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Preface

Volume two of this book series comprised of three volumes is dedicated to provide
an overview about the pathophysiology of cartilage, joint tissue, and intervertebral
disks.

The text is designed to be of use to multiple medical and basic science disciplines
as orthopedics, rheumatology, and trauma surgery and all basic investigators work-
ing in the field of cartilage, joint, and intervertebral disk pathophysiology.

This volume focuses on the major cartilage pathophysiologies which include
osteoarthritis and rheumatoid arthritis, degeneration of intervertebral disks, and
genetic skeletal diseases as cartilage collagenopathies and other hereditary chon-
drodysplasias resulting from mutations in structural cartilage proteins.

Chapter 1 provides an overview about osteoarthritis (OA) which is the most
common joint disorder and known as a leading cause of disability in the adult popu-
lation. It is now appreciated that all components of the joint, including the cartilage,
calcified cartilage, synovial joint lining, and periarticular bone, undergo pathologi-
cal changes during the initiation and progression of OA. Some of these alterations
can be attributed to direct injury and mechanical disruption of the tissues, but in
general the mechanisms are dependent on active cell-mediated processes that occur
during the long time course of the disease. A deeper understanding of the specific
and unique roles of complex signaling networks and their downstream targets
involving biochemical crosstalk among the cartilage, synovium, bone, and other
joint tissues will provide mechanistic insights into the pathologic processes that
affect the cartilage and other joint tissues in OA, but also may identify potential
therapeutic targets for treatment of this debilitating disease. Chapter 2 provides
insight into mechanical stress as an obligatory etiological factor in the development
of OA. Understanding how tissues of the joint respond to mechanical injury is likely
to inform our understanding of pathogenesis. Articular cartilage is avascular yet
responds rapidly and strongly to a range of mechanical stresses. It does so by acti-
vating a number of mechanosensitive pathways mediated by release of molecules
trapped within the pericellular matrix as well as by triggering mechanoreceptors at
the cell surface. These pathways appear to be relevant to the in vivo response to
mechanical disruption and affect the course of experimental OA.

The gradual loss of articular cartilage from the surface of articulating joints is a
feature of OA. It is marked by degradation of the cartilage matrix, including the
large aggregating proteoglycan aggrecan, the small leucine-rich proteoglycans
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known as SLRPs, and the fibrillar type II collagen. Chapter 3 discusses the major
families of cartilage-degrading enzymes, the matrix metalloproteinases (MMPs),
and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)
families. Factors that regulate MMP and ADAMTS activity, with a focus on MMP-
13, ADAMTS-4, and ADAMTS-5 as the major protagonists of cartilage degrada-
tion, are discussed. The important role of degraded matrix fragments in regulating
inflammation in osteoarthritis, via Toll-like receptor signaling, is highlighted.
Chapter 4 puts emphasis on the functions of proteoglycans as one of the main com-
ponents of the articular cartilage ECM. Proteoglycans bind water and provide the
basis for absorbing high compressive loads. Additionally, they bind cytokines, che-
mokines, growth factors, and morphogens, thereby protecting these factors against
proteolysis and/or acting as a depot of regulatory factors when matrix degradation
occurs. They also modulate signaling pathways and create morphogen gradients by
immobilization of ligands in the ECM and regulation of the turnover of ligands.
Given these important roles of proteoglycans in regulating cell functions, it is well
understandable that the loss of ECM and degradation of proteoglycans during OA
induce severe changes in cartilage homeostasis.

The presence and production of soluble factors in the osteoarthritic joint have
always been a focus of research, as they are assumed to play a role in the initiation
and/or progression of the disease. Chapter 5 reviews research data which assign an
important role to chemokines, growth factors, and adipokines in OA; however it
also emphasizes on a traditionally studied subset of inflammatory, anti-inflammatory,
and modulatory cytokines. Differential profiles of these factors compared to healthy
joints were found in the knee and other OA affected joints, whereby joint damage
itself induces a specific change in the secretory pattern of diverse soluble factors.

Genetic skeletal diseases are a diverse and complex group of over 450 rare dis-
eases that affect the development and homeostasis of the skeleton. Although indi-
vidually rare, as a group of related genetic skeletal diseases, they have an overall
prevalence of at least 1 per 4,000 children, which extrapolates to a minimum of
225,000 people in the European Union, and this extensive burden in pain and dis-
ability leads to poor quality of life and high healthcare costs. Dominant-negative
(qualitative) defects in numerous cartilage structural proteins result in a broad range
of genetic skeletal diseases. Chapter 6 will focus on mutations in fibrillar and fibril-
associated collagen genes which cause a wide range of chondrodysplasias, ranging
from premature arthritis to severe early lethal disorders. Mutations of cartilage-
specific collagens can cause cartilage tissue dysfunction by reducing synthesis of
structurally normal protein or through protein misfolding which leads to intracellu-
lar retention and degradation and consequent secretion of reduced amounts of struc-
turally abnormal protein. In addition, collagen misfolding mutations can induce a
cellular unfolded protein response which ultimately promote apoptosis and thus
contribute to the pathology. Chapter 7 will focus on a disease spectrum resulting
from mutations in the glycoproteins, cartilage oligomeric matrix protein (COMP),
type IX collagen, and matrilin-3, which together cause a continuum of pheno-
types that are among the most common of the autosomal dominant genetic skel-
etal diseases. Pseudoachondroplasia (PSACH) and autosomal dominant multiple
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epiphyseal dysplasia (MED) define a disease spectrum typified by varying degrees
of short-limbed dwarfism, joint pain with stiffness, and early-onset OA. New insight
into disease-related musculoskeletal complications such as myopathy, ligamentous
laxity, and tendinopathy has been gained through the analysis of mouse models of
the PSACH and MED disease spectrum.

Chapter 8 will summarize and discuss the role of integrins in the physiology and
pathophysiology of the growth plate and articular cartilage. Integrins are membrane
receptors responsible for bidirectional communication between the cells and the
surrounding by transmitting physicochemical signals through adhesion complexes.
In addition, integrins are involved in sensing mechanical stress signals generated by
the extracellular matrix and transduce them into the cell interior converting physical
stimuli to biochemical signaling. Chondrocyte integrins have thus indispensable
roles in cartilage development, skeletal growth, and articular cartilage function.

Chapter 9 will focus on the peripheral nervous system which is critically involved
in the metabolism of joint tissue and intervertebral disks (IVD). Nerve fibers of
sympathetic and sensory origin innervate synovial tissue and subchondral bone of
diarthrodial joints. During endochondral ossification in embryonic limb develop-
ment, sensory and sympathetic neurotransmitters modulate osteo-chondrogenic dif-
ferentiation of mesenchymal progenitor cells, vascularization, and matrix
differentiation indicating a distinct role in skeletal growth and possible limb regen-
eration processes. In adults, sensory and sympathetic neurotransmitters are involved
in the pathology of inflammatory diseases as rheumatoid arthritis which manifests
mainly in joints. In addition, they might play a role in the pathogenesis of a priori
degenerative joint disorders, as OA and intervertebral disk degeneration.

Tissues of intervertebral disks share similarities to those of diarthrodial joints,
such as a thin layer of cartilage that lines the interface between the joint and the
bony elements and a central space rich in extracellular matrix molecules that pro-
motes lubrication and maintains osmotic pressure. Like the pathophysiology of
other cartilaginous joints, intervertebral disks undergo biomechanical and structural
changes as a result of aging and mechanical insults. Due to higher mechanical load-
ing, lumbar disks are more susceptible to degeneration, which can lead to symptom-
atic outcomes such as low back pain, sciatica, and other physical disabilities. These
affect the quality of life as we age and present a significant burden to the healthcare
system globally. Chapter 10 will provide an overview of the intervertebral disk in
health and disease.

Bringing together international experts from diverse fields of musculoskeletal
research was a demanding task requiring patience and persistence not only for vol-
ume one of this book series but also for this volume. For that we are very grateful to
our authors of this volume who managed to complete their chapters and who dedi-
cated their spare free time to writing their reviews.

Regensburg, Germany Susanne Grissel
Munich, Germany Attila Aszddi
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Pathogenesis of Osteoarthritis
in General

Mary B. Goldring, Kirsty L. Culley, and Miguel Otero

Abstract

Osteoarthritis (OA) is the most common joint disorder and is a leading cause
of disability in the adult population. It is now appreciated that all compo-
nents of the joint, including the cartilage, calcified cartilage, synovial joint
lining, and periarticular bone, undergo pathological changes during the ini-
tiation and progression of OA. Some of these alterations can be attributed to
direct injury and mechanical disruption of the tissues, but in general the
mechanisms are dependent on active cell-mediated processes that occur dur-
ing the long time course of the disease. Based on clinical observations and
experimental studies, it is now recognized that it is possible for individual
patients to exhibit common sets of symptoms and structural abnormalities
due to distinct pathophysiological pathways that act independently or in
combination. Recent research focusing on the underlying pathological mech-
anisms has identified complex signaling networks involving biochemical
cross talk among the cartilage, synovium, bone, and other joint tissues. These
complex networks involve interplay among anabolic, catabolic, and inflam-
matory signals within a background of poorly characterized genetic factors.
A deeper understanding of the specific and unique roles of these mediators
and their downstream targets will provide mechanistic insights into the
pathologic processes that affect the cartilage and other joint tissues in OA but
also may identify potential therapeutic targets for treatment of this debilitat-
ing disease.

M.B. Goldring (><) ¢ K.L. Culley * M. Otero

Hospital for Special Surgery Research Institute and Weill Cornell Medical College,
New York, NY 10021, USA
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1.1 Introduction

Osteoarthritis (OA) is the most common joint disorder and the major cause of dis-
ability in the adult population. The pathophysiology of the disease is characterized
by progressive loss of articular cartilage, cartilage calcification, osteophyte forma-
tion, subchondral bone remodeling, and mild to moderate inflammation of the syno-
vial lining. Although cartilage destruction is the hallmark of OA disease, the
involvement of changes in the periarticular tissues, including the subchondral bone,
ligaments, tendons, menisci, and synovial membrane, is now well recognized
(Loeser et al. 2012a; Goldring and Goldring 2007). For example, ligaments and
menisci are important for maintaining biomechanical stability in the joint, and their
injury can lead eventually to cartilage loss. In addition, multiple factors are involved
in the pathogenesis of OA, including genetic susceptibility, biomechanics of the
affected joint, and the presence and extent of inflammation. It has been difficult,
therefore, to identify specific targets for therapy.

Investigations in various in vitro models and preclinical in vivo models during
the past decades have focused primarily on cartilage degradation or repair as a ther-
apeutic target and more recently on how biomechanical and cellular responses in
chondrocytes are modified by interactions with other joint tissues, in particular, the
synovium and bone (Goldring et al. 2011; Goldring and Otero 2011; Goldring and
Berenbaum 2015). This chapter focuses on the role of the chondrocyte in maintain-
ing cartilage homeostasis and responding to adverse events in the whole joint that
modify cartilage integrity and result in the initiation and progress of the osteoarthri-
tis disease program.

1.2  Disease Etiologies and Therapeutic Prospects

Studies in patients that undergo operative procedures indicate that there are different
etiologies and time courses that result in the initiation and development of OA. These
subsets represent a continuum of early, progressive, and end-stage OA and include
(1) anterior cruciate ligament (ACL) injury (<35 years of age), (2) acute meniscal
injury (2640 years of age), (3) degenerative meniscus (40—65 years of age), and (4)
total joint replacement (>50 years of age). Epidemiologic studies have established
that there is a strong relationship between ACL disruption and the risk for subse-
quent development of OA (Segawa et al. 2001; Buckwalter and Brown 2004; Roos
2005; Lohmander et al. 2007; Meunier et al. 2007). Studies of populations with
meniscal injury have also been useful for identifying OA risk factors (Englund and
Lohmander 2004). Meniscal injuries are commonly seen in association with ACL
injury (Jones et al. 2003; Louboutin et al. 2009).

Current understanding indicates that the aberrant distribution of forces in carti-
lage leads to altered mechanotransduction in the chondrocytes and subsequent acti-
vation of catabolic and inflammatory genes, deregulated matrix synthesis, and
decreased repair capacity (Lotz and Kraus 2010; de Lange-Brokaar et al. 2012) (see
also Chap. 2). The development of posttraumatic cartilage pathology may in turn
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adversely impact the structural and functional properties of periarticular bone. The
damaged meniscus is an additional source of inflammatory cytokines, chemokines,
and reactive oxygen species that could promote expression and activation of proteo-
Iytic enzymes and adversely affect cell survival and synthetic activity of chondro-
cytes and cells of other joint tissues (Englund et al. 2009; Rai et al. 2013).

In addition to trauma or injury, there are other factors that influence the disease
process, including aging, genetic predisposition, abnormal biomechanics, obesity,
and comorbidities such as cardiovascular disease, metabolic syndrome, and dia-
betes. However, OA clinical trial designs have not accounted for these multifacto-
rial aspects in disease subsets, but rather have selected subjects based on joint
location or diagnosis as primary OA or secondary to other types of arthritis (Punzi
et al. 2010; Kloppenburg 2014; Stiebel et al. 2014; Detert et al. 2014). There is a
need, therefore, for optimization of cohort selection based on classifying OA
patients according to disease phenotypes related to distinct pathophysiological
pathways (Bijlsma et al. 2011; Blanco and Ruiz-Romero 2012; Conaghan 2013;
Henrotin 2014).

Given the complexity of OA, it is not surprising that there is no structure-
modifying agent for OA and the available pain therapies have limited efficacy and
associated toxicities (Matthews and Hunter 2011). However, it is unlikely that a
single therapy will be effective against both symptoms and structural changes in the
entire spectrum of OA patients (Mobasheri 2013a, b; Pulsatelli et al. 2013; Thakur
et al. 2014). Most trials have addressed function and pain at later stages of disease
when there is already radiographic evidence of disease progression such as joint
space narrowing and osteophytes. The development of validated diagnostic and
prognostic molecular biomarkers (Lafeber and van Spil 2013; Hsueh et al. 2014;
Lotz et al. 2013; Tonge et al. 2014), as well as novel imaging biomarkers (Hunter
et al. 2013), that could be used for evaluating pre-symptomatic early-stage disease,
may permit therapeutic interventions to halt or slow OA progression prior to irre-
versible joint damage. There is therefore a need for deeper understanding of the
structure and function of articular cartilage and other joint tissues and how they
interact and respond to adverse environmental insults in ways that disrupt normal
joint homeostasis.

1.3  Articular Cartilage Physiology

Adult articular cartilage is composed of a specialized matrix of type II collagen and
the large aggregating proteoglycan, aggrecan, along with several “minor” collagens
and small proteoglycans. Its unique structural organization provides tensile strength
via the collagen network and compressive resistance via the proteoglycans, which
contribute to the capacity of the matrix to accommodate more than 70 % water
(Heinegard and Saxne 2011; Onnerfjord et al. 2012; Hunziker et al. 2014) (for fur-
ther details, see Chaps. 3 and 4). Cartilage is relatively hypocellular compared with
other tissues, with the chondrocytes constituting only 1-2 % of the total cartilage
volume, and it lacks a vascular supply and innervation. In normal adult articular
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cartilage, the chondrocyte has limited proliferative capacity and its ability to per-
form low-turnover repair declines with age. Since the half-life of type II collagen
within the cartilage collagen network is more than 100 years, whereas the proteo-
glycan components have half-lives of weeks to years, the chondrocyte is involved
mostly in replacing the glycosaminoglycans on the aggrecan and other small pro-
teoglycan core proteins. The importance of these matrix proteins in determining the
structural and functional properties of the articular cartilage can be observed in
chondrodysplasias and other heritable disorders where mutations or deficiencies in
cartilage matrix genes result in altered skeletal development often associated with
the premature development of OA (Sandell 2012) (see also Chap. 6) (Fig. 1.1).
Chondrocytes in articular cartilage exist in lacunae as single cells encased in a
pericellular matrix (PCM) consisting of collagen VI microfibrils, hyaluronan, per-
lecan, biglycan, aggrecan as monomers or small aggregates, and type IX collagen
but virtually no type II collagen (Wilusz et al. 2014). The PCM helps to maintain the
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Fig.1.1 Schematic representation of cartilage organization in the healthy joint and in osteoarthri-
tis. (a) Each of the four different zones of healthy articular cartilage, the superficial, intermediate,
radial, and calcified zones, is characterized by distinct chondrocyte morphology and extracellular
matrix organization and composition. The calcified zone differs from the three other zones by the
mineralization of its extracellular matrix, by the presence of vessels (red), and by nerve fibers
(green) that originate from the subchondral bone. The calcified zone interfaces with the non-
mineralized cartilage, from which it is separated by the tidemark, and the subchondral bone. (b) In
OA, there is progressive loss of cartilage matrix from the superficial zone associated with chondro-
cyte phenotypic modifications, including the formation of clusters, catabolic activation, and hyper-
trophic differentiation. Cytokines, chemokines, alarmins, DAMPs, adipokines, and other mediators
released into the synovial fluid from the cartilage, synovium, and other joint tissues amplify a
vicious circle of cartilage damage. In addition to cartilage damage, remodeling of the subchondral
bone occurs with the development of vessels (red) located in vascular channels, which also contain
osteoblasts, osteoclasts, and sensory nerves (green) (From Houard et al. (2013) with permission)
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