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  Pref ace   

 Volume one of a book series comprised of three volumes is dedicated to provide an 
overview about physiology and biology of permanent cartilage tissue and its role as 
a template in development and skeletal growth. 

 The text is designed to be of use to multiple medical and basic science disciplines 
as orthopedics, rheumatology, and trauma surgery and all basic investigators work-
ing in the fi eld of cartilage and joint physiology and development. 

 Three types of cartilage (hyaline, elastic, and fi brous) have been characterized on 
the basis of histological criteria and mechanical properties. The most prevalent type 
is hyaline cartilage which is a visually uniform, translucent tissue found in the skel-
eton of all vertebrates. Articular cartilage, the most familiar hyaline permanent car-
tilage, forms the smooth gliding surface of joints, such as the knee and hip that 
permits locomotion in humans and animals. Injuries to this tissue and degradative 
diseases as osteoarthritis impair joint mobility and are a great challenge of modern 
regenerative medicine. Hyaline cartilage also comprises the growth plate, the tran-
sient and temporary template required for endochondral bone formation in fetal 
development, skeletal growth, and repair processes, i.e., after fracture. In addition, 
hyaline cartilage occurs as a permanent structural tissue in costal cartilage and tra-
cheal reinforcing rings. 

 Cartilage is a matrix-dominated tissue, and with regard to its abundance, the 
matrix is mainly composed of collagens and proteoglycans. These two main com-
ponents form suprastructures interconnected by plenty of proteins that way forming 
a kind of alloy. Cartilage fi brils vary in their molecular organization, their width, 
and their orientation in the tissue in order to resist forces generated by external load. 
Proteoglycans, especially the lectican family, provide the required tissue elasticity 
and resilience by dissipating load. The interconnecting molecules, sometimes also 
referred to as adaptor proteins, are from a biochemical point of view mainly non-
collagenous glycoproteins and small leucine-rich repeat proteoglycans which 
closely regulate the assembly and connection of the fi brillar and extrafi brillar matri-
ces. Chapters   1    ,   2    , and   3     of this volume summarize information about the impact of 
proteoglycans, forming the extrafi brillar matrix, on cartilage physiology and integ-
rity; the role of the different collagens in cartilage matrix homeostasis and forma-
tion of fi brillar suprastructures; and the role of non-collagenous matrix adaptor 
proteins in growth factor binding, mediation of infl ammatory and immune responses, 
and their use as biomarkers in cartilage-associated diseases. 

http://dx.doi.org/10.1007/978-3-319-29568-8_1
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 In long bones, a specialized structure called the growth plate is responsible for 
the linear growth and forms just below the epiphysis at both ends of the cartilagi-
nous mold. The growth plate is organized into zones which refl ect the sequential 
differentiation stages of chondrocyte proliferation, maturation, and hypertrophy. 
The differentiation process is accompanied by the establishment of cellular anisot-
ropy and planar polarity that generates the unique spatial structure of the tissue. 
Chondrocyte differentiation and polarity are essential and mutually interacting 
foundations of the normal growth plate function, and their disturbance results in 
chondrodysplasias with impaired longitudinal growth. Chapter   4     will focus on the 
mechanisms responsible for the establishment and maintenance of the structural 
polarity of the cartilaginous growth plate. 

 The cell fate of hypertrophic growth plate chondrocytes at the chondro-osseous 
junction has been a subject of discussion for several decades: on the one hand, there 
is ample evidence for programmed cell death by apoptosis or other mechanisms in 
the lower hypertrophic zone; on the other hand, several studies have indicated that 
some hypertrophic chondrocytes may not be “terminally differentiated” but are able 
to further differentiate into osteoblasts. Comprehensive insight into this novel con-
cept of the fate of hypertrophic chondrocytes is provided by Chap.   5    . Hypoxia- 
driven pathways, governed by the hypoxia-inducible factors (HIFs), are absolutely 
essential for the survival and functioning of chondrocytes in these challenging con-
ditions. HIF-mediated signaling has also been implicated in joint formation and the 
integrity of the adult articular cartilage. Thus, the oxygen-regulated genetic pro-
gram mediated by HIFs is key to the controlled development, growth, health, and 
disease of endochondral bone summarized in Chap.   6    . 

 Chapter   7     focuses on our current understanding at the cellular and molecular levels, 
from creation to maturation of a synovial joint. Morphologically, we know there is the 
formation of interzone regions at the presumptive sites of the future joint. Molecularly, 
we have some insights into signals that direct the initiation and progression of interzone 
regions toward a joint. And through innovative technologies in mouse genetics and 
genomics, we are beginning to understand the developmental processes, with the iden-
tifi cation of progenitor cell pools, and to trace origin of cells and track the fate of 
descendent cells from initiation to formation of the complete joint. 

 Chapter   8     provides an overview about signaling factors which control cartilage 
formation, development, and the differentiation and maturation of chondrocytes 
during embryonic skeletal development. The orchestrated formation, differentia-
tion, and degradation of cartilage and bone are regulated by a multitude of signaling 
systems and transcription factors. The identifi ed signaling molecules include Ihh, 
PTHrP, FGF, BMP, Wnt, IGF, CNP, and CCN proteins. One essential group of regu-
lators of chondrogenesis comprises members of the Hedgehog (Hh) morphogen 
family. Hedgehogs act as long-range morphogens during chondrocyte development 
and endochondral ossifi cation. Mutations in Hh effectors, receptors, and co-receptors, 
as well as in ciliary proteins that act as modulators of Hh reception, result in skeletal 
and craniofacial deformities. Chapter   9     summarizes the current understanding of 
Hh production and signaling in chondrocytes in development and disease. Wnt sig-
nals play important regulatory roles in those processes. In the vertebrate genome, 
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a total of 19 different Wnt ligands are encoded which can utilize diverse signaling 
pathways acting either positively or negatively on chondrogenesis and during carti-
lage development, forming a highly interactive system addressed by Chap.   10    . 

 Chondrogenesis, e.g., the formation of cartilage from precursor cells, is charac-
terized by drastic changes in cell shape and size. This involves major reorganization 
of the cytoskeleton, in particular, the actin network. Recent years have provided new 
insights into both the regulation of actin organization during chondrogenesis and 
into the downstream mechanisms connecting actin dynamics to chondrocyte gene 
expression which is addressed by Chap.   11    . 

 Bringing together international experts from diverse fi elds of musculoskeletal 
research was a demanding task requiring patience and persistence. For that we are 
very grateful to our authors of this volume who managed to complete their chapters 
on time and who dedicated their spare free time to writing their reviews.  

    Regensburg ,  Germany      Susanne     Grässel    
   Munich ,  Germany      Attila     Aszódi       
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  1      Cartilage Proteoglycans                     

       Anders     Aspberg     

    Abstract 
   Proteoglycans are key components of the cartilage extracellular matrix and 
essential for normal tissue function. The core protein and the glycosaminoglycan 
chains both contribute to function and provide different properties of the 
individual proteoglycans. This review is focused on the two main families of 
cartilage proteoglycans. 

 The fi rst of these is the lectican family, including aggrecan, versican, and the 
cartilage link protein. The aggregating proteoglycan network formed by aggre-
can, link protein, and hyaluronan provides biomechanical properties that give the 
tissue its ability to withstand and distribute load. 

 The second group discussed is the small leucine-rich repeat proteoglycan 
family, which includes decorin, biglycan, asporin, fi bromodulin, lumican, kera-
tocan, osteoadherin, proline-/arginine-rich end leucine-rich repeat protein, epi-
phycan, mimecan, opticin, chondroadherin, and chondroadherin-like. These 
proteoglycans bind collagens and are important regulators of cartilage extracel-
lular matrix assembly. In addition, some of these proteoglycans bind and regulate 
growth factors and their receptors and regulate innate immunity through interac-
tions with Toll-like receptors or the complement system. 

 This review will give an overview of the structure and function of the different 
aggregating proteoglycans and small leucine-rich repeat proteoglycans in normal 
cartilage extracellular matrix.  

mailto:anders.aspberg@med.lu.se
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1.1       Introduction 

 Articular cartilage function depends on the molecular composition and organization 
of its extracellular matrix (ECM). This complex protein network fi lls the space 
between the cells and provides a structural scaffold, giving the tissue its unique 
biomechanical properties. 

 Disturbed cartilage ECM composition or organization, either by failure to pro-
duce and assemble the ECM building blocks or dysregulated ECM degradation, is a 
key factor in the development of joint disease such as osteoarthritis. 

 The components of cartilage ECM are usually grouped into proteoglycans, col-
lagens, and non-collagenous proteins, each providing specifi c functionalities to the 
composite ECM material. This chapter will give an overview of cartilage proteogly-
cans, while the latter molecular classes will be discussed in Chaps.   2     and   3    , 
respectively.  

1.2     Proteoglycans 

 A proteoglycan is a protein posttranslationally modifi ed with one or several glycos-
aminoglycan (GAG) chains, a type of linear carbohydrate polymers. The GAG 
chains are composed of repeating disaccharide units, with different specifi c disac-
charides used in the different types of GAGs: hyaluronan, chondroitin/dermatan 
sulfate (CS/DS), heparan sulfate (HS)/heparin, and keratan sulfate (KS). The pro-
teoglycan-forming GAGs CS/DS and HS are attached to the core protein by linkage 
to serine residues in Ser-Gly sequence motifs through a specifi c tetrasaccharide 
linker. Keratan sulfate is either O-linked (KS type II) to serine or threonine residues 
or N-linked (KS type I). Unlike other GAGs, hyaluronan is not attached to a protein 
core but is extruded into the extracellular environment by transmembrane hyaluro-
nan synthases. Further variation and specifi city in GAG structure are achieved 
through sulfation at different positions of the individual disaccharide units and 
through epimerization of uronic acid residues in DS and HS. The cellular synthesis 
of GAGs is complex and not yet entirely understood, with a large number of differ-
ent enzymes involved in producing and modifying the GAG chains. The details of 
structural variation and synthesis of GAGs are beyond the scope of this chapter and 
have been the subject of many excellent recent reviews; see, for example, (Mikami 
and Kitagawa  2013 ). 

 In cartilage, a key function of proteoglycan is to provide swelling pressure, 
allowing the tissue to take up and distribute mechanical load. This is achieved by 
the aggrecan-hyaluronan matrix (see below). Other cartilage proteoglycans play 
vital roles in guiding the ECM assembly, functioning as tissue reservoirs for 
soluble factors or as cell surface receptors. Additional functions of proteoglycans 
include regulating the innate immune system through interaction with comple-
ment components and Toll-like receptors (TLRs), which may lead to an infl am-
matory response and contribute to osteoarthritis pathogenesis (Orlowsky and 
Kraus  2015 ). 

A. Aspberg
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