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History and Perspectives

Karen B. Helle

Abstract Research on chromaffin cells dates back to 1856 when the venous out-
flow of chemical substances from the adrenal medulla into the circulation was first
described. The discovery of the chromaffin granules for storage of catecholamines
in 1953 was the next major break-through. Soon thereafter the co-storage of cate-
cholamines, ATP and uniquely acidic proteins was established, together making up
the isotonic storage complex within elements of the diffuse sympathoadrenal sys-
tem. The core proteins constitute a family of eight genetically distinct, uniquely
acidic proteins, characterized by numerous pairs of basic residues and collectively
named granins. A prohormone concept was formulated when the insulin-release
inhibiting peptide, pancreastatin, was identified as the mid sequence of porcine
chromogranin A. Subsequently, processing resulted in a range of peptides with anti-
fungal and antibacterial potencies, predominantly from chromogranin A, a few from
chromogranin B and one from secretogranin II. A wide range of biological activites
has since been documented, notably for the chromogranin A —derived peptides,
affecting endothelial stability, myocardial contractility, angiogenesis, cell adhesion
and tumor progression. A physiological role for full-length chromogranin A and
vasostatin-I as circulating stabilizers of endothelial integrity is now evident, while
the high circulating levels of chromogranin A in neuroendocrine tumors and inflam-
matory diseases remain an unsolved and challenging puzzle for future research.

Abbreviations

bCgA  bovine CgA | 43,

CA Catecholamines
CgA Chromogranin A
CgB Chromogranin B
GE-25  bCgAs7 301

PN-1 Protease nexin-1
PTH Parathyroid hormone
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PTX Pertussis toxin

Sgll Secretogranin II

VIF Vasoinhibitory factor — CgAz9 113
VS-1 Vasostatin I (CgA ;)

VS-1I Vasostatin II (CgA|_13)

WE-14  bCgAsi6.330

1 History

1.1 The First Hundred Years of the Chromaffin Cells

Research on chromaffin cells and granins can be traced back to the mid nineteenth
century when Vulpian (1856) described the venous outflow of chemical substances
from the adrenal medulla into the circulation. Half a century later the strong cardio-
vascular effects of the adrenomedullary substances (Oliver and Schifer 1895) led to
the chemical identification and synthesis of the first hormones, adrenaline and nor-
adrenaline (Stoltz 1904). We owe the first identification of catecholamines (CA) to
the function of the adrenergic neuron to Loewi, who in Loewi 1921 described the
so-called Accellerans-Stoff or Sympathin and its stimulating activity on the dener-
vated frog heart. Twenty five years later, Sympathin E was identified as noradrena-
line (Von Euler 1946).

1.2 The First Decade of the Chromaffin Granules

The discovery of the subcellular organelles responsible for the storage of CA in
the adrenomedullary chromaffin cells, i.e. the chromaffin granules, was a major
break-through (Blaschko and Welsch 1953, Hillarp et al. 1953). Soon thereafter
the chromaffin granules were shown to be electron-dense, membrane-limited
granules of 150-300 mp diameter (Lever 1955, Welzstein 1957, Hagen and
Barnett 1960, Coupland 1968). In parallel, the vesicles related to the storage of
noradrenaline in the adrenergic fibres (Von Euler and Hillarp 1956, Von Euler
1958, Dahlstrgm 1966) were demonstrated to be smaller and of varying size and
electron density both in the axons and in the terminals (De Robertis and Pellegrino
de Iraldi 1961). Biochemical studies, on the other hand, revealed that both types
of organelles bore a number of similarities, such as storing the respective CA
together with the energy-rich nucleotide ATP in a molar ratio of CA: ATP of
close to 4:1 in the adrenomedullary (Blaschko et al. 1956, Falck et al. 1956) and
of 5:1 in the adrenergic nerve granules (Schiimann 1958; Banks et al. 1969).
Moreover, in the adrenomedullary chromaffin cells these low molecular weight
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constituents were stored intragranularly at concentrations of about 0.55 and
0.13 M for CA and ATP respectively, i.e. strongly hypertonic if osmotically
active. This phenomenon led Hillarp in 1959 to the postulation of a third compo-
nent involved in the storage complex, possibly a protein, which could be respon-
sible for holding CA and ATP in an isotonic, non-diffusible form until discharge
from the stimulated cell.

1.3  The First Thirty Five Years of the Granins

The search for a specific macromolecule involved in the isotonic retention of CA
and ATP within the storage organelles was immediately directed to the core proteins
in the bovine adrenomedullary chromaffin granules (Helle 1966a, Smith and
Winkler 1967, Smith and Kirshner 1967). By means of an immunological identifi-
cation method (Helle 1966b) it was established that the enzymatically inactive pro-
tein, subsequently named chromogranin (Blaschko et al. 1967), was exocytotically
discharged from the stimulated adrenal gland in parallel with the co-stored CA and
ATP both in vitro (Banks and Helle 1965) and in vivo (Blaschko et al. 1967). Due
to the easy access from local slaughterhouses the bovine adrenals soon became a
convenient source of chromaffin cells and chromaffin granules (Smith and Winkler
1967), notably for research on the structural, chemical and functional properties of
the family of chromogranins, i.e. the granins (Huttner et al. 1991; Winkler and
Fischer-Colbrie 1992).

1.3.1 Glucose Homeostasis, Pancreastatin and the Prohormone Concept

The first chromogranin A (CgA) peptide to be recognized for its regulatory potency
was named pancreastatin due to its ability to inhibit the rapid phase of insulin
release from the glucose-stimulated porcine pancreas (Tatemoto et al. 1986;
Efendic et al. 1987). When identified as the mid-section of porcine and human
CgA (Huttner and Benedum 1987; Konecki et al. 1987), a novel concept was
coined, namely of the granins as putative prohormones for biologically active pep-
tides with regulating potentials (Eiden 1987). Subsequently, pancreastatin was
shown to be involved as a regulator of insulin action not only of glucose but also of
lipid and protein metabolism (Sanchez-Margalet and Gonzalez-Yanes 1998). In rat
hepatoma cells also the cell growth was inhibited, depending on the availability of
nitric oxide (NO) production (Sanchez-Margalet et al. 2001). The accumulated
literature supports the original observation of pancreastatin as an anti-insulin agent,
impairing glucose homeostasis by diminishing insulin sensitivity (see review by
Valicherla et al. 2013).
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1.3.2 Calcium Homeostasis and the N-Terminus of CgA

In the parathyroid gland CgA was originally described as parathyroid secretory
protein-I (Cohn et al. 1981), co-secreted from the gland with the parathyroid hor-
mone (PTH), i. e. the primary regulator of serum calcium concentrations. Peptides
containing the N-terminal sequence of CgA (CgA,_5) inhibit PTH-secretion as
effective as high physiological concentrations of calcium (Fasciotto et al. 1990).
Pancreastatin (bCgA,5 203) and parastatin (bCgAs,7_419) have also been shown to
inhibit PTH secretion, but not yet detected in the effluents from the parathyroid cells
in vivo. On the other hand, CgA, ;5 was detected both in the medium of cultured
parathyroid cells (Angeletti et al. 2000) and in the adrenomedullary effluents (Metz-
Boutigue et al. 1993). A binding to a 78 kDa protein was identified on the parathy-
roid cell surface, and the blockade by pertussis toxin indicates a G-protein-coupled
receptor. Moreover, the loop sequence CgA ;¢ 4 Was required for inhibition of PTH
secretion (Angeletti et al. 1996). Thus, inhibition of PTH secretion by CgA pre-
dominantly involves CgA,_, occuring either by an autocrine mechanism or via the
circulating concentrations of the processed peptide.

1.4 The Granins and their Derived Peptides

Detailed investigations of the eight members of the granin family, i.e. CgA, chromo-
granin B (CgB), secretogranin II (SgIl) and secretogranins III-VII, have since docu-
mented that these proteins are widely distributed in distinct patterns within the diffuse
neuroendocrine system of vertebrates (Helle 2004). Stimuli for release of the granins
derive from a wide range of environmental and intrinsic paths, raising the concentra-
tions of the intact prohormones and processed peptides in the extracellular space and
ultimately in the circulation. The degree of processing is extensive in the adrenomed-
ullary storage granules (Metz-Boutigue et al. 1993; Strub et al. 1995) and gives rise to
a wide range of peptides with a broad spectrum of biological potencies (Helle and
Angeletti 1994). The peptides derived from CgA are the vasostatins I and II, chromo-
fungin, chromacin, pancreastatin, catestatin, WE 14, chromostatin, GE25 and para-
statin and, in addition, the two most resent arrivals on the scene, serpinin (CgA 03 42s,
Koshimizu et al. 2010) and the vasoconstriction-inhibiting factor (VIF, CgAzy 3,
Salem et al. 2015). Vasostatin I (VS-I, CgA,_s5) and bovine catestatin (bCgAsz4 364)
were discovered and named according to their respective inhibitory potencies, on
vasodilation (Aardal and Helle 1992) and on CA secretion (Mahata et al. 1997). Since
then, notably VS-I and catestatin have been shown to be involved in regulation of a
wide range of mechanisms, such as endothelial permeability, angiogenesis, myocar-
dial contractility and innate immunity, however, in many tissue exhibiting oppositely
directed activities (Helle et al. 2007; Helle 2010a, b; Mahata et al. 2010).
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Peptides derived from CgB, being more extensively processed than CgA in
most systems and species (Strub et al. 1995), may have specific regulatory func-
tions yet to be unravelled. SglIl, on the other hand, serves a prohormone for only
one conspicuously active principle, secretoneurin (Kirchmair et al. 1993, Trudeau
et al. 2012), nevertheless engaged in a wide range of modulating activities related
to tissue repair (Helle 2010a). Stimulated polymorphonuclear neutrophils, when
accumulated in response to invading microorganism, tissue inflammation and at
sites of mechanical injury, represent a non-neuroendocrine source of CgA pep-
tides that may affect a wide range of cells involved in inflammatory responses
(Lugardon et al. 2000; Zhang et al. 2009). Among them we find the vascular endo-
thelium, the endocardium and the epithelial cells, other leucocytes, fibroblasts,
cardiomyocytes, vascular and intestinal smooth muscle cells (Helle et al. 2007;
Helle 2010a, b). Taken together, the release of CgA-derived peptides from gland
cells, nerve terminals and immunocytes would contribute to autocrine or para-
crine modulations locally while endocrine effects would result from their subse-
quent overflow to the circulation.

1.4.1 The Antimicrobial Peptides and Innate Immunity

Antimicrobial activities of peptides derived from the matrix of secretory granules in
the bovine adrenal medulla were first reported by Metz-Boutigue and colleagues in
1998. The first three peptides found to inhibit bacteria and fungal growth were
derived from the N-terminal domain of CgA (VS-I), the C-terminal end of CgB
(secretolytin) and the biphosphorylated C-terminal peptide of proenkephalin-A
(enkelytin). These peptides are active in a diverse range of organisms, including
prokaryotes, bivalves, frogs and mammals, suggesting an important role in innate
immunity, a mechanism shared by all vertebrates and present at birth as an evolu-
tionary ancient defence mechanism (Hoffmann et al. 1999; Metz-Boutigue et al.
2000). Another CgA peptide, catestatin, derived from CgA in keratinocytes, also
possess antimicrobial activity against gram-positive and gram-negative bacteria,
yeast and fungi, is active notably against skin pathogens and increases in skin in
response to injury and infection (Radek et al. 2008). So far, no antimicrobial activity
has been assigned to SN.

The innate immunity, independent of the adaptive immune responses, is used
by vertebrates as a means for short term protection against pathogenic microor-
ganisms. The need for new antimicrobial agents is now rapidly rising due to the
fast growing number of antibiotica-resistant bacteria. Accordingly, the interest in
antibacterial granin-derived peptides has grown exponentially. Their therapeutic
potentials are now under intensive elucidation in immunodeficient patients, in
chemotherapy, in organ grafting, and against antibiotica-resistant bacterial infec-
tions (Shooshtarizodeh et al. 2010).
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