamus. One function of the thalamus, therefore, 
is to receive sensory information of many sorts and to distribute 
it to the specific regions in the cerebral cortex that are special-
ized to decode it. Other areas of the thalamus receive input from 
pathways conveying information on, for example, position sense 
or the tension in a tendon or muscle. This input is relayed to 
areas of the cerebral cortex that function to generate smooth, 
purposeful movements.

Although it is small, the hypothalamus functions in sexual 
behavior, feeding, hormonal output of the pituitary gland, body 
temperature regulation, and a wide range of visceromotor func-
tions. Through descending connections, the hypothalamus influ-
ences visceral centers in the brainstem and spinal cord. 

Cerebral Hemispheres
The largest and most obvious parts of the human brain are the 
two cerebral hemispheres. Each hemisphere is composed of three 
major subdivisions. First, the cerebral cortex is a layer of neuro-
nal cell bodies about 0.5 cm thick that covers the entire surface 
of the hemisphere. This layer of cells is thrown into elevations 
or peaks called gyri (singular, gyrus) separated by valleys called 
sulci (singular, sulcus).

The second major part of the hemisphere is the subcortical 
white matter, which is made up of myelinated axons that carry 
information to or from the cerebral cortex. The largest and most 
organized part of the white matter is the internal capsule. This 
bundle contains fibers passing to and from the cerebral cortex, 
such as corticospinal and thalamocortical fibers.

The third major component of the hemisphere is a prominent 
group of neuronal cell bodies collectively called the basal nuclei. 
These prominent forebrain centers are involved in motor func-
tion. Parkinson disease, a neurologic disorder associated with 
the basal nuclei, is characterized by a progressive impairment of 
movements and in many cases eventual dementia.

The gyri and sulci that make up the cerebral cortex are 
named, and many are associated with particular functions. 
Some gyri receive sensory input from thalamic relay nuclei, 
whereas descending fibers from these gyri may influence cen-
ters in the brainstem or spinal cord. The cerebral cortex also 
includes association areas that are essential for analysis and cog-
nitive thought. 

FUNCTIONAL SYSTEMS AND REGIONS
A functional system is a set of neurons linked together to convey 
a particular block of information or to accomplish a particular 
task. In this respect, systems and pathways, in some cases, may 
be similar, and their meanings may frequently overlap.

Anatomic parts of the CNS, such as the medulla and pons, are 
commonly called regions. The study of their structure and func-
tion, called regional neurobiology, is the focus of the second 
section of this book. Systems and pathways, however, generally 
traverse more than one region. The system of neurons and axons 
that allows you to feel the edge of this page, for example, crosses 
every region of the nervous system between your fingers and the 
somatosensory cortex of the cerebral hemisphere. The study of 
functional systems, called systems neurobiology, is the focus of 
the third section of this text. It is important to remember that the 
functional characteristics of regions coexist with those of systems.

Let us consider an example of how the interrelation of systems 
and regions can be important clinically. The signals that influence 
movements of the hand originate in the cerebral cortex. Neurons 
in the hand area of the motor cortex send their axons to cervi-
cal levels of the spinal cord, where they influence spinal motor 
neurons that innervate the muscles of the upper extremity. These 
are called corticospinal fibers because their cell bodies are in the 
cerebral cortex (cortico-) and their axons end in the spinal cord 
(-spinal). These fibers pass through the subcortical white matter, 
the entire brainstem, and the upper levels of the cervical spinal 
cord. En route, they pass near nuclei and fiber tracts that are 
specific to that particular region (Fig. 1.4). In the midbrain, for 
example, they pass near fibers of the oculomotor nerve, which 
originate in the midbrain and control certain extraocular muscles. 
In the medulla, they pass near fibers that originate in the medulla 
and innervate the musculature of the tongue. An injury to the 
midbrain could therefore cause motor problems in the hand (sys-
tems damage) combined with partial paralysis of eye movement 
(regional damage). In similar fashion, an injury to the medulla 
could cause the same hand problem but now in association with 
partial paralysis of the tongue rather than of eye movements. 
Successful diagnosis of patients with neurologic disorders will 
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depend on, among other things, a good understanding of both 
regional and systems neurobiology. 

Localizing Signs and Localization
The example (Fig. 1.4) of corticospinal fibers that innervate 
spinal motor neurons serving the hand coupled with neuron cell 
bodies in the midbrain that innervate eye muscles via the ocu-
lomotor nerve also illustrates the concept of localizing signs. 
Brain injury that results in only a weakness or paralysis of the 
upper extremity generally localizes the lesion only to one cere-
bral hemisphere or perhaps to one side of the brainstem. The 
clinical examination does not tell us which region of the brain 
is injured (internal capsule, midbrain, pons, or medulla) or, for 
that matter, even whether the lesion is in the upper portions of 
the cervical spinal cord. However, if the paralysis of the upper 
extremity is coupled with a partial paralysis of eye movement, 
the lesion can be specifically localized to the midbrain. In this 
example, the lesion in the midbrain damages the fibers of the 
oculomotor nerve that are specific to this level, whereas the 
corticospinal fibers are injured as they traverse the midbrain 
(Fig. 1.4). In general, cranial nerve signs are more helpful than 
long tract signs in localizing the lesion; that is, they are better 
localizing signs.

Another general concept of localization states that certain 
combinations of neurologic deficits may indicate involvement 

of one of three general locations of the CNS. First, deficits 
(motor or sensory) located on the same side of the head and 
body frequently signify lesions in the cerebral hemisphere. 
Second, deficits on one side of the head and on the opposite 
side of the body generally indicate a lesion in the brainstem. 
Such deficits are called crossed (alternating, or alternate) 
deficits. Third, deficits of the body only usually suggest a 
lesion in the spinal cord. Although there are exceptions to 
these general rules, we shall see that they hold true in many 
clinical situations. 

CONCEPT OF AFFERENT AND EFFERENT
The terms afferent and efferent are used to describe a variety of 
structures in the human body, such as nerve fibers, small vessels, 
and lymphatics. Afferent refers to conduction (of an impulse on 
a nerve or fluid in a vessel) toward a structure; this is an incom-
ing bit of information. Efferent refers to conduction (of an 
impulse or fluid) away from a structure; this is an outgoing bit of 
information.

In this respect, the posterior root of the spinal nerve is 
afferent because it conducts sensory impulses toward the 
spinal cord, whereas the anterior root is efferent because it 
conducts motor impulses away from the spinal cord (Figs. 1.1 
and 1.2). This has given rise to the widely held but incorrect 
view that afferent nerve fibers are always sensory and efferent 
nerve fibers are always motor. Although this may be true for 
the restricted examples of spinal and cranial nerves, the terms 
afferent and efferent can also be used to designate bundles of 
fibers (axons) traveling toward or away from a specific nucleus 
(Fig. 1.5).

Whether a bundle of axons is afferent or efferent, in rela-
tion to a specific nucleus, depends on what reference point 
is selected to define the bundle and its relationships. For 
example, the neuron cell body in nucleus A in Fig. 1.5 gives 
rise to an axon that is an efferent of nucleus A (conducting 
away from), but at the same time, this axon is an afferent of 
nucleus B (coming toward). If nucleus B is chosen as the ref-
erence point, it would be described as receiving afferent input 
from nucleus A and sending efferent impulses to nucleus C 
(Fig. 1.5). The use of these terms is commonplace in describ-
ing connections within the nervous system. For example, as 
described in the previous section, corticospinal fibers are 
efferents of the cerebral cortex and, at the same time, affer-
ents to the spinal cord. 
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Fig. 1.4 An example of the relation of systems to regions. Fibers of the motor 
system that control hand movement descend from the motor cortex to the cer-
vical spinal cord. In the cord, these fibers influence motor neurons that control 
hand and forearm muscles. Injury at any point along the way can damage fibers 
of the system and structures specific to the region. For example, injury to the 
midbrain could damage both fibers to the hand and fibers to the eye muscles, 
whereas injury to the medulla could damage both fibers to the hand and fibers 
to the tongue musculature. In cases of damage to a long tract (motor or sensory) 
and to a cranial nerve (root or nucleus), the cranial nerve deficits are usually the 
best localizing signs.
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Fig. 1.5 Diagrammatic representation of the use of the terms afferent and effer-
ent to describe information conducted toward or away from a particular refer-
ence point.
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POSTERIOR (DORSAL), ANTERIOR (VENTRAL), 
AND OTHER DIRECTIONS IN THE CENTRAL 
NERVOUS SYSTEM
By convention, directions in the human CNS—such as posterior 
(dorsal) and anterior (ventral), medial (toward or at the mid-
line) and lateral (away from the midline), rostral (or rostrad, a 
direction toward the nose), and caudal (or caudad, a direction 
toward the tail)—are absolute with respect to the central axis 
of the brain and spinal cord. In a similar manner, the anatomic 
orientation of the body in space is related to its central axis. For 
example, if the patient is lying on his or her stomach, the pos-
terior surface of the trunk is up and its anterior surface is down 
(Fig. 1.6). If the patient rolls over, the back remains the posterior 
surface of the patient’s body even though it now faces down.

As shown in Fig. 1.7, the spinal cord and the brainstem 
(medulla, pons, and midbrain) form a nearly straight line that is 
roughly parallel with the superoinferior axis of the body. There-
fore anatomic directions in these regions of the CNS coincide 
roughly with those of the body as a whole.

During embryonic development, the forebrain rotates (at the 
cephalic flexure) relative to the midbrain until its rostrocau-
dal axis corresponds to a line drawn from the forehead to the 
occiput (from the frontal to the occipital poles of the cerebral 
hemispheres). This rotation creates a sharp angle in the long axis 
of the CNS at the midbrain-thalamus junction. Consequently, 
the long axis of the CNS bends at the midbrain-thalamus junc-
tion, and the directions posterior and anterior follow accordingly 
(Fig. 1.7).

In the cerebral hemisphere (forebrain), posterior (dorsal) 
is toward the top of the brain, anterior (ventral) is toward the 
base of the brain, rostral is toward the frontal pole, and caudal 
is toward the occipital pole. Anatomic directions in the forebrain 
relate to its long axis; therefore the posterior side of the forebrain 
structures faces the vertex of the head, and the anterior aspect of 
the forebrain faces the base of the skull (Fig. 1.7). Posterior and 
dorsal and anterior and ventral are considered synonymous and 
are commonly and frequently used interchangeably.

These directional terms are extremely valuable in the descrip-
tion of the relative position of a structure within the brain or 
spinal cord or the relative positions of two structures to each 
other. For example, the midbrain is rostral to the pons but cau-
dal to the thalamus (Fig. 1.3). The midbrain is selected as the 
reference point and adjacent structures are described in relation 
to it. Also, directional terms, such as posterior and lateral, can 
be combined to describe a structure that occupies an intermedi-
ate position. For example, the nuclei in the spinal cord transmit-
ting sensory information can be described as posterolateral to the 
central canal. 

SYMPTOM OR SIGN?
These terms are used literally every day in countless clinical set-
tings and serve to form an essential and important part of the 
physician-patient relationship—that is, the communication of 

information that will result in proper and successful medical 
treatment. It is useful to establish what constitutes a symptom 
versus a sign at this point. These concepts and definitions are 
revisited throughout subsequent chapters.

Symptom
A symptom is a departure from any normal state of structure 
or function that is experienced by the patient. In other words, 
something is wrong and the patient knows it. Symptoms may 
develop slowly, almost imperceptibly, as in a slow-growing tumor 
or as part of the aging process, or appear suddenly, as in hemor-
rhage or trauma. A symptom such as pain may be clear to the 
patient (a symptom) but difficult for the attending physician to 
evaluate. A symptom is a subjective indicator of a presumably 
abnormal process. 

Sign
A sign is a departure from any normal state of structure or func-
tion that is discovered, observed, and evaluated by a health care 
professional on examination of the patient. In this situation, the 
clinical problem (be it great or small) is seen and can be evaluated 
by the physician. It is possible that a patient may have signs of 
a disease process, seen during the examination, that he or she is 
unaware of; the patient has signs but no symptoms. A sign is an 
objective indicator of a presumably abnormal process. 

CLINICAL IMAGES OF THE BRAIN AND SKULL
The most routinely used methods to image the brain and skull 
are computed tomography (CT) and magnetic resonance imaging 
(MRI) (Fig. 1.8). As we shall see, CT is especially useful in visu-
alizing the skull and the brain in the early stages of subarachnoid 
hemorrhage. On the other hand, MRI, by use of T1-weighted or 
T2-weighted techniques, shows brain anatomy in elegant detail, 
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cisternal relationships, cranial nerves, and a wide variety of clini-
cal abnormalities.

Magnetic resonance angiography (MRA) visualizes arteries 
and veins by measuring the velocity of flow in these structures 
(Fig. 1.9A). The resultant images show detail of vascular struc-
tures that, in some situations, may be superior to that seen on 
angiograms. Arterial structures may be selectively imaged, or 
combinations of arterial and venous structures or only venous 
structures can be visualized. Clinicians refer to these images of 
venous structures as MRVs (magnetic resonance venograms).

Computed tomography angiography (CTA, Fig. 1.9B) visual-
izes arteries with use of an injectable radiopaque substance (such 
as ioversol, Optiray 300) that can be infused through superficial 
veins on the upper extremity. When x-rays are passed through 
the patient, the infused vessels appear clearly more white than 
the surrounding brain (they are hyperdense). As with MRA, arte-
rial and venous structures may be imaged in great detail, and in 
certain clinical situations, CTA offers advantages over standard 
angiography.

Computed Tomography
CT is an x-ray imaging technique that measures the effects that 
tissue density and the various types of atoms in the tissue have 
on x-rays passing through that tissue (Table 1.1; see also Fig. 
1.8A, B). Changes in the emerging x-ray beam are measured by 
detectors.

The higher the atomic number, the greater the ability of 
the atom to attenuate, or stop, x-rays. These attenuation 
transmission intensities emerging from the tissue are trans-
formed by a computer into numbers that represent values 
found in all the points located in the volume of the tissue 
slice. These values are expressed in Hounsfield units (HUs). 
HU values, also known as CT numbers, are used in an arbi-
trary scale in which bone is specified as +1000 (and is 
very white; Fig. 1.8A, B), water as zero, and air as −1000 
(and is very black). With use of this scale, the HU values, 
or CT numbers, represent specific shades of gray for each 
of the various points located in the slice (Table 1.1; see also  
Fig. 1.8A, B).
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Fig. 1.8 CT scans (A and B) of a 2-month-old infant who was a victim of the shaken baby syndrome and 
MR images (C and D) of a normal 20-year-old woman. On the CT study, note that brain detail is less than 
on the MR images but that the presence of blood (A, in the interhemispheric fissure between the hemi-
sphere and in the brain substance) is obvious. In the same patient, the bone window (B) clearly illustrates 
the outline of the skull but also clearly shows skull fractures (arrows in A and B). In this infant, the ven-
tricles on the left are largely compressed, and the gyri have largely disappeared because of pressure from 
bleeding into the hemisphere. This is evidence of increased intracranial pressure, potential compromised 
brain function, and possible brain herniation. The pressure results in the effacement of the sulci and gyri 
on the left side. In the T2-weighted image (C), cerebrospinal fluid is white, internal brain structures are 
seen in excellent detail, and vessels are obvious. In the T1-weighted image (D), cerebrospinal fluid is dark 
and internal structures of the brain are somewhat less obvious.
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Present-generation CT scanners, known as helical (spiral) 
scanners, image a continuous spiral slice through a preselected 
body region very quickly. Computer software converts this 
information into contiguous slices of a chosen thickness. This 
technique eliminates movement artifacts and enables recon-
struction of soft tissues, bone, or contrast medium–enhanced 
vessels into three-dimensional images that can be manipulated 
in any plane.

CT is a fast and accurate method of detecting recent sub-
arachnoid hemorrhage (Table 1.2; see also Fig. 1.8A). An acute 
subarachnoid hemorrhage in a noncontrast CT scan appears 
hyperdense (white) in contrast to the subarachnoid spaces and 
cisterns, which normally are hypodense (dark).

Enhanced CT is a technique using an iodinated contrast mate-
rial injected intravenously followed by CT examination. Iodine 
has a large atomic number and attenuates x-rays. As a result, 

vasculature is visualized as hyperdense (white) structures. This 
contrast material may also enhance neoplasms or areas of inflam-
mation because the contrast agent leaks from the vessels into 
the cellular spaces owing to a breakdown of the blood-brain bar-
rier. Imaged in this way, the tumor, inflamed meninges, or brain 
parenchyma will show varying degrees of enhancement or hyper-
density (varying degrees of whiteness). 

Magnetic Resonance Imaging
Protons (hydrogen) constitute a large proportion of body tissue. 
These atoms have a nucleus and a shell of electrons and a north 
and a south pole, and they spin around an angulated axis like 
small planets. As the electrons move with the spinning atom, they 
induce an electrical current that creates a magnetic field. These 
atoms function somewhat like little spinning bar magnets. They 
are aligned randomly because of the changing magnetic effects on 
each other. When these protons are exposed to a powerful mag-
net, they stop pointing randomly and align themselves parallel 
to the external magnetic field but at different energy levels. The 
stronger the external magnetic field, the faster the frequency of 
the spin at that angle. When undergoing an MRI examination, the 
patient becomes a magnet, with all the protons aligning along the 
external magnetic field and spinning at an angle with a certain 
frequency.

A radio wave is an electromagnetic wave. When a radio wave is 
sent as a short burst into the magnet containing the patient, it is 
known as a radiofrequency (RF) pulse. This RF pulse can vary in 
frequency strength. Only when the frequency strength of the RF 
pulse matches the frequency strength of the angulated spinning 
proton will the proton absorb energy from the radio wave. This 
phenomenon is called resonance and is the “resonance” in “mag-
netic resonance imaging.” This results in a twofold effect: it can-
cels out the magnetic effects of certain protons, and it raises the 
energy levels and magnetic effects of another group of protons. 
When the radio wave is turned off, the canceled-out protons grad-
ually return to their original state and strength of magnetization, 
which is called relaxation and is described by a time constant 
known as T1 (Fig. 1.8D). The protons that aligned themselves 
at a higher energy level and magnetization also start to lose their 
energy (relaxation), and this time constant is known as T2 (Fig. 
1.8C). The T1 relaxation time is longer than the T2 relaxation 
time. The “de-excited” or relaxed protons release their energy 
as an “echo” of radio waves. A receiver coil (antenna) absorbs 
this information, and a computer determines the characteristics 
of the emitted radio waves from all the specific points in that 
section of the body. The MR image is then constructed and trans-
ferred to a computer monitor or recorded on film. T1-weighted 
or T2-weighted images can be obtained by use of varying times to 
receive the echoes (TE).

Superior cerebellar 
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Vertebral arteries

Basilar artery

Posterior cerebral artery 
(P1)

B

Vertebral artery
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Carotid artery

Posterior cerebral artery
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Anterior communicating
artery

Anterior cerebral arteries

A

Fig. 1.9 A, MR angiography (MRA) of portions of the internal carotid artery and 
vertebrobasilar system. B, CT angiography (CTA) of a corresponding view of the 
vertebrobasilar system. Note that in the CTA image, the initial segment of the 
posterior cerebral artery (P1) is constricted in this patient.

Table 1.1 Appearance of Tissues Imaged by CT and MRI

MODALITY

Tissue

BONE CSF GRAY MATTER
WHITE 
MATTER FAT AIR MUSCLE

CT* ↑↑↑ ↓↓ ↓ ↓↓ ↓ ↓↓↓ ↑↑

MRI/T1† ↓↓↓ ↓↓↓ ↓↓ ↓ ↑↑ ↓↓↓ ↓↓

MRI/T2† ↓↓↓ ↑↑↑ ↓↓ ↓↓↓ ↑ ↓↓↓ ↓↓–↓↓↓

*Measures tissue density.
†Measures tissue signal.
↑↑↑–↑ represents very white to light gray: 

↓–↓↓↓ represents light gray to very black: 
CSF, cerebrospinal fluid; CT, computed tomography; MRI, magnetic resonance imaging.
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Conventional spin-echo sequences generate images that may 
be T1-weighted or T2-weighted according to the time interval 
in milliseconds between each exciting radio wave. This is called 
repetition time (TR). The time interval, in milliseconds, required 
to collect these radio waves from the relaxing protons is called 
echo time (TE). With spin-echo pulse sequences, the shorter 
the TR and TE, the more the image is considered T1-weighted. 
The longer the TR and TE, the more the image is considered 
T2-weighted.

The contrast material used to enhance tumors and blood vessels 
is the paramagnetic rare earth gadolinium. It is used in solution 
for intravenous injection. The gadolinium causes an increase in 
signal by shortening the relaxation time for T1. Owing to a break-
down of the blood-brain barrier, intravascular gadolinium enters 
the pericellular spaces, where it increases the relaxation state 
of water protons and generates a bright signal on T1-weighted 
images (Table 1.1).

Acute subarachnoid hemorrhage is poorly imaged by MRI on 
T1-weighted images but well imaged by CT (Table 1.2). Some 
MRI sequences are sensitive for detection of acute bleeding, but 
other factors may limit this method of examination. Special MRI 
techniques can also determine if a brain infarct or ischemia is 
acute (about 1 to 3 hours old) or subacute (about 4 hours old 
or more). Contraindications to MRI are cardiac pacemakers, 
cochlear implants, implantable cardioverter-defibrillators, ferro-
magnetic foreign bodies in the eye, and certain aneurysm clips. 
Large metallic implants or ferromagnetic foreign bodies in the 
body may heat up. The general appearance of the brain and adja-
cent structures in health and disease on MRI and CT is summa-
rized in Tables 1.1 and 1.2. 

Image Density and Intensity
As described before, a CT scan is produced when the patient is 
placed between a source of x-rays and detectors; the degree to 
which the tissues of the body attenuate these x-rays is a measure 
of its density. The various textures of gray seen in CT are a repre-
sentation of this relative tissue density. Hyperdense, hypodense, 
and isodense are terms used in the clinical setting to specify vari-
ous abnormal states in CT. Bone in CT greatly attenuates x-rays, 
has a high CT number, and appears white. Acute subarachnoid 
blood in CT is hyperdense; its appearance is shifted toward that 

of bone and is clearly whiter than the surrounding brain (Fig. 
1.10A). On the other hand, air in CT poorly attenuates x-rays, 
has a low CT number, and appears black. An area of ischemia in 
CT is hypodense; its appearance is shifted toward that of air (or 
cerebrospinal fluid) and is darker than the surrounding brain (Fig. 
1.10B, arrows). When the lesion, or tissue damage, appears basi-
cally the same as the surrounding brain, it is specified as isodense 
(Fig. 1.10C, arrow).

Also described before, an MR image is produced when the 
patient is exposed to a magnetic field, and the effects of this 
field on protons within the body are measured. Under the 
influence of an external magnet, these protons align them-
selves parallel to the source. When the external source is 
removed, the protons “relax”; those that relax more slowly 
from a lower energy level produce a T1-weighted image, 
whereas those that relax more rapidly from a higher energy 
level produce a T2-weighted image. Hyperintense, hypoin-
tense, and isointense specify various abnormal states in 
MRI in the clinical setting. In the normal patient, fat (T1) 
and cerebrospinal fluid (T2) appear distinctly more white. A 
lesion that is hyperintense in MRI appears whiter than the 
surrounding brain—for example, a meningioma and the sur-
rounding edema (Fig. 1.10D). An example of a tumor that is 
hypointense is a medulloblastoma in the posterior fossa; this 
lesion appears darker than the surrounding brain (Fig. 1.10E, 
arrows). In between these extremes are lesions that are isoin-
tense; these lesions have basically the same appearance as the 
surrounding brain (Fig. 1.10F, G, between arrows). 

Imaging of the Brain and Skull
Patients lie in the supine (face up) position for imaging of the 
brain or spinal cord and the surrounding bony structures (Fig. 
1.11). In this position, the posterior (dorsal) surface of the brain-
stem and spinal cord and the caudal aspect (occipital pole) of the 
cerebral hemispheres face down. The anterior (ventral) surface 
of the brainstem and spinal cord and the frontal pole are face up 
(Fig. 1.11).

Images of the brain are commonly made in coronal, axial 
(horizontal), and sagittal planes. To illustrate the basic orienta-
tion of the CNS in situ, we shall look at examples of images 
in all three of these planes as they appear in the clinical set-
ting (Figs. 1.11 and 1.12). Coronal imaging planes are oriented 
perpendicular to the rostrocaudal axis of the forebrain but are 
nearly parallel to the rostrocaudal axis of the brainstem and 
spinal cord. Therefore a coronal image obtained at a relatively 
rostral level of the cerebral hemispheres (Fig. 1.11A) will show 
only forebrain structures, and these structures will appear in 
cross section (perpendicular to their long axis). As the plane 
of imaging is moved caudally, brainstem structures enter the 
picture (Fig. 1.11B), but the brainstem is cut nearly parallel to 
its rostrocaudal axis.

Axial images, in contrast, are oriented parallel to the rostrocau-
dal axis of the cerebral hemispheres but nearly perpendicular to 
the long axis of the brainstem and spinal cord. Consequently, an 
axial image obtained midway through the cerebral hemispheres 
(Fig. 1.11D) will show only forebrain structures, with the rostral 
(frontal) end of the forebrain at the top of the image and the 
caudal (occipital) end at the bottom. As the plane of imaging is 
moved farther anteriorly (ventrally) relative to the forebrain, the 
brainstem appears (Fig. 1.11C). The brainstem, however, is cut 
nearly in cross section and is oriented with the anterior (ventral) 
surface “up” (toward the top of the image) and the posterior 
(dorsal) surface “down.”

Images made in the sagittal plane are at, or parallel to, the 
midsagittal plane of the brain or spinal cord. This is the plane 
running through the middle (midline) of the head from rostral 
to caudal (along the frontal to occipital axis) or along the midline 

Table 1.2 Differences in CT Density and MRI Signals in 
Representative Clinical Examples

MRI

CLINICAL 
PROBLEM CT* T1† T2†

Acute SAH ↑↑↑ 0 0

Subacute SAH ↑↑ 0–↑ 0

Tumor 0 0 ↑–↑↑

Enhanced tumor ↑↑↑ ↑↑↑ ↑↑↑

Acute infarct 0 0–↑ ↑–↑↑

Subacute infarct 0–↑ 0–↓↓ ↑↑–↑↑↑

Acute ischemia 0 0–↓ ↑–↑↑

Subacute ischemia 0–↑ 0–↓↓ ↑↑–↑↑↑

Edema 0–↑ 0–↓ ↑–↑↑

*Measures tissue density.
†Measures tissue signal.

↑↑↑–↑ represents very white to light gray: 

↓–↓↓↓↓ represents light gray to very black: 
0 represents no change from normal.
CT, computed tomography; MRI, magnetic resonance imaging; SAH, subarachnoid 
hemorrhage.
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Fig. 1.10 Examples of density and intensity as seen in clinical images. In CT, subarachnoid blood is 
hyperdense (A), an area of infarct is hypodense (B, arrows), and a lesion causing herniation that appears 
the same texture as the brain is isodense (C, at arrow). In MRI, the edema surrounding a meningioma 
is hyperintense (D, T2-weighted), a nonenhanced medulloblastoma is hypointense (E, T1-weighted, at 
arrows), and a nonenhanced pituitary tumor that appears like the brain is isointense (F, T1-weighted; G, 
T2-weighted, between arrows).
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Fig. 1.11 The relation of imaging planes to the brain. The diagram shows the usual orientation of a patient 
in an MRI machine and the planes of the four scans (T1-weighted images) that are shown. A and B, Coro-
nal scans. C and D, Axial scans.
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Fig. 1.12 MRI of the brain in the median sagittal plane (A) and in the sagittal 
plane but off the midline (B). The frontal lobe is to the left, and the occipital lobe 
is to the right. Other directions within the brain in this plane are appreciated by 
a comparison with Fig. 1.7.

of the spinal cord in a rostrocaudal axis. Sagittal images of the 
brain, be they at the midline (Fig. 1.12A) or off the midline (Fig. 
1.12B), are oriented such that the frontal area is to the left and 
the occipital area is to the right. The various directions within 
the brain can be appreciated with a comparison of the midsagittal 
MR image with a drawing in the comparable orientation (com-
pare Fig. 1.7A with Fig. 1.12).

A point also needs to be made about how the clinician views 
CT or MRI scans. Coronal scans are viewed as though the cli-
nician is facing the patient, whereas axial scans are viewed as 
though the clinician is standing at the patient’s feet looking up 
toward the patient’s head from below as the patient lies supine 
in the machine. Axial scans, in other words, show the cerebral 
hemispheres from anterior (the more inferior portion of the 
hemisphere) to posterior (the more superior portion of the hemi-
sphere), with the patient’s frontal area and orbits at the top of 
the image and the occiput at the bottom. In both coronal and 
axial views, the patient’s left side is to the observer’s right when 
viewing MRI and CT images. This is an absolutely essential con-
cept to remember as one examines MRI and CT scans and makes 
diagnostic judgments. 
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The number of cells in the adult human central nervous system 
(CNS) has been estimated at 100 billion. All arise from a rela-
tively small population of precursors, yet a diversity of cell types 
is seen in the adult. Their most basic classification is as neurons 
and glia (glial cells).

OVERVIEW
Nerve cells (neurons) manipulate information. Doing so 
involves changes in the bioelectrical or biochemical proper-
ties of the cell, and these changes require a vast expenditure of 
energy for each cell. The nervous system, compared with other 

organs, is the greatest consumer of oxygen and glucose. These 
energy requirements arise directly from the metabolic demand 
placed on cells, which have large surface areas and concentrate 
biomolecules and ions against an energy gradient. Along with 
maintaining its metabolism, each neuron (1) receives informa-
tion from either the environment or other nerve cells, (2) pro-
cesses information, and (3) sends information to other neurons 
or effector tissues.

Glial cells control the CNS environment within which neurons 
function. They shuttle nutritive molecules from blood vessels to 
neurons, remove waste products, and maintain the electrochemi-
cal surroundings of neurons. Glia also communicate directly with 
nearby neurons through glial receptors and release mechanisms 
for certain neurotransmitters. During nervous system devel-
opment, glia guide neuronal migration and promote synapse 
formation.

For neurons to carry out the three tasks of receiving, pro-
cessing, and sending information, they must have specialized 
structures that contribute to each of these functions. The main 
components of a neuron are shown in Fig. 2.1. In addition, spe-
cialized mechanisms and structures are required to solve some 
special problems specific to neuron function. Two such problems 
are immediately apparent. First, the mix of ions inside neurons 
is different from the mix outside the cell. Maintaining this dif-
ference requires extraordinary amounts of energy because ions 
must be pumped against electrical and diffusion gradients. The 
large surface area of neurons compounds this problem. Second, 
those neurons that send information over long distances must 
have a way to supply these distant sites with macromolecules and 
energy. For the cell biology of neurons to be fully appreciated, it 
is important to see the biochemical, anatomic, and physiologic 
properties of neurons as part of an integrated whole, the machin-
ery that permits the neuron to do its specialized functions. In the 
following sections, we examine how specializations in neuronal 
architecture and chemistry contribute to meeting these special 
demands. 

STRUCTURE OF NEURONS
Although the architecture of neurons is especially diverse, our 
focus will be on the characteristic features of an archetypical 
neuron bounded by a continuous plasma membrane and consist-
ing of a cell body, or soma, from which dendrites and an axon 
arise (Figs. 2.1 and 2.2). The cell body contains the nucleus sur-
rounded by a mass of cytoplasm that includes the organelles nec-
essary for protein synthesis and metabolic maintenance. Most 
neurons (multipolar neurons) have several dendrites extending 
from the cell body (Figs. 2.1 and 2.2). These are usually rela-
tively short processes that taper from a thick base and, in doing 
so, branch extensively. In contrast, there is a single axon, which 
is a relatively long process (extending from a few millimeters to 
more than a meter) with a uniform diameter. The axon has few 
if any branches along most of its length, branching extensively 
only near the distal end (the terminal arbor) (Figs. 2.1 and 2.2). 
In most neurons, information normally flows from the dendrites 
to the cell body to the axon and its terminals, then to the next 
neuron or an effector tissue such as muscle. These components 
of the neuron are described in the order in which information is 
processed.
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Dendrites
Dendrites receive signals either from other neurons through axonal 
contacts (synapses) formed on their surfaces (Figs. 2.1 and 2.3D). 
Dendrites usually branch extensively in the vicinity of the cell body, 
giving the appearance of a tree or bush (Figs. 2.1 to 2.3A). Small bud-
like extensions (dendritic spines, Fig. 2.3C) of a variety of shapes are 
frequently seen on the more distal dendrites (Figs. 2.1 and 2.3B, C). 
These are sites of synaptic contacts (discussed later). The branches 
of dendrites increase in thickness as they coalesce and approach the 
cell body.

Observed in thin distal dendrites are sparse numbers of micro-
tubules and neurofilaments along with small triangular-shaped 
clusters of agranular reticulum and ribosomes at some branch 
points. These structures are believed to be sites of protein synthe-
sis and associated with memory formation. Often the distinction 

between the smallest dendrites and axons is difficult to discern. 
However, as dendrites begin to coalesce and become thicker, the 
number and type of organelles present increases until the cyto-
plasm of proximal (primary) dendrites appears no different from 
that observed in the soma (Figs. 2.3D, E and 2.4). Numerous 
types of endoplasmic reticulum, vesicles, mitochondria, micro-
tubules, neurofilaments, Nissl bodies, polyribosomes, and free 
ribosomes can be seen in the primary dendrites. 

Cell Body
The cell body of a neuron is also called the soma (plural, somata) 
or perikaryon (plural, perikarya) (Figs. 2.2 and 2.4). The peri-
karyon is the metabolic center of the nerve cell. Abundant mito-
chondria reflect the high energy consumption of the cell. Active 
protein synthesis is indicated by the large size of the nucleus and 
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Fig. 2.1 Diagrammatic representation of a typical multipolar neuron. Dendrites, with their variety of 
spines (top inset), branch in the immediate vicinity of the cell body, whereas the single axon, with its occa-
sional recurrent collaterals, may travel great distances to the next neuron. The cell body contains the organ-
elles essential for neuronal function. Microtubules (middle and bottom insets) are important structures for 
the transport of substances within the axon. The axon ends as a terminal arbor that forms many terminal 
boutons (bottom inset), each containing the necessary machinery for synaptic transmission.
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its content of diffuse chromatin (euchromatin) and at least one 
prominent nucleolus (the site of ribosomal RNA synthesis). In 
the cytoplasm, ribosomes are abundant, and the rough endoplas-
mic reticulum (rER) and Golgi complex are extensive (Fig. 2.1). 
The rER is basophilic (binds basic dyes) as a result of the large 
amount of ribosomal RNA attached to the endoplasmic mem-
brane. These extensive, stacked layers of rER are seen as patches 
of basophilic staining (called Nissl substance) in histologic prepa-
rations of nerve cells.

Neurons are classified into three general types on the basis of 
the shape of the cell body and the pattern of processes emerg-
ing from it. These types are the multipolar, pseudounipolar, and 
bipolar cells (Table 2.1; see also Fig. 2.2).

The cell bodies of multipolar neurons vary widely in shape, 
so their profiles in tissue sections may appear fusiform, flask 
shaped, triangular, polygonal, or stellate (Fig. 2.2A-C). Variations 

of a stellate polygon are most common. This shape results from 
the presence of multiple, tapering dendrites that emerge from 
the soma. Typically the cell body also emits a single axon that 
generally appears thin relative to the cell’s dendrites. More than 
99% of all neurons are multipolar neurons, and the different 
kinds of these have characteristic patterns of processes, some of 
which are listed in Table 2.1.

The pseudounipolar (or unipolar) neuron has a spherical 
cell body with a centrally placed (concentric) nucleus. The cell 
body emits a single process that courses only a short distance 
before bifurcating into a long peripheral branch and a long cen-
tral branch (Fig. 2.2D). The peripheral branch courses as part of 
a peripheral nerve to convey sensory information from a somatic 
or visceral structure, such as the skin, skeletal muscle, or wall of 
intestine. The distal end of the peripheral process is dendrite-
like in the sense that its terminal branches receive information 
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Fig. 2.2 Examples of various types of neurons showing the dendrites, somata, and axons of multipolar 
cells from the cerebellar cortex (A) and from the cerebral cortex (B and C). Compare these with a pseu-
dounipolar cell of the posterior root ganglion (D) and with bipolar cells from the retina (E) and olfactory 
epithelium (F).
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either by functioning as sensory receptors or by contacting 
other structures that function as receptors. The central branch 
courses as part of a nerve root to convey the sensory information 
to the CNS. In effect, the distal and central processes function 
together as a single axon. The cell bodies of pseudounipolar cells 
are found primarily in the sensory ganglia of cranial and spinal 
nerves.

Bipolar neurons have a round or oval perikaryon, with a single 
process emanating from each end of the cell body (Fig. 2.2E, 
F). They are commonly found in structures associated with the 
special senses. In the retina, bipolar cells are interposed between 

receptor cells and the neurons that send long axons from the 
retina to the thalamus (output cells). In the olfactory system, 
they function as both the receptors and the output neurons, with 
their axons projecting to the olfactory bulb; in the vestibular and 
auditory systems, they are the output cells that send information 
to the brainstem.

Unless special staining methods are used, the cell body of a 
neuron has the appearance of being the entire cell when it is 
viewed in histologic sections. However, the volume of the cell 
body of a neuron constitutes only a small fraction, often less than 
1%, of the volume of the axon and dendrites even though the cell 
body synthesizes and continually replaces all structural molecules 
of these processes. 

Axons and Axon Terminals
The axon arises from the cell body at a small elevation called 
the axon hillock. The proximal part of the axon, adjacent to the 
axon hillock, is the initial segment. The cytoplasm of the axon 
(axoplasm) contains dense bundles of microtubules and neuro-
filaments (Figs. 2.1 and 2.5A, B). These function as structural 
elements, and the microtubules also play key roles in the trans-
port of metabolites and organelles along the axon. Axons are typi-
cally devoid of ribosomes, a feature that distinguishes them from 
dendrites at the ultrastructural level.

In contrast to dendrites, axons may extend for long distances 
before branching and terminating. An example is the axon of a 
corticospinal tract neuron with a cell body in the motor cortex 
and an axon that reaches the caudal portion of the spinal cord. 
The axon of such a neuron accounts for approximately 99.8% 
of the total volume of the neuron. The surface area of an axon 
can be several thousand times the surface area of the parent cell 
body. Axons are sometimes referred to as nerve fibers, although 
strictly speaking, a nerve fiber includes both the axon and a 
sheath that is provided by support cells (described in a subse-
quent section).

Table 2.1 A Few of the Neuronal Types Found in the 
Nervous System

TYPE OF NEURON LOCATION OF CELL BODIES

Pseudounipolar Posterior root or cranial nerve ganglion

Bipolar Retina
Olfactory epithelium
Vestibular ganglion
Auditory (spiral) ganglion

Multipolar

Stellate (star shaped) Many areas of CNS

Fusiform (spindle shaped) Many areas of CNS

Pyriform (pear shaped) Many areas of CNS

Pyramidal Hippocampus; layers II, III, V, and VI  
of cerebral cortex

Purkinje Cerebellar cortex

Mitral Olfactory bulb

Chandelier Visual areas of cerebral cortex

Granule Cerebral and cerebellar cortex

Amacrine (axonless) Retina

CNS, central nervous system.
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Fig. 2.5 Elements of axon structure. Ultrastructural features of a small myelinated axon in a cross section 
of a peripheral nerve (A) and a longitudinal view at a node of Ranvier of a myelinated axon in the central 
nervous system (B). Drawing of the complete terminal arbor of an axon in the thalamus reconstructed 
from serial sections (C).
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Axons in the CNS often end in fine branches known as termi-
nal arbors (Fig. 2.5C). In most neurons, each axon terminal is 
capped with small terminal boutons (boutons terminaux, termi-
nal buttons) (Figs. 2.1 and 2.3C, E). These correspond to func-
tional points of contact (synapses) between nerve cells. In some 
cells, boutons are found along the length of the axon, where they 
are called boutons en passant. Other axons contain swellings, or 
varicosities, that are not button-like but still can represent points 
of cell-to-cell information transfer.

The site at which an axon terminal communicates with a sec-
ond neuron, or with an effector tissue, is called a synapse (from 
the Greek word meaning “to clasp”). In general, the synapse can 
be defined as a contact between part of one neuron (usually its 
axon) and the dendrites, cell body, or axon of a second neuron. 
The contact can also be made with an effector cell such as a skel-
etal muscle fiber. Synapses are considered later in this chapter in 
the section Neurons as Information Transmitters. 

Axonal Transport
Nerve cells have an elaborate transport system that moves 
organelles and macromolecules between the cell body and the 
axon and its terminals. Transport in the axon occurs in both 
directions (Table 2.2; Fig. 2.6). Axonal transport from the cell 
body toward the terminals is called anterograde or orthograde; 
transport from the terminals toward the cell body is called 
retrograde.

Anterograde axonal transport is classified into fast and slow 
components. Fast transport, at speeds of up to 400 mm/day, 
is based on the action of a protein called kinesin. Kinesin, an 
adenosine triphosphatase (ATPase), moves macromolecule-con-
taining vesicles and mitochondria along microtubules in much 
the same manner as a small insect crawling along a straw. Slow 
transport carries important structural and metabolic components 
from the cell body to axon terminals; its mechanism is less well 
understood.

Retrograde axonal transport allows the neuron to respond to 
molecules, for example, growth factors, that are taken up near 
the axon terminal by either pinocytosis or receptor-mediated 
endocytosis. In addition, this form of transport functions in the 
continual recycling of components of the axon terminal. Retro-
grade transport along axonal microtubules is driven by the pro-
tein dynein rather than by kinesin.

Axonal transport is important in the pathogenesis of some 
human neurologic diseases. The rabies virus replicates in muscle 
tissue at the site of a bite by a rabid animal and is then trans-
ported in a retrograde direction to the cell bodies of neurons 
innervating the muscle. The neurons produce and shed copies 
of the rabies virus, which in turn are taken up by the terminals 
of adjacent cells. In this way, the infection becomes distributed 
throughout the CNS, causing the behavioral changes associated 
with this disease. From the CNS, the virus travels to the sali-
vary glands by means of anterograde axonal transport in neurons 
innervating these glands. The infected salivary glands, in turn, 
shed the virus in the saliva.

The toxin produced by the bacterium Clostridium tetani is also 
transported in a retrograde direction in nerve cells whose axons 

terminate at the site of infection. Tetanus toxin is released from 
the nerve cell body and taken up by the terminals of neighboring 
neurons. However, unlike the rabies virus, which is replicated in 
the cell body, the tetanus toxin is diluted as it passes from cell 
to cell. In spite of this dilution effect, patients infected with C. 
tetani may have a range of neurologic deficits. 

Axonal Transport as a Research Tool
The ability of neurons to transport intracellular materials is 
exploited in investigations of neuronal connections. For example, 
when the enzyme horseradish peroxidase (HRP) or a fluores-
cent substance is injected into regions containing axon terminals, 
it is taken up by these processes and transported in a retrograde 
direction to the cell body. After histologic preparation, the cell 
bodies containing these retrograde tracers can be visualized. The 
presence of the label in a cell body indicates that the neuron has 
axon terminals at the site of injection.

Tracer studies can also exploit the anterograde transport sys-
tem of neurons. For example, if radioactively labeled amino 
acids are injected into a group of neuronal cell bodies, they 
will be incorporated into neuronal proteins and transported 
in an anterograde direction. The axons containing the labeled 

Table 2.2 Characteristics of Axonal Transport

DIRECTION OF TRANSPORT SPEED OF TRANSPORT PROPOSED MECHANISM SUBSTANCES CARRIED

Anterograde Fast (100-400 mm/day) Kinesin, microtubules
Neurotransmitters in vesicles, 

mitochondria

Proteins in vesicles

Slow (∼1 mm/day) Unknown Cytoskeletal protein components (actin, myosin, tubulin)
Neurotransmitter-related cytosolic enzymes

Retrograde Fast (50-250 mm/day) Dynein, microtubules Macromolecules in vesicles, “old” mitochondria
Pinocytotic vesicles from axon terminal

Microtubules

Anterograde
(kinesin

mediated)

Synaptic vesicle
Endocytotic

vesicle

Retrograde
(dynein

mediated)

Fig. 2.6 Anterograde and retrograde axonal transport.
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