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Interventional cardiology is a very exciting and fast-developing area in mod-
ern medicine. Since percutaneous coronary angioplasty was introduced in 
1977, the inventions of novel devices, such as the balloon catheter, bare metal 
stent, and drug-eluting stent, have steadily improved clinical outcomes of 
percutaneous coronary intervention. These advances were undoubtedly based 
on insights derived from intracoronary imaging or physiologic evaluations.

Intravascular ultrasound is the “gold standard” among intravascular imag-
ing modalities and provides various information about lesional characteristics 
and interventional therapy. Optical coherence tomography enables visualiza-
tion of intravascular morphologies clearly based on high resolution. The 
assessment of fractional flow reserve, as known, guides whether the stenotic 
lesion needs revascularization. Because these examinations have their own 
advantages and disadvantages, it is important to know their characteristics 
and applications. The comprehensive understanding of intravascular imaging 
and physiology eventually might help to treat patients with coronary artery 
diseases in daily practice.

It is my honor to provide a state-of-the-art update on the most relevant 
topics of coronary imaging and physiology written by an expert group of 
Imaging and Physiology on Patients with Cardiovascular Disease (IPOP) in 
Korea. I appreciate the authors’ dedication to this work despite their busy 
practices. I hope that this book helps clinicians to provide the optimal treat-
ment for patients with coronary artery diseases.

Seoul, South Korea Myeong-Ki Hong, MD
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 Coronary Anatomy

The coronary artery is the first branch of the aorta and is divided into the left 
and right coronary arteries. The left main coronary artery is derived from the 
left coronary cusp and is divided into the left anterior descending artery 
(LAD) and left circumflex artery (LCX). The LAD is located in the anterior 
interventricular groove and supplies the anterior wall, septum, and apex. The 
branches of the LAD are septal perforating arteries and diagonal branches. 
The septal perforating arteries supply most of the septum, and the diagonal 
branches supply the lateral wall of the left ventricle. The LCX passes through 
the atrioventricular groove and supplies the left atrium, as well as most of the 
lateral and posterior walls of the left ventricle. The branches of the LCX are 
obtuse marginal branches, and approximately 30–40% of the sinoatrial nodal 
branch is derived from the LCX [1, 2].

The right coronary artery (RCA) is derived from the right coronary cusp; 
it runs along the right atriventricular groove and continues to the posterior 
interventricular sulcus. The RCA supplies the right atrium, right ventricle, 
sinoatrial node, and atrioventricular node via several branches (conus, right 
ventricular wall, sinoatrial nodal, atrioventricular nodal branch). At the distal 
portion of the RCA (i.e., the crux), it divides into two branches: the postero-
lateral and posterior descending arteries, which supply the inferior portion of 
the interventricular septum and apex. In more than 80% of cases, the RCA 
has posterior descending and posterolateral branches. The others are left-
dominant systems, in which the LCX gives rise to posterolateral and posterior 
descending branches, or codominant systems, in which both arteries provide 
an equal supply (Fig. 1).

The incidence of coronary anomaly is approximately 1%. Common anom-
alies are separate origin of the LAD and LCX (0.4%), high takeoff (0.25%), 
single coronary artery (atresia), origin from opposite coronary sinus, and 
anomalous termination (fistula) [1, 2]. Myocardial bridge is a specific con-
genital condition in which the epicardial coronary artery travels the intramus-
cular course, usually in the middle portion of the LAD. Approximately 5–80% 
of autopsy, 25% of CT scan, and 0.15–25% of cases were detected during 
coronary angiography as systolic compression of the coronary artery. The 
myocardial bridge is usually benign, but sometimes it causes chest pain, acute 
coronary syndrome, left ventricular dysfunction, and arrhythmias [3, 4].

Introduction: Coronary Anatomy and 
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 Coronary Circulation

Coronary blood flow is a phasic pattern; main arterial flow in the coronary 
artery occurs in diastole. During systole, contraction of the myocardium com-
presses the coronary microvessels, impedes arterial blood flow, and increases 
venous outflow. Coronary flow is determined by myocardial demand and blood 
supply. Major determinants of myocardial blood flow are heart rate, myocardial 
contractility, and myocardial wall stress (preload, afterload). Because coronary 
blood flow passes from the epicardium to the endocardium, the subendocardial 
area is susceptible myocardial ischemia. The pressure difference between the 
epicardial coronary artery and the left ventricle is important to maintain myo-
cardial perfusion. The “potential” for coronary flow to the subendocardium is 
the difference between diastolic aortic and left ventricular pressures multiplied 
by the diastolic period. A low aortic pressure or a brief diastolic period (tachy-
cardia) may compromise subendocardial blood flow [5, 6].

The epicardial coronary artery is the conduit to transfer blood to the arte-
riole, capillary, and myocardium and consists of less than 10% of coronary 
resistance unless severe stenosis develops. The precapillary arteriole (100–
500 μm) connect epicardial conduit to myocardial capillaries; it covers less 
than 30% of coronary resistance. In a normal state, it gives little contribution 
to resistance. Distal precapillary arteriolar vessels (<100 μm) are mainly 
responsible for resistance and flow.

 Regulation of Coronary Blood Flow

Coronary blood flow is reasonably constant despite changes in coronary 
artery pressure to keep myocardial perfusion, although blood pressure 
changed within certain range, usually between 40–150 mmHg. Below the 
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Fig. 1 Anatomy of coronary artery. LM left main, LAD left anterior descending artery, 
LCX left circumflex artery, OM obtuse marginal, RCA right coronary artery, SA nodal sino-
atrial nodal, AV atrioventricular, PDA posterior descending, PLB posterolateral branch
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autoregulatory range (approximately 60 mmHg), flow is strongly pressure-
dependent. Vasodilator reserve is the increase in flow between the prevailing 
flow and a specified “maximum” vasodilator stimulus. Below the autoregula-
tory range, vasodilator reserve is exhausted. In a normal coronary artery, 
blood flow of maximally dilated coronary increases fourfold to sixfold of 
resting state [7–9] (Fig. 2).

 Endothelial-Dependent Regulation

Endothelium-dependent regulation is mediated by nitic oxide (NO). NO is 
made by NO synthase in endothelial cell. It diffuses into smooth muscle in 
media, which in turn vasodilate by decreasing intracellular Ca++. Shear stress 
and paracrine mediators (endothelial-dependent hyperpolarizing factor, 
endothelin) can influence endothelial function via NO. In a normal coronary 
artery, acetylcholine dilates coronary artery via increasing NO; however, in 
case of endothelial denudation, acetylcholine causes vasoconstriction due to 
decreased NO production [5, 10].

 Myogenic Regulation

Myogenic regulation is controlled by coronary smooth muscle, which can 
change coronary vessel diameter in response to pressure. In normal condi-
tions, smooth muscle of the coronary artery maintains vessel diameter below 
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maximal vasodilation level. According to Laplace law, to decrease wall ten-
sion, resistance is inversely related with pressure (Laplace law). If coronary 
artery pressure increase, it influences smooth tone and results in vasoconstric-
tion via increasing resistance to decrease wall stress. Myogenic regulation is 
primarily observed in the arteriole (<100 μm) [11].

 Metabolic Regulation

Adenosine mainly dilates small coronary arterioles by binding A2 receptor on 
vascular smooth muscle. It increases cAMP followed by increasing intracel-
lular Ca++ mainly small arteriole. Endothelin and hypoxia cause vasoconstric-
tion [5].

 Neural Regulation

Increased sympathetic tone stimulates beta-2 receptor followed by coronary 
vasodilation; however, alpha-1 stimulation leads to vasoconstriction. 
Although flow-mediated vasodilation is the main mechanism after sympa-
thetic activation in a normal artery, alpha-1-mediated vasoconstriction is 
developed in case of impaired NO-mediated vasodilation. For cholinergic 
nervous system, acetylcholine dilates the coronary artery via NO-mediated 
vasodilation [12, 13].

 Extravascular Compression

During systole, coronary blood flow is limited due to the effect of increased 
resistance as a consequence of coronary artery compression and higher left 
ventricular pressure than coronary pressure due to myocardial contraction.

 Reference Values of Normal Coronary Flow Measurements 
in Clinical Setting

The characterization of normal coronary blood flow dynamics could provide 
crucial guidelines for the physiologic assessment of diseased coronary artery. 
Spectral flow velocity parameters, including average peak velocity (APV), 
average diastolic peak velocity (ADPV), average systolic peak velocity 
(ASPV), and diastolic-to-systolic velocity ratio (DSVR), were measured 
using Doppler wire at baseline and intracoronary adenosine-induced maxi-
mal hyperemic state. Coronary flow reserve (CFR) was calculated from the 
ratio of hyperemia to baseline APV [14–16] (Figs. 3 and 4).

Summary of characteristics of normal coronary flow patterns are as 
follows:

Introduction: Coronary Anatomy and Circulation
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Fig. 4 Correlations between coronary flow and stenosis severity on quantitative coronary 
angiography at baseline and hyperemia

 1. Intracoronary flow velocity was relatively well preserved from proximal 
to distal segment, especially in the left coronary system (tapered branch-
ing model).

 2. CFR was preserved from the proximal to distal segments.
 3. There was a significant difference in CFR between left and right arteries. 

CFR of the right artery is significantly higher.
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 4. CFR has a wide range of individual variation: from 1.6 to 6.7. Incidence 
of low CFR (<2.0) was 13%.

 5. CFR was adversely affected by the level of baseline flow and heart rate at 
the time of measurement rather than the level of hyperemic flow.

 6. In physiologic evaluation of diseased coronary arteries in a real clinical 
setting, significant regional differences of coronary flow patterns and fac-
tors affecting flow pattern, especially baseline hemodynamic status of 
patients, should be considered.

 Coronary Blood Flow Under Coronary Stenosis

When a given coronary artery stenosis is present, pressure drop across a ste-
nosis is influenced by viscous loss and post-stenosis flow separation. 
According to Poiseuille’s Law, ΔP (pressure difference) is inversely related 
to radius and positively related to stenosis length and flow, so viscous losses 
are related to stenosis diameter and length. For separation losses, pressure 
gradient is related to flow, and the relationship is nonlinear.

Under normal coronary autoregulation, coronary blood flow is maintained 
despite presence of stenosis. In the relationship between pressure drop across 
a stenosis and coronary blood flow, the pressure drop is that which might be 
seen across an 80–85% diameter stenosis of a coronary artery. If the aortic 
pressure is 100 mmHg and the flow is 1.0 ml/min/g myocardium, then the 
pressure distal to the stenosis will be below the lower limit of autoregulation 
(approximately 60 mmHg). The patient will probably experience angina, 
even though flow is greater than an initial resting value of approximately 
0.5 ml/min/g myocardium. The pressure-flow relationship curve showed that 
the pressure drop across the lesion was more prominent as the degree of  
stenosis was more severe. Because of the nonlinear resistance characteristics 
of stenoses, the critical narrowing is approximately 80–85% at resting flows 
but approximately 45% during hyperemia. To prevent myocardial ischemia, 
the coronary microvasculature dilates to decrease pressure difference across 
a lesion [14–17].
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