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History and Perspectives

Karen B. Helle

Abstract Research on chromaffin cells dates back to 1856 when the venous out-
flow of chemical substances from the adrenal medulla into the circulation was first 
described. The discovery of the chromaffin granules for storage of catecholamines 
in 1953 was the next major break-through. Soon thereafter the co-storage of cate-
cholamines, ATP and uniquely acidic proteins was established, together making up 
the isotonic storage complex within elements of the diffuse sympathoadrenal sys-
tem. The core proteins constitute a family of eight genetically distinct, uniquely 
acidic proteins, characterized by numerous pairs of basic residues and collectively 
named granins. A prohormone concept was formulated when the insulin-release 
inhibiting peptide, pancreastatin, was identified as the mid sequence of porcine 
chromogranin A. Subsequently, processing resulted in a range of peptides with anti-
fungal and antibacterial potencies, predominantly from chromogranin A, a few from 
chromogranin B and one from secretogranin II. A wide range of biological activites 
has since been documented, notably for the chromogranin A –derived peptides, 
affecting endothelial stability, myocardial contractility, angiogenesis, cell adhesion 
and tumor progression. A physiological role for full-length chromogranin A and 
vasostatin-I as circulating stabilizers of endothelial integrity is now evident, while 
the high circulating levels of chromogranin A in neuroendocrine tumors and inflam-
matory diseases remain an unsolved and challenging puzzle for future research.

Abbreviations

bCgA bovine CgA1–431

CA Catecholamines
CgA Chromogranin A
CgB Chromogranin B
GE-25 bCgA367–391

PN-1 Protease nexin-1
PTH Parathyroid hormone
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PTX Pertussis toxin
SgII Secretogranin II
VIF Vasoinhibitory factor – CgA79–113

VS-I Vasostatin I (CgA1–76)
VS-II Vasostatin II (CgA1–113)
WE-14 bCgA316–330

1  History

1.1  The First Hundred Years of the Chromaffin Cells

Research on chromaffin cells and granins can be traced back to the mid nineteenth 
century when Vulpian (1856) described the venous outflow of chemical substances 
from the adrenal medulla into the circulation. Half a century later the strong cardio-
vascular effects of the adrenomedullary substances (Oliver and Schäfer 1895) led to 
the chemical identification and synthesis of the first hormones, adrenaline and nor-
adrenaline (Stoltz 1904). We owe the first identification of catecholamines (CA) to 
the function of the adrenergic neuron to Loewi, who in Loewi 1921 described the 
so-called Accellerans-Stoff or Sympathin and its stimulating activity on the dener-
vated frog heart. Twenty five years later, Sympathin E was identified as noradrena-
line (Von Euler 1946).

1.2  The First Decade of the Chromaffin Granules

The discovery of the subcellular organelles responsible for the storage of CA in 
the adrenomedullary chromaffin cells, i.e. the chromaffin granules, was a major 
break- through (Blaschko and Welsch 1953, Hillarp et al. 1953). Soon thereafter 
the chromaffin granules were shown to be electron-dense, membrane-limited 
granules of 150–300 mμ diameter (Lever 1955, Welzstein 1957, Hagen and 
Barnett 1960, Coupland 1968). In parallel, the vesicles related to the storage of 
noradrenaline in the adrenergic fibres (Von Euler and Hillarp 1956, Von Euler 
1958, Dahlstrøm 1966) were demonstrated to be smaller and of varying size and 
electron density both in the axons and in the terminals (De Robertis and Pellegrino 
de Iraldi 1961). Biochemical studies, on the other hand, revealed that both types 
of organelles bore a number of similarities, such as storing the respective CA 
together with the energy-rich nucleotide ATP in a molar ratio of CA: ATP of 
close to 4:1 in the adrenomedullary (Blaschko et al. 1956, Falck et al. 1956) and 
of 5:1  in the adrenergic nerve granules (Schümann 1958; Banks et  al. 1969). 
Moreover, in the adrenomedullary chromaffin cells these low molecular weight 

K.B. Helle
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constituents were stored intragranularly at concentrations of about 0.55 and 
0.13  M for CA and ATP respectively, i.e. strongly hypertonic if osmotically 
active. This phenomenon led Hillarp in 1959 to the postulation of a third compo-
nent involved in the storage complex, possibly a protein, which could be respon-
sible for holding CA and ATP in an isotonic, non-diffusible form until discharge 
from the stimulated cell.

1.3  The First Thirty Five Years of the Granins

The search for a specific macromolecule involved in the isotonic retention of CA 
and ATP within the storage organelles was immediately directed to the core proteins 
in the bovine adrenomedullary chromaffin granules (Helle 1966a, Smith and 
Winkler 1967, Smith and Kirshner 1967). By means of an immunological identifi-
cation method (Helle 1966b) it was established that the enzymatically inactive pro-
tein, subsequently named chromogranin (Blaschko et al. 1967), was exocytotically 
discharged from the stimulated adrenal gland in parallel with the co-stored CA and 
ATP both in vitro (Banks and Helle 1965) and in vivo (Blaschko et al. 1967). Due 
to the easy access from local slaughterhouses the bovine adrenals soon became a 
convenient source of chromaffin cells and chromaffin granules (Smith and Winkler 
1967), notably for research on the structural, chemical and functional properties of 
the family of chromogranins, i.e. the granins (Huttner et  al. 1991; Winkler and 
Fischer-Colbrie 1992).

1.3.1  Glucose Homeostasis, Pancreastatin and the Prohormone Concept

The first chromogranin A (CgA) peptide to be recognized for its regulatory potency 
was named pancreastatin due to its ability to inhibit the rapid phase of insulin 
release from the glucose-stimulated porcine pancreas (Tatemoto et  al. 1986; 
Efendic et  al. 1987). When identified as the mid-section of porcine and human 
CgA (Huttner and Benedum 1987; Konecki et  al. 1987), a novel concept was 
coined, namely of the granins as putative prohormones for biologically active pep-
tides with regulating potentials (Eiden 1987). Subsequently, pancreastatin was 
shown to be involved as a regulator of insulin action not only of glucose but also of 
lipid and protein metabolism (Sanchez-Margalet and Gonzalez-Yanes 1998). In rat 
hepatoma cells also the cell growth was inhibited, depending on the availability of 
nitric oxide (NO) production (Sanchez-Margalet et  al. 2001). The accumulated 
literature supports the original observation of pancreastatin as an anti-insulin agent, 
impairing glucose homeostasis by diminishing insulin sensitivity (see review by 
Valicherla et al. 2013).

History and Perspectives
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1.3.2  Calcium Homeostasis and the N-Terminus of CgA

In the parathyroid gland CgA was originally described as parathyroid secretory 
protein-I (Cohn et al. 1981), co-secreted from the gland with the parathyroid hor-
mone (PTH), i. e. the primary regulator of serum calcium concentrations. Peptides 
containing the N-terminal sequence of CgA (CgA1–76) inhibit PTH-secretion as 
effective as high physiological concentrations of calcium (Fasciotto et  al. 1990). 
Pancreastatin (bCgA248–293) and parastatin (bCgA347–419) have also been shown to 
inhibit PTH secretion, but not yet detected in the effluents from the parathyroid cells 
in vivo. On the other hand, CgA1–76 was detected both in the medium of cultured 
parathyroid cells (Angeletti et al. 2000) and in the adrenomedullary effluents (Metz- 
Boutigue et al. 1993). A binding to a 78 kDa protein was identified on the parathy-
roid cell surface, and the blockade by pertussis toxin indicates a G-protein-coupled 
receptor. Moreover, the loop sequence CgA16–40 was required for inhibition of PTH 
secretion (Angeletti et al. 1996). Thus, inhibition of PTH secretion by CgA pre-
dominantly involves CgA1–76, occuring either by an autocrine mechanism or via the 
circulating concentrations of the processed peptide.

1.4  The Granins and their Derived Peptides

Detailed investigations of the eight members of the granin family, i.e. CgA, chromo-
granin B (CgB), secretogranin II (SgII) and secretogranins III-VII, have since docu-
mented that these proteins are widely distributed in distinct patterns within the diffuse 
neuroendocrine system of vertebrates (Helle 2004). Stimuli for release of the granins 
derive from a wide range of environmental and intrinsic paths, raising the concentra-
tions of the intact prohormones and processed peptides in the extracellular space and 
ultimately in the circulation. The degree of processing is extensive in the adrenomed-
ullary storage granules (Metz-Boutigue et al. 1993; Strub et al. 1995) and gives rise to 
a wide range of peptides with a broad spectrum of biological potencies (Helle and 
Angeletti 1994). The peptides derived from CgA are the vasostatins I and II, chromo-
fungin, chromacin, pancreastatin, catestatin, WE 14, chromostatin, GE25 and para-
statin and, in addition, the two most resent arrivals on the scene, serpinin (CgA403–428, 
Koshimizu et  al. 2010) and the vasoconstriction- inhibiting factor (VIF, CgA79–113, 
Salem et al. 2015). Vasostatin I (VS-I, CgA1–76) and bovine catestatin (bCgA344–364) 
were discovered and named according to their respective inhibitory potencies, on 
vasodilation (Aardal and Helle 1992) and on CA secretion (Mahata et al. 1997). Since 
then, notably VS-I and catestatin have been shown to be involved in regulation of a 
wide range of mechanisms, such as endothelial permeability, angiogenesis, myocar-
dial contractility and innate immunity, however, in many tissue exhibiting oppositely 
directed activities (Helle et al. 2007; Helle 2010a, b; Mahata et al. 2010).

K.B. Helle
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Peptides derived from CgB, being more extensively processed than CgA in 
most systems and species (Strub et al. 1995), may have specific regulatory func-
tions yet to be unravelled. SgII, on the other hand, serves a prohormone for only 
one conspicuously active principle, secretoneurin (Kirchmair et al. 1993, Trudeau 
et al. 2012), nevertheless engaged in a wide range of modulating activities related 
to tissue repair (Helle 2010a). Stimulated polymorphonuclear neutrophils, when 
accumulated in response to invading microorganism, tissue inflammation and at 
sites of mechanical injury, represent a non-neuroendocrine source of CgA pep-
tides that may affect a wide range of cells involved in inflammatory responses 
(Lugardon et al. 2000; Zhang et al. 2009). Among them we find the vascular endo-
thelium, the endocardium and the epithelial cells, other leucocytes, fibroblasts, 
cardiomyocytes, vascular and intestinal smooth muscle cells (Helle et al. 2007; 
Helle 2010a, b). Taken together, the release of CgA-derived peptides from gland 
cells, nerve terminals and immunocytes would contribute to autocrine or para-
crine modulations locally while endocrine effects would result from their subse-
quent overflow to the circulation.

1.4.1  The Antimicrobial Peptides and Innate Immunity

Antimicrobial activities of peptides derived from the matrix of secretory granules in 
the bovine adrenal medulla were first reported by Metz-Boutigue and colleagues in 
1998. The first three peptides found to inhibit bacteria and fungal growth were 
derived from the N-terminal domain of CgA (VS-I), the C-terminal end of CgB 
(secretolytin) and the biphosphorylated C-terminal peptide of proenkephalin-A 
(enkelytin). These peptides are active in a diverse range of organisms, including 
prokaryotes, bivalves, frogs and mammals, suggesting an important role in innate 
immunity, a mechanism shared by all vertebrates and present at birth as an evolu-
tionary ancient defence mechanism (Hoffmann et  al. 1999; Metz-Boutigue et  al. 
2000). Another CgA peptide, catestatin, derived from CgA in keratinocytes, also 
possess antimicrobial activity against gram-positive and gram-negative bacteria, 
yeast and fungi, is active notably against skin pathogens and increases in skin in 
response to injury and infection (Radek et al. 2008). So far, no antimicrobial activity 
has been assigned to SN.

The innate immunity, independent of the adaptive immune responses, is used 
by vertebrates as a means for short term protection against pathogenic microor-
ganisms. The need for new antimicrobial agents is now rapidly rising due to the 
fast growing number of antibiotica-resistant bacteria. Accordingly, the interest in 
antibacterial granin-derived peptides has grown exponentially. Their therapeutic 
potentials are now under intensive elucidation in immunodeficient patients, in 
chemotherapy, in organ grafting, and against antibiotica-resistant bacterial infec-
tions (Shooshtarizodeh et al. 2010).

History and Perspectives
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