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Chapter 1

   Gideon A.    Rodan   

   We pay special tribute in this Third Edition of  Principles of 
Bone Biology  to one of the original three editors, Gideon 
Rodan, who passed away after a long illness on January 
1, 2006. Gideon was a wonderful scientist who made out-
standing contributions to our understanding of bone cell 
biology and to the treatment of metabolic bone diseases. 
His quiet but highly effective leadership style, superb intel-
lect and major scientific achievements brought together 
bone and mineral investigators from all over the world. He 
was a beloved friend whose insight, empathy and sense of 
humor enriched our lives. Gideon’s wisdom and breadth of 
knowledge were invaluable in selecting and evaluating the 
contributions to the first two editions of this book. 

   Gideon’s education in mathematics and basic sciences 
in Israel, and his PhD at the Weitzman Institute on physi-
cochemical aspects of mineral metabolism, provided the 
fuel for a career of sustained achievement and scholar-
ship. He began his academic career at the University of 
Connecticut Dental School, rapidly became Chairman of 
the Department of Oral Biology, and built a program of 
research that brought that School to great prominence. He 
was a mentor supreme, with a large number of students, 
post-doctoral trainees and close colleagues who went on 
to have successful careers. They remained intensely loyal 
to him. A former President of the American Society of 
Bone and Mineral Research (ASBMR), Gideon was 

   Dedication 

also the first recipient of the ASBMR Excellence in 
Mentorship award, an Award that has been named for 
him in perpetuity. After moving to the pharmaceutical 
industry in 1984 to lead research and development in 
bone biology and osteoporosis at Merck, Gideon fulfilled 
one of his obligations to that position many times over 
by selecting and then developing alendronate as a treat-
ment for osteoporosis. This achievement set the bar for 
all future drug development programs in osteoporosis. 
Most remarkably at Merck, however, Gideon retained and 
developed even further the rigorous academic approach 
to bone biology that had always characterized him, wher-
ever he was. In his never-ending quest to teach, to train, 
and to learn, Gideon was helped enormously by his wife, 
Sevgi, also his lifelong co-worker .

   We all owe much to the innovative thought that Gideon 
brought to all levels of bone and mineral research. His 
great contributions directed our thinking and our concepts 
for an entire generation that has followed him. Gideon 
would have contributed as much to this third Edition as he 
did to the first two Editions. It is with the greatest admi-
ration and respect that we dedicate this Third Edition of 
 Principles of Bone Biology  to his memory. 

   T. J. Martin, L. G. Raisz and J. P. Bilezikian.   
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 The two previous editions of  Principles of Bone Biology 
 have been well received. They have not only provided a 
resource for investigators already working in the field, but 
have helped new investigators rapidly “get up to speed” in 
developing their projects and grant proposals. The rapid 
progress in our field in the last 6 years mandates that we 
update this text, so that it can continue to serve as a basic 
resource. 

 In this third edition, most of the chapters have been pre-
pared by authors of the previous edition but the chapters 
have been extensively revised and updated. In addition a 
number of new authors have gracefully consented to join us.  
This has involved consolidation, reconfiguration, and reor-
ganizing the information being presented. The two-volume 
format has been retained along with approximately the 

   Preface to the Third Edition 

same text length. The loss of Gideon Rodan has been 
deeply felt by all of us and these volumes are dedicated 
to him. In the spirit that Gideon would have applauded, 
we are delighted that his close colleague and friend Jack 
Martin has joined us as Editors to continue this work to 
which Gideon contributed so much. Finally we would like 
to acknowledge the help of the staff at Elsevier-Academic 
Press who have worked valiantly to maintain schedules and 
have enabled us to complete this third edition. We trust that 
the book will be successful in providing a complete reposi-
tory of the most current and accurate information in the 
field of bone biology.  

   John P. Bilezikian 
   Lawrence G. Raisz 

  T. John Martin
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   The world of modern science is undergoing a number of 
spectacular events that are redefining our understanding 
of ourselves. As with any revolution, we should take stock 
of where we have been, where we are, and where we are 
going. Our special world of bone biology is participating 
in and taking advantage of the larger global revolution in 
modern science. Often with shocking but delightful sud-
denness, we are gaining new insights into difficult issues, 
discovering new concepts to explain old observations, 
developing new approaches to perennial mysteries, and 
applying novel technological advances from other fields to 
our own. The pace with which the bone world is advancing 
is impressive not only to the most ardent optimists, who 
did not expect so much so soon, but also to the more sober 
minded who, only several years ago, would have brushed 
off the notion that progress could come with such lighten-
ing speed. 

   The rationale for this book is rooted in the recognition 
of the revolution in bone biology. We need a new reposi-
tory of knowledge, bringing us both to the core and to the 
edge of our universe. Our goal is to provide complete, 
truly up-to-date, and detailed coverage of this exciting and 
rapidly developing field. To achieve this, we assembled 
experts from all over the world and asked them to focus 
on the current state of knowledge and the prospects for 
new knowledge in their area of expertise. To this end, 
 Principles of Bone Biology  was conceived. It is designed 
to be useful to students who are becoming interested in the 
field and to young investigators at the graduate or post-
graduate level who are beginning their research careers. It 
is also designed for more established scientists who want 
to keep up with the changing nature of our field, who want 
to mine this lode to enrich their own research programs, or 
who are changing their career direction. Finally, this book 
is written for anyone who simply strives for greater under-
standing of bone biology. 

   This book is intended to be comprehensive but read-
able. Each chapter is relatively brief. The charge to each 
author has been to limit size while giving the reader 
information so complete that it can be appreciated on its 
own, without necessary recourse to the entire volume. 
Nevertheless, the book is also designed with a logic that 
might compel someone to read on, and on, and on! 

   The framework of organization is fourfold. The first 
53 chapters, in a section titled  “ Basic Principles, ”  cover 
the cells themselves: the osteoblast, the osteoclast, and 
the osteocyte; how they are generated; how they act and 
interact; what turns them on; what turns them off; and how 
they die. In this section, also, the biochemistry of collag-
enous and noncollagenous bone proteins is covered. Newer 
understandings of calcium, phosphorus, and magnesium 
metabolism and the hormones that help to control them, 
namely, parathyroid hormone, vitamin D metabolites, cal-
citonin, and related molecules, are presented. A discussion 
of other systemic and local regulators of bone metabolism 
completes this section. 

   The second section of this book,  “ Molecular Mechanisms 
of Metabolic Bone Diseases, ”  is specifically devoted to 
basic mechanisms of a variety of important bone diseases. 
The intention of these 17 chapters is not to describe the dis-
eases in clinical, diagnostic, or therapeutic terms but rather 
to illustrate our current understanding of underlying mecha-
nisms. The application of the new knowledge summarized 
in Part I to pathophysiological, pathogenetic, and molecular 
mechanisms of disease has relevance to the major metabolic 
bone disorders such as osteoporosis, primary hyperparathy-
roidism, and hypercalcemia of malignancy as well as to the 
more uncommon disorders such as familial benign hypo-
calciuric hypercalcemia, pseudohypoparathyroidism, and 
osteopetrosis. 

   The third section of this book,  “ Pharmacological 
Mechanisms of Therapeutics, ”  addresses the great advances 
that have been made in elucidating how old and new drugs 
act to improve abnormalities in bone metabolism. Some of 
these drugs are indeed endogenous hormones that under 
specified circumstances are useful therapies: estrogens, 
vitamin D, calcitonin, and parathyroid hormone are repre-
sentative examples. Others agents such as the bisphospho-
nates, fluoride, and calcium are reviewed. Finally, agents 
with therapeutic potential but still in development such 
as calcimimetics, insulin-like growth factors, transform-
ing growth factor, bone morphogenetic protein, and fibro-
blast growth factor are presented with a view to the future. 
The intent of this 12-chapter section is not to provide 
step-by-step  “ how-to ”  instructions for the clinical uses of 
these agents. Such prescribing information for established 

   Preface to the First Edition 
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 therapies is readily found in other texts. Rather, the under-
lying mechanisms by which these agents are currently 
believed to work is the central point of this section. 

   The fourth and final section of this book,  “ Methods in 
Bone Research, ”  recognizes the revolution in investigative 
methodologies in our field. Those who want to know about 
the latest methods to clone genes, to knock genes out, to 
target genes, and to modify gene function by transfection 
and by transcriptional control will find relevant informa-
tion in this section In addition, the selection and charac-
teristics of growth conditions for osteoblastic, osteoclastic, 
and stem cells; animal models of bone diseases; assay 
methodologies for bone formation and bone resorption and 
surrogate bone markers; and signal transduction pathways 
are all covered. Finally, the basic principles of bone den-
sitometry and bone biopsies have both investigative and 
clinical relevance. This 15-chapter section is intended to be 
a useful reference for those who need access to basic infor-
mation about these new research technologies. 

   The task of assembling a large number of international 
experts who would agree to work together to complete 

this ambitious project was formidable. Even more daunt-
ing was the notion that we would successfully coax, cajole, 
and otherwise persuade authors of 97 chapters to complete 
their tasks within a six-month period. For a book to be 
timely and still fresh, such a short time leash was neces-
sary. We are indebted to all the authors for delivering their 
chapters on time. 

   Finally, such a monumental undertaking succeeds only 
with the aid of others who helped conceive the idea and 
to implement it. In particular, we are grateful to Jasna 
Markovac of Academic Press, who worked tirelessly with 
us to bring this exciting volume to you. We also want to 
thank Tari Paschall of Academic Press, who, with Jasna, 
helped to keep us on time and on the right course. We 
trust our work will be useful to you whoever you are and 
for whatever reason you have become attracted to this 
book and our field. Enjoy the book. We enjoyed editing it 
for you. 

   John P. Bilezikian 
   Lawrence G. Raisz 

   Gideon A. Rodan    
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Chapter 1

            INTRODUCTION 

   Propulsion against gravity requires levers. Bones are levers 
and must be stiff, that is, they must resist deformation. 
Impact loading imparts energy to bone. Because energy 
cannot be destroyed, it must be stored or dissipated. Thus, 
bone must also be flexible in order to absorb energy by 
changing shape; it must be able to shorten and widen in 
compression and lengthen and narrow in tension without 
cracking ( Currey, 2002 ). Bone must also be light to allow 
mobility. 

   The elastic properties of bone allow it to absorb energy 
by deforming reversibly when loaded (Lanyon  et al.,  1976; 
Turner  et al.,  2006). If the load imposed exceeds bones ’  
ability to deform elastically, plastic deformation occurs 
but this is irreversible; it is accompanied by a permanent 
change shape with accumulation of microcracks that allow 
energy release ( Currey, 2002 ). The ability to develop 
microdamage is a defense against the alternative, namely, 
a complete fracture, but microcracks compromise strength 
as they accumulate ( Burr  et al.,  1998 ). If both the elastic 
and plastic zones of deformation are exceeded, structural 
failure – fracture – occurs. 

   Bone achieves the paradoxical properties of stiffness 
yet flexibility, strength yet lightness through its mate-
rial composition and its structural design – the way this 
material is fashioned in three-dimensional space contain-
ing  “ nothing ”  – void space. Excavation of a marrow cav-
ity during growth confers strength in tubular bones like the 
femur or tibia, which function mainly as levers, by shifting 
the mineralized cortical bone radially increasing resistance 
to bending ( Ruff and Hayes, 1988 ). It also confers light-
ness by minimizing the mass needed to achieve this resis-
tance to bending. 

   For structures like the vertebral body that must have 
greater flexibility than long bones, nature again takes 
advantage of void to achieve a different type of strength – 
the ability to deform (tolerate strain or change in length) 
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without cracking. Lightness is achieved by fashioning the 
mineralized bone material with many voids; as a porous 
sponge-like structure of trabecular plates and sheets. 
Stiffness and the ability to tolerate large loads is sacrificed 
in favor of greater ability to deform – peak loads achiev-
able are less than in tubular bones but the ability to absorb 
energy by changing length without cracking is greater. 

          Material Strength 

   Type 1 collagen is tough: It is distensible in tension but 
lacks resistance to bending so it needs to be stiffened. This 
is achieved by creating a composite of collagen plus mineral 
but more mineral is not necessarily better. Greater the min-
eral content produces greater the material stiffness, but the 
ability to deform and so absorb and store energy decreases 
as a result. For a given increase in the percentage mineral 
ash, stiffness increase fivefold but work to fracture decreases 
fourteen-fold ( Currey, 2002) (  Fig. 1   , upper panel). 

   Nature selects the mineral concentration most suited 
to the particular function a given bone  usually  performs. 
Ossicles in the ear are over 80% mineral, a feature selected 
for so that they can vibrate like tuning forks without stor-
ing energy in deformation ( Fig. 1 , lower panel). These 
bones sacrifice the ability to deform in favor of stiffness to 
transmit sound with high fidelity. The slightest deformation 
and they crack but deformation is unlikely because they are 
protected safely in the skull. On the other hand, deer ant-
lers are less densely mineralized to facilitate deformation 
so energy can be absorbed like springs during head butting 
in mating season. Greater energy-absorbing ability of ant-
lers is favored over stiffness but they do not need stiffness; 
they are not load-bearing (Currey  , 1969). 

   The organization of the composite of mineral and col-
lagen is incompletely understood. Although the mineral 
is the material that stiffens bone, it is also the most brittle 
component and must be protected. Collagen fibers contain 

                        Modeling and Remodeling 
The Cellular Machinery Responsible for the Gain and Loss of 
Bone’s Material and Structural Strength 

   Ego   Seeman    
Department of Endocrinology and Medicine, Austin Health, University of Melbourne, Melbourne, Australia   
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mineral, interfibrillary matrix, and mineralized fibrils. The 
mineralized fibrils are composed of platelets of mineral and 
an intrafibrillary matrix phase of noncollagenous proteins. 
The brittle mineral confers stiffness and is protected during 
loading by energy absorption by collagen deformation and 
by noncollagenous proteins that dissipate energy by revers-
ibly breaking intrahelical bonds that are  “ sacrificed ”  to 
provide  “ hidden ”  length ( Fantner  et al.,  2005 ; Gupta    et al. ,
 2006) ( Fig. 2   ). Stresses at the tissue, fiber, and mineral 
levels decrease in proportions of 12:5:2.  

          Structural Strength 

   During growth, the bone with its appropriate material com-
position is fashioned into three-dimensional masterpieces 
of biomechanical engineering. Although there is variabil-
ity in the material composition of bone, this composition is 
similar in land-dwelling mammals (Keaveney  et al.,  1998), 
so that most of the diversity in bone strength is the result of 
structural diversity that is obvious at the macroscopic level 
from bone to bone but the diversity in cross-sectional size, 
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shape, and the way its architecture is distributed in three-
dimensional space from cross-section to cross-section as 
cortical and trabecular bone along a bone has only recently 
been given attention ( Zebaze  et al.,  2005 ;  Zebaze  et al.,  
2007 ). 

   Structural diversity is largely due to individual differ-
ences in genetic makeup rather than individual differences 
in life style ( Pocock  et al.,  1987 ;  Christian  et al.,  1989 ). 
Fetal limb buds removed  in utero  and grown  in vitro  
develop the shape of the proximal femur implying that 
bone shape is  “ imprinted ”  in the genetic material ( Murray 
and Huxley, 1925 )  . Studies in families and twins sup-
port this view ( Seeman  et al.,  1989 ;  Seeman  et al.,  1996 ). 
Although the many genes responsible for the diversity in 
bone’s structural strength, and the contribution of environ-
mental factors to this diversity, are largely undefined, the 
final pathway mediating genetic and environmental influ-
ences on structural diversity is the cellular machinery of 
bone modeling and remodeling ( Parfitt, 1989 ).   

          BONE MODELING AND REMODELING 
DURING GROWTH AND THE ATTAINMENT 
OF PEAK STRENGTH 

   Bone  modeling  (construction) is the process by which 
bone is formed by osteoblasts without prior bone resorp-
tion. This process is vigorous during growth and produces 
changes in bone size and shape. Bone  remodeling  (recon-
struction) occurs throughout life. Bone is first resorbed by 
osteoclasts and then formed in the same location by osteo-
blasts. These cells form the basic metabolic unit (BMU) 
that reconstructs bone in distinct locations on the three 
(endocortical, intracortical, and trabecular) components of 
its inner (endosteal) envelope and to a much lesser extent 
on the outer (periosteal) envelope (Orwoll  et al.,  2003; 
 Blizoites  et al.,  2006 ). 

   Bone modeling and remodeling achieve strength for 
loading and lightness for mobility in two ways: by stra-
tegically depositing bone in locations where it is needed 
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to modify bone size and shape, and by removing bone 
from where it is not needed to avoid bulk. The enormous 
capacity of this cellular machinery to modify structure 
during growth is seen in the morphological differences 
between the playing and nonplaying arm of tennis play-
ers. Modeling and remodeling modifies bone size, shape, 
and mass distribution of the humerus of the playing arm 
without changing its mass (Haapasalo  et al.,  2000  ;  Bass 
et al., 2002 ;  Seeman, 2002 ). However, this ability to adapt 
structure to its loading circumstances after the completion 
of longitudinal growth is limited because periosteal appo-
sition decreases  precipitously and the age-related changes 
in remodeling occur that produce structural decay (see 
Section III)  . 

          The Purpose of Modeling and Remodeling 
During Growth – Optimizing Strength and 
Minimizing Mass 

   If bone had only to be strong it could achieve this with 
bulk – more mass, but mass takes time to grow, is costly 
to maintain and limits mobility. Bone also must serve a 
second need – lightness to facilitate mobility. Longer tubu-
lar bones need more mass to construct their length than 

shorter bones do, but wider and narrower cross-sections 
do not necessarily differ in the absolute amount of material 
needed to construct them ( Zebaze  et al.,  2007 ). 

   Although it seems obvious that the total cross-sectional 
area (cortical area plus marrow area) of a wider femoral 
neck or femoral shaft must be assembled with more mass, 
this is not the case. The total cross-sectional area of a tubu-
lar bone and its bone mass are independent; wider and nar-
rower bone cross-sections are assembled using a similar 
amount of material ( Fig. 3   ). Thus, larger cross- sections 
are assembled with less material relative to their size pro-
ducing a lower apparent volumetric bone mineral density 
(vBMD) and so avoiding bulk. Smaller cross-sections are 
assembled with more material relative to their size, pro-
ducing a higher vBMD while avoiding the fragility of 
slenderness. 

   Bulk is avoided in larger cross-sections by greater 
endocortical resorption, which excavates a correspondingly 
larger marrow cavity so that the endocortical envelope 
approximates the periosteal envelope; wider tubular bones 
are assembled with a relatively thinner cortex (producing 
the same cortical bone area because the thinner  “ ribbon ”  
of cortex is distributed around a larger perimeter). By anal-
ogy, constancy of mass achieves a wider or narrower cylin-
der by rolling a sheet of paper   with fewer or more rolls of 
the sheet.  
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          Diversity in Bone Size, Shape, and the 
Spatial Distribution of its Mass 

   Long bones are not drinking straws with the same dimen-
sions throughout their length; long bones do not have a sin-
gle cross-sectional diameter, the same cortical thickness or 
marrow cavity diameter. Group means obscure variance –
the diversity in structure and mass distribution so critical 
to determining diversity in bone strength. Bone strength 
and lightness are also achieved by altering bone shape. 
Diameters of a cross-section differ at each degree around 
the periosteal perimeter creating differences in the external 
shape of the cross-section. Differences in the medullary 
diameters at corresponding points around the endocortical 
perimeter determine the shape of the marrow cavity and 
the proximity of these two envelopes, which in turn then 
determine cortical thicknesses around the perimeter of the 
cross-section and the distance the cortical mass is placed 
from the neutral axis ( Zebaze  et al.,  2007 ). 

   This diversity in bone size, shape, and mass distribution 
is the result of differing degrees of focal bone formation 
at each point around the periosteal perimeter and resorp-
tion at the corresponding point on the endocortical surface 
during growth. Bone strength is optimized, not by using a 
greater net amount of mass, but by strategically modify-
ing bone size, shape, and the distribution of mass using the 
minimum net amount of bone needed to do so. 

   For example, total cross-sectional area of the femo-
ral neck is greatest adjacent to the shaft of the femur and 
smaller nearer the femoral head but the amount of bone 
in each cross-section is no different ( Fig. 4   ). What differs 
is the way this bone is distributed in space as cortical and 
trabecular bone. Adjacent to the femoral shaft, the femoral 
neck cross-section is elliptical with long axis in the supero-
inferior direction. The marrow cavity shape follows the 
external shape, but not identically; the greater periosteal 
apposition superiorly and inferiorly relative to mediolater-
ally produces the elliptical shape. Differences in periosteal 
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apposition and endocortical resorption produce a thicker cor-
tex inferiorly and a thinner cortex superiorly ( Zebaze  et al.,
  2007 ). 

   The bone in the cross-section at the junction of the 
femoral neck with the femoral shaft is largely cortical. 
Moving proximally, femoral neck shape becomes more 
circular reflecting similar degrees of periosteal apposition 
around the perimeter and the bone mass is distributed pro-
gressively more as trabecular and less cortical bone while 
cortical thickness is similar around the perimeter (as can 
be seen by the similar distribution profile in the lower part 
of  Fig. 4 ). 

   The relative contributions of genetic factors and load-
ing circumstances to this diverse structural organization is 
uncertain but modeling, by deposition bone, and remodel-
ing by removing bone, assemble very different structures 
along the length of the femoral neck to accommodate 
differing loading patterns using similar net amounts of 
material. 

   This principle of optimizing strength and minimiz-
ing mass is illustrated in a prospective study of growth of 
a tibial cross-section assessed using quantitative computed 
tomography (       Wang  et al.,  2005 ; Wang  et al.,  2007). In pre-
pubertal girls, tibial cross-sectional shape was already ellip-
tical at age 10. During two years, focal periosteal apposition 
increased the ellipticity by adding twice the amount of bone 
anteriorly and posteriorly than added medially and laterally. 
Consequently, estimates of bending strength increased more 
in the anteroposterior (Imax) than mediolateral direction 
(Imin) ( Fig. 5   ). Marrow area changed little so more mass 
was distributed as a thicker cortex anteroposteriorly due 
to periosteal apposition without concurrent endocortical 
resorption. Resistance to bending increased by 44% along 
the principal axis (Imax) with a 22% increase in mass. If 
cortical thickness increased by the same amount of peri-
osteal apposition at each point around the tibial perimeter, 
the amount of bone producing the same increase in bending 
resistance would be 205       mg, fourfold more than observed. 
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 FIGURE 5          Left upper and lower panel: Bone mass distribution around the center of the tibial cross-section. More bone is deposited anteriorly and 
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Adapted from Wang  et al.  (2007)      .



9Chapter | 1 Modeling and Remodeling

   It is also intuitive that a bone with a larger cross-sectional 
area must be constructed with more periosteal bone than a 
smaller cross-section. The contrary was observed. During two 
years, the absolute amount of bone deposited on the perios-
teal surface of the tibial cross-section was similar in children 
with baseline tibial total cross-sectional area in the upper, 
middle, and lower tertile at age 10. Thus, larger cross-sec-
tions were assembled with less mass  relative  to their starting 
cross-sectional size avoiding bulk, and smaller cross-sections 
were assembled with more mass  relative  to their starting total 
cross-sectional size offsetting the fragility associated with 
slenderness. 

   Deposition of similar amounts of bone on the perios-
teal surface of larger and smaller cross-sections (and so 
less in relative terms on the former and more on the lat-
ter) was possible because the differences in bone size were 
established early, probably in utero (see later discussion). 
Consequently, the deposition of the same amount of bone 
on the periosteal surface of an already larger cross- section 
confers more bending resistance than deposition of the 
same amount of bone on a smaller cross-section because 
resistance to bending is proportional to the fourth power of 
the distance from the neutral axis ( Ruff and Hayes, 1988 ). 

   This ability of bone to increase its strength in response 
to loading by adapting its design rather than increasing its 
mass is convincingly documented in racket sports. During 
growth, greater loading of the playing arm achieves greater 
bone strength by modifying its external size, shape, and the 
spatial distribution of its internal architecture. Focal peri-
osteal apposition and endocortical resorption at some loca-
tions but endocortical bone formation at others changes the 
distribution of bone in space without a net change in its 
mass to accommodate loading patterns so that vBMD does 
not change; bending strength increases without increasing 
bulk, the latter hardly conducive to a good forehand volley 
(Haapsalo  et al.,  2000  ;  Bass  et al.,  2002 ).  

          Trait Variances in Adulthood Originate 
Before Puberty 

   Although adults have larger skeletons than children, dif-
ferences in bone size and mass in adult life probably have 
their origins established early in life. In a 3-year prospec-
tive study of growth in 40 boys and girls, Loro  et al.  report 
that the variance at Tanner stage 2 (prepuberty) in verte-
bral cross-sectional area and volumetric trabecular BMD, 
femoral shaft cross-sectional area (CSA) and cortical area 
was no less than at Tanner stage 5 (maturity); 60–90% of 
the variance at maturity was accounted for by the variance 
present before puberty. Thus, the magnitude of trait vari-
ances (dispersion around the age-specific mean) is largely 
established before puberty ( Loro  et al.,  2000 ). 

   The ranking of individual values at Tanner stage 2 was 
unchanged during 3 years in girls ( Fig. 6   ). These traits 
tracked so that an individual with a large vertebral or 

femoral shaft cross-section, or higher vertebral vBMD or 
femoral cortical area before puberty retained this position 
at maturity. The regression lines for each of the quartiles 
did not cross during three years. Similar observations were 
made in boys (not shown). 

   Similar observations have been reported using periph-
eral computed tomography of the tibia in 258 girls. The 
magnitude of variance at ages 10–13 did not differ from 
that two years later, and did not differ from that of their 
premenopausal mothers (Wang  et al.,  2007). Likewise, 
Garn  et al.  monitored 744 women and men during 25 
years. About 90% of the variance in cortical thickness in 
adulthood was accounted for by variance at completion of 
growth 25 years earlier ( Garn  et al.,  1992 ). Emaus  et al.  
reported distal and ultra distal radius size and mass tracked 
during 6.5 years follow-up of 5,366 women and men ages 
45–84 ( Emaus  et al.,  2005 ;  Emaus  et al.,  2006 ). 

   Finding that the magnitude of the trait variances at matu-
rity is no different from the magnitude of their variances 
before puberty suggests that growth in larger and smaller 
bones occurs at the same rate (Wang  et al.,  2007). (If larger 
bones deposit more bone during growth than smaller bones, 
variance will increase.) In addition, the constant variance and 
tracking also suggests that environmental factors are likely to 
contribute little to total variance of a trait in the population. 

   If variance is established before puberty, when is 
growth more rapid in some individuals than others to 
give rise to these large variances in bone size and mass 
(1 SD      �       � 10% of the mean)? Do bones from individual 
to individual begin by being the same size then some grow 
more rapidly (deposit more bone per unit time than others) 
to form the upper tertile of a trait while others grow more 
slowly forming the middle and lower tertile? 

   The answer to this question is unknown. In infants and 
children between ages 1 and 10, the variance in diaphyseal 
diameter and muscle diameter was established at 1–2 years 
of age ( Maresh, 1961 ). In a cross-sectional study of 146 
stillborn fetuses ages 20–41 weeks ’  gestation, the percent-
age of a femur, tibia, and humerus diaphyseal cross-section 
that was cortical area was about 80–90% at 20 weeks ’  ges-
tation and remained so across the 20 weeks of intrauterine 
life, suggesting that as bone size increased during advanc-
ing intrauterine life, the proportion of bone within the 
cross-section remained constant and was established prior 
20 weeks ’  gestation ( Rodriguez  et al.,  1992 ). By contrast, 
one cross-sectional study using three-dimensional ultra-
sound suggested variance in femoral volume doubled dur-
ing intrauterine growth ( Chang  et al.,  2007 ). 

   The divergence of data points of graphic analyses of 
growth creating the impression of increasing variance may 
be more apparent than real because larger numbers differ 
by larger absolute amounts. Further studies are needed to 
define the magnitude to trait variances by sex and race and 
to define the genetic and environmental components of that 
variance. 
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   The obvious inference from the early establishment 
and constancy of trait variances is that genetic rather than 
environmental factors account for this variance. Studies in 
family members, twins, birth cohorts followed for many 
decades, and studies of fetal limb buds grown  in vitro  sup-
port this view ( Murray and Huxley, 1925 ;  Pocock  et al.,  
1987 ;  Seeman  et al.,  1996 ). However, this does not mean 
that traits  in an individual  are immutably fixed. 

   This flawed notion confuses variance in a popula-
tion and the effect of environmental or disease on a trait 
in an individual. Muscle paralysis in utero, exercise during 
growth, or effects of disease in adulthood all have profound 
effects on bone structure in individuals ( Bass  et al.,  2002 ; 
 Pitsillides, 2006 ). Lifestyle change can influence the popu-
lation mean of a trait as documented many times by secular 
increases in height, a highly heritable trait ( Bakwin, 1964 ; 
 Meredith, 1978 ;  Cameron  et al.,  1982 ;  Tanner  et al.,  1982 ; 
 Malina and Brown, 1987 ). However, under stable condi-
tions, lifestyle differences within a population make only a 
small contribution to trait variances compared with genetic 
differences in that population.  

          Sex and Racial Differences in Axial and 
Appendicular Structure 

   For the vertebrae, increasing bone size by periosteal 
apposition builds a wider vertebral body in males than in 
females and in some races than in others ( Seeman, 1998 ). 
Trabecular number per unit area is constant during growth. 
Therefore, individuals with a low trabecular number in 
young adulthood are likely to have had lower trabecular 
numbers in childhood ( Parfitt  et al.,  2000 ). The age-related 
increase in trabecular density is the result of increased 
thickness of existing trabeculae. Before puberty there is no 
difference in trabecular density in boys and girls of either 
Caucasian or African American origin ( Gilsanz  et al.,  
1988 ;  Gilsanz  et al.,  1991 ). This suggests that both verte-
bral body size and the mass within its periosteal envelope 
increase in proportion until Tanner stage 3    ( Fig. 7   ). 

   At puberty, trabecular density increases by race and sex, 
but within a race there is no sex difference in trabecular 
density. This increase is probably the result of cessation of 
external growth in bone size but continued bone  formation 
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on trabecular and endocortical envelopes resulting in 
more bone within the periosteal envelope of the bone – 
higher vBMD. Thus, growth does not build a  “ denser ”  
vertebral body in males than females; it builds a bigger 
vertebral body in males. Strength of the vertebral body is 
greater in young males than females because of size dif-
ferences. Within a sex, African Americans have a higher 
trabecular density than whites due to a greater increase in 
trabecular thickness ( Han  et al.,  1996 ). The mechanisms 
responsible for the racial dimorphism in trabecular den-
sity but resemblance in males and females within a race 
are yet to be defined. The greater trabecular thickness in 
African Americans accounts for the lower remodeling rate 
in  adulthood because there is less surface available for 
remodeling ( Han  et al.,  1996 ). 

   Sex differences in appendicular growth are partly the 
result of differences in timing of puberty ( Fig. 8   ). Before 
puberty there are already sex differences in diaphyseal 
diameter (Iuliano  et al.,  2008)  . As long bones increase in 
length by endochondral apposition, periosteal apposition 
widens the lengthening long bone. Concurrent endocortical 
resorption excavates the marrow cavity but as periosteal 
apposition is greater than endocortical resorption, the cor-
tex thickens. In females, earlier completion of  longitudinal 

growth with epiphyseal fusion and earlier inhibition of 
periosteal apposition produces a smaller bone. 

   Bone length continues to increase in males and perios-
teal apposition increases cortical thickness. However, cortical 
thickness is similar in males and females because endocorti-
cal apposition in females contributes to final cortical thick-
ness ( Garn, 1970 ;  Bass  et al.,  1999 ). Cortical thickness is 
similar by race and sex. What differs is the position of the 
cortex in relationship to the long axis of the long bone (       Wang 
 et al.,  2005 ;  Duan  et al.,  2005 ). It is not clear whether the 
wider diaphysis in males than females is the result of acceler-
ated periosteal apposition in males as commonly believed, or 
is the result of continued longitudinal growth in males as they 
enter puberty one to two years after females ( Garn, 1970 ). 

   In summary, the cellular machinery of bone modeling 
and remodeling adapt bone size, shape, and mass distri-
bution to its loading circumstances throughout the whole 
of growth ensuring that strength is optimized by deposit-
ing bone where it is needed and mass is minimized by 
removing bone from where it is not. The magnitude of the 
trait variances in adulthood are largely expressed in child-
hood. Traits track in their percentile of origin established 
at some time before puberty, if not in utero. Thus, differ-
ences in bone size and mass from individual to individual 
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in  adulthood are likely to be already evident early in life. 
This is obvious for cross-sectional size because periosteal 
apposition is minimal after completion of longitudinal 
growth. It is less obvious that the amount of bone within 
the periosteal envelope in adulthood is also largely estab-
lished during growth ( Zebaze  et al.,  2007 ). 

   Variance in bone mass at completion of growth is an 
order of magnitude greater than variance in rates of bone 
loss during aging (1 SD      �      10% versus 1%, respectively) 
( Parfitt, 1996 ). Thus, bone size, architecture, and mass 
attained during growth is likely to play an important role 
in determining the relevance of bone loss during advancing 
age ( Hui  et al.,  1999 ;  Seeman  et al.,  2001 ). For example, 
in children with larger tibial cross-sections, the advantage 
of assembling the larger bone with a relatively thinner cor-
tex (to avoid bulk) may be a disadvantage when age-related 
bone loss occurs. Women with hip fractures and their daugh-
ters have larger femoral neck diameters and reduced vBMD 
( Filardi  et al.,  2004 ). In smaller bones, the fragility of 
slenderness is offset by constructing them with more mass 

relative to their size as less endocortical resorption exca-
vates a smaller marrow cavity, leaving a relatively thicker 
cortex. This balance may be compromised as bone loss 
produces cortical thinning and intracortical porosity which 
reduce compressive strength and resistance to bending.   

          BONE MODELING AND REMODELING IN 
ADULTHOOD AND THE EMERGENCE OF 
BONE FRAGILITY 

          The Purpose of Modeling and Remodeling 
in Adulthood – Maintenance of Bone 
Strength 

   The purpose of modeling and remodeling during growth is 
to achieve the skeleton’s peak strength. The purpose of bone 
remodeling during adulthood is to maintain bone strength by 
removing damaged bone. *Bone, like roads, buildings, and 
bridges, develops fatigue damage during repeated loading but 
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only bone has a mechanism enabling it to detect the location 
and magnitude of the damage, to remove it, replace it with 
new bone, and thus to restore bone’s material composition, 
micro- and macroarchitecture ( Parfitt, 1996 ;  Parfitt, 2002 ). 

   Bone resorption is not bad for bone unless it becomes 
excessive and untargeted. On the contrary, the resorptive 
phase of the remodeling cycle removes damaged bone and 
is essential to bone health. Indeed, prolonged suppression of 
remodeling using potent anti-resorptive therapy may result in 
microdamage accumulation, fractures, and reduced bone heal-
ing ( Mashiba  et al.,  2000 ;  Odvina  et al.,  2005 ). The formation 
phase of the remodeling cycle restores bone’s structure pro-
vided that the volume of damaged bone removed is replaced 
by the same volume of normal bone. This process depends on 
the normal production, work, and life span of osteoclasts and 
osteoblasts, but the BMU is a  multicellular  unit and many cell 
types participate in the remodeling cascade.  

          The Pivotal Role of Osteocyte Death in 
Bone Remodeling 

   The osteocyte is one of these cells and is likely to play a 
pivotal role in bone modeling and remodeling. Osteocytes 
are the most numerous, longest-lived, and least studied cells 
of bone. There are about 10,000 cells per cubic  millimeter 
and 50 processes per cell ( Marotti  et al.,  1990 ). These pro-
cesses connect osteocytes with each other and with flat-
tened lining cells on the endosteal surface. Thus, bone 
with its haversian and Volkmann canals and its lacunar-
canalicular system is no less intricate in design than the 
hepatobiliary, bronchoalveolar, or glomerulotubular com-
munication systems ( Fig. 9, Panel 1   ). The dense lace-like 
network of osteocytes with their processes ensures that no 
part of bone is more than several microns from a lacuna 
containing its osteocyte suggesting that these cells are part 
of the machinery guarding the integrity of the composition 
and structure of bone ( Parfitt, 2002 ). 

   Microcracks sever osteocyte processes in their canalic-
uli, producing osteocyte apoptosis ( Hazenberg  et al.,  2006 ) 
( Fig. 9, Panel 2 ). Apoptotic osteocytes may also be a form 
of damage, perhaps reducing the energy absorbing/dissi-
pating capacity of bone when lacunae mineralize. Estrogen 
deficiency and corticosteroid therapy result in apoptosis 
( Manolagas, 2006 ). The increased remodeling rate in midlife 
in women may be partly the result of osteocyte death. 
Alternatively, or in addition, osteocyte apoptosis can pro-
duce damage to surrounding mineralized matrix producing 
bone fragility (independent of bone loss). Corticosteroid-
treated mice have large osteocyte lacunae surrounded by 
matrix with a 40% reduction in mineral and reduced elastic 
modulus ( Lane  et al.,  2006 ). Genetic ablation of osteocytes 
produces bone fragility and failed mechanotransduction 

( Tatsumi  et al.,  2007 ). Prevention of osteocyte death may 
be an attractive therapeutic target if they are damage or pro-
duce damage ( Keller and Kneissel, 2005 ;  Manolagas, 2006 ). 
Fragility can be prevented using anti-apoptotic agents 
( O’Brien  et al.,  2004 ;  Manolagas, 2006 ). 

   Whether apoptotic osteocytes are a consequence of dam-
age, are the damage itself, or produce matrix damage, the 
number of dead osteocytes provides the topographical infor-
mation needed to identify the location and size of damage 
( Verborgt  et al.,  2000 ;  Taylor 1997 ; Schaffler and Majeska, 
2005)   ( Fig. 9, Panel 3 ). Osteocyte apoptosis is likely to be 
one of the first events signaling the need for remodeling. 
It precedes osteoclastogenesis ( Clark  et al.,  2005 ).  In vivo , 
osteocyte apoptosis occurs within three days of immobiliza-
tion and is followed within two weeks by osteoclastogenesis 
( Aguirre  et al.,  2006 ).  In vitro , death of the osteocyte-like 
MLO-Y4 cells induced by scratching results in the forma-
tion of TRACP positive (osteoclast-like) cells along the 
scratching path ( Kurata  et al.,  2006 ). 

   Thus, just as the spider knows the location and size of 
its wriggling prey by signals sent along its vibrating web, 
the need for reparative remodeling is likely to be signaled 
by osteocyte death via their processes connected by gap 
junctions to flattened osteoblast lining the inner or end-
osteal surface of bone where remodeling takes place. The 
nature of the signal from the osteocyte remains unknown.  

          The Pivotal Role of the Bone Remodeling 
Canopy in Bone Remodeling 

   It is not yet feasible to study the life of a BMU  in vivo , 
documenting its birth, daily work in resorption, and for-
mation to its end as an ossified osteon or hemi-osteon; the 
 “ fossilized ”  record of that remodeling cycle. Inferences 
regarding the sequence of events and their molecular regu-
lation must be made with trepidation because observations 
are based on histomorphometric  “ snapshots ”  and  in vitro  
studies of cell systems. 

   Bone remodeling occurs on the endocortical, trabecular, 
and intracortical components of the endosteal envelope. The 
endocortical and trabecular surfaces are adjacent to marrow. 
The intracortical surface forms the wall of haversian canals. 
While remodeling occurs on these endosteal surfaces, dam-
age occurs deep to them, within the matrix of osteons or 
the interstitial bone between osteons in the case of cortical 
bone or within hemi-osteons in the case of trabecular bone. 
So, information concerning the location and size of damage 
must reach these surfaces and cells involved in remodeling 
must reach the site of damage beneath the endosteal sur-
face. This anatomical arrangement makes the flattened lin-
ing cells conduits transmitting the health status of the bone 
matrix to the bone marrow environment, which in turn is a 
source of the cells of the BMU, but not the only source. 

   Apoptotic osteocytes signal the location and size of the 
damage burden to the flattened lining cells of the  endosteal 

Central regulation of bone remodeling and the role of remodeling in energy 
metabolism will not be discussed   ( Ducy  et al.,  2000 ;  Lee  et al.,  2007 ).



Part | I Basic Principles14

surface leading to the formation of a bone remodeling 
compartment (BRC), which confines and targets remod-
eling to the damage minimizing removal of normal bone 
( Hauge  et al.,  2001 ) ( Fig. 9, cartoon and especially Panel 
5 ). The regulatory steps between osteocyte apoptotic death 
and creation of the BRC are not known. Bone lining cells 
express collagenase mRNA ( Fuller and Chambers, 1995 ). 
An early event creating the BRC may be collagenase diges-
tion of unmineralized osteoid to expose mineralized bone, 
a requirement for osteoclastic bone resorption to proceed. 

   The flattened bone lining cells are probably osteoblasts. 
They express markers of the osteoblast lineage, particu-
larly those forming the canopy over the BRC ( Hauge  et al.,  
2001 ;  Parfitt, 2001 ). These canopy cells also express mark-
ers for a range of growth factors and regulators of osteo-
clastogenesis such as RANKL suggesting that the canopy 
has a central role in the differentiation of precursor cells of 
marrow stromal origin, monocyte-macrophage origin, and 
vascular origins toward their respective osteoblast, osteo-
clast, or vascular phenotypes.  

    The Multidirectional Steps of the 
Remodeling Cycle 

   Although the two classical events of remodeling – resorp-
tion of a volume of bone by osteoclasts and formation of 
a similar volume of bone by osteoblasts occur sequentially 
( Hattner  et al.,  1965 ), the cellular and molecular regulatory 
events leading to these two fully differentiated functions 
may not be sequential. Some may be contemporaneous 
and multidirectional; osteoblastogenesis and its regula-
tors determine osteoclastogenesis and the volume of bone 
resorbed whereas osteoclastogenesis and the products of 
the resorbed matrix regulate osteoblastogenesis, while both 
may be regulated to some extent by osteocytes and its prod-
ucts (e.g., sclerostin). How this cellular and molecular traf-
fic is orchestrated from beginning to end is far from clear. 

   Signaling from apoptotic osteocytes to cells in the 
canopy expressing the osteoblast phenotype may influence 
 further differentiation toward osteoblast precursors express-
ing RANKL and fully differentiated osteoid-producing 
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 FIGURE 9          (1) Osteocytes are connected to each other and to lining cells on the endosteal surface adjacent to the marrow; (2) Damage to osteocytic 
processes by a microcrack produces osteocyte apoptosis. Courtesy J.  Hazenberg et al. (2006)   ; (3) The distribution of apoptotic osteocytes provides the topo-
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osteocytes with its cytoplasmic extensions (arrows) inserted between lacunar wall and osteocyte (S). RB ruffled border, CZ clear zone, V vacuole. From 
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in the osteoid they deposit and differentiate into osteocytes reconstructing the osteocytic canalicular network. From  Suzuki et al. (2000) .     (See plate section)
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osteoblasts. So even at this stage, regulation of osteoclas-
togenesis and osteoblastogenesis is occurring simultane-
ously through osteoblast precursors. In the MLO-Y4 cell 
line, damaged osteocyte-like cells have been reported to 
secrete M-CSF and RANKL ( Kurata  et al.,  2006 ). Whether 
this occurs in human subjects  in vivo  is not known but 
raises the possibility that osteocytes participate in the dif-
ferentiation of monocyte-macrophage precursor cells 
toward the osteoclast lineage. Both osteoblast and osteo-
clast precursors circulate and so may arrive at the BRC via 
the circulation and via capillaries penetrating the canopy 
(Eghbai-Fatourechi  et al.,  2005; Eghbai-Fatourechi  et al.,  
2007;  Fujikawa  et al.,  1996 ). The contribution of precur-
sors from the canopy, the marrow via sinusoids or capillar-
ies is not well-defined. 

   Angiogenesis is essential to bone remodeling. Osteopro-
genitor cells are associated with vascular structures in the 
marrow and several studies suggest there may be com-
mon progenitors giving rise to cells forming the blood ves-
sel and the perivascular cells that can differentiate toward 
cells of multiple lineages ( Doherty  et al.,  1998 ;  Howson  
et al.,  2005 ;  Sacchetti  et al.,  2007 ;  Matsumoto  et al.,  2006 ; 
Kholsa, 2007;  Otsura  et al.,  2007 ; Khosla  et al.,  2008). 

   Once differentiated, teams of osteoclasts resorb a vol-
ume of damaged bone but little is known of the factors 
determining the volume of bone resorbed, particularly 
how resorption stops after the damaged region has been 
resorbed. Osteoclasts phagocytose osteocytes and this may 
be one way the signal for resorption is removed   ( Fig. 9, 
Panel 4 ). 

   Products from the osteoclasts independent of their 
resorption activity, and products from the resorbed matrix 
partly regulate osteoblastogenesis and bone formation 
( Suda  et al.,  1999 ;  Martin and Sims, 2005 ;  Lorenzo, 2000 ). 
In addition, products from the osteocyte may contribute to 
regulation of bone formation. For example, sclerostin is 
secreted by osteocytes and perhaps other cells as well. It 
is a product of the ScleroSteosis (SOST)   gene and inhibits 
bone formation. Its inhibition is permissive to bone forma-
tion. Whether osteoblast precursors are generated before 
resorption has occurred, either from the canopy, or by 
products of the osteoclast before it started matrix resorp-
tion is not known. If so, these cells form preemptive teams 
of cells ready to deposit bone, die, become lining cells or 
osteocytes depending on later signals from osteoclasts, 
the resorbed matrix or products of the osteocyte such as 
sclerostin or cell–cell contact ( Zhao  et al.,  2006 ). 

   After the reversal phase, osteoblasts deposit oste-
oid partly or completely filling the trench cross-section 
(establishing the size of the negative BMU balance in that 
cross-section) and forming the lamellae that then undergo 
primary and secondary mineralization. In a given cross-
section, how the osteoblasts change polarity to produce 
the differently orientated collagen fibers from lamella to 
lamella is not known. Most osteoblasts die, others become 

lining cells whereas others become entombed in the oste-
oid they formed to become osteocytes which communicate 
with each other to “rewire” the osteocytic canalicular com-
municating system for later mechanotransduction, damage 
detection, and repair ( Han  et al.,  2004 ). 

   In summary, bone remodeling may not be exclusively 
damage-driven but if it is, the osteocyte appears to play 
a pivotal role in initiating this remodeling cycle and per-
haps participating in the regulation of the volumes of bone 
ultimately resorbed and formed by the BMU. Many of the 
advances that have taken place raise more questions than 
they answer. Some very fundamental questions concern 
the role of remodeling in intermediary metabolism, the 
link between central control of remodeling and regulation 
of remodeling for regional structural adaptation to loading 
and focal damage removal. 

   Even the question of what is  “ damage ”  betrays many 
areas in need of exploration. Damage at the nano- or 
microstructural level has not been comprehensively cat-
egorized in morphological terms so that the causes of dam-
age, biomechanical effects, biochemical and structural 
means of detecting, signaling, and repairing different types 
of damage remain unstudied ( Akkus  et al.,  2004 ;  Burr  
et al.,  1998 ;  Danova  et al.,  2003 ;  Diab  et al.,  2006 ;  Diab 
and Vashisha, 2005 ;  Garnero  et al.,  2006 ;  Landis, 2002   ; 
 Ruppel  et al.,  2006 ;  Silva  et al.,  2006 ;  Taylor, 1997 )  .  

          Age-Related Changes in Modeling and 
Remodeling Adulthood 

   Although bone can accommodate loading circumstance 
by adaptive modeling and remodeling during growth, this 
capacity diminishes because four age-related changes in 
the cellular machinery of bone modeling and remodel-
ing compromise bone’s material properties and structural 
design. Bone’s ability to adapt to loading is impaired 
because each time a remodeling event occurs there is loss 
of bone and some structural decay ( Seeman and Delmas, 
2006 ). 

   Remodeling rate is rapid during growth because each 
remodeling event deposits only a small moiety of bone 
( Parfitt, 2002 )  . As growth nears its  “ programmed ”  comple-
tion, rapid remodeling is no longer needed and remodeling 
rate slows. With the completion of longitudinal growth, the 
only requirement for bone formation is the repair of micro- 
and macrodamage so there is a decline in bone formation, 
a mechanism proposed to be responsible for bone fragility 
over 65 years ago ( Albright  et al.,  1941 ). 

   Thus, the first age-related change in this machinery is 
a reduction in bone formation at the cellular level by each 
BMU ( Lips  et al.,  1978 ;        Vedi   et al.,  1984) (  Fig. 10   ). The 
second abnormality is also a reduction in bone forma-
tion but at the tissue level – bone modeling on the peri-
osteal envelope slows precipitously after completion of 
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longitudinal growth but continues slowly so that bone 
diameters enlarge, but no more than a few millimeters dur-
ing the next 60 years. 

   The mechanisms responsible for the reduction in the 
volume of bone formed in each BMU are not well-defined 
but may include a reduction in stem cell precursors of 
osteoblasts, a reduction in differentiation of stem cells to 
the osteoblast lineage, reduced osteoid production of indi-
vidual cells, and a reduction in the life span of these cells 
( Bonyadi  et al.,  2003 ;  Nishida  et al.,  1999 ;  Stenderup  et al.,
 2001 ;  Oreffo  et al.,  1998 ). 

   The third abnormality in remodeling is believed to be 
an increase in the volume of bone resorbed by the BMU 
but this may be confined to a brief period following sex 
hormone deficiency  (Ericksen, 1986   ; Ericksen  et al.,  1999; 
 Manolagas, 2000 ;  Compston  et al.,  1995 ). The opposite 
may occur across the whole of life – the volume of bone 
resorbed by each BMU appears to decrease as reflected in 
a lower resorption cavity depth and an age-related increase, 
rather than decrease, in interstitial thickness ( Croucher 

 et al.,  1991 ; Ericksen  et al.,  1999). (If resorption depth 
increased with age, interstitial wall thickness, the distance 
between cement lines of opposing hemi-osteons in trabecu-
lar bone, should decrease.) 

   The fourth age-related abnormality in the cellular 
machinery contributing to structural decay is an increase 
in the rate of bone remodeling after menopause. This is 
accompanied by worsening of the negative bone balance in 
each BMU as the volume of bone resorbed increases and 
the volume of bone formed decreases in the many more 
BMUs now remodeling bone on the three (endocortical, 
intracortical, and trabecular) components of its endosteal 
envelope ( Manolagas, 2000 ).  

          Bone Loss During Young Adulthood 

   If the volume of bone resorbed decreases to the same 
degree as the decrease in the volume of bone formed by 
the BMU there will be no net negative BMU balance at the 
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 FIGURE 10          Endosteal bone loss is the result of: (1) a reduction in the volume of bone formed in each basic metabolic unit (BMU) reflected in a 
reduction in mean wall thickness with age. Adapted from  Lips et al. (1978) ; (2) A fall or little change in the volume of bone resorbed in each BMU. 
This is reflected in (2a) as little change in erosion depth defined by preosteoblasts, mononuclear cells, or osteoclast surfaces (Adapted from Ericksen 
et al., 1985)   and (2b) and no change in interstitial wall thickness (females black symbols) Adapted from        Vedi et al. (1984 ); and (3) Increased remodel-
ing rate (activation frequency). Courtesy J. Compston  .    
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completion of a remodeling cycle so remodeling events 
will not produce any permanent bone loss or structural 
decay. However, at some stage in midlife or early, there is 
a net negative bone balance as the volume of bone resorbed 
exceeds that formed (irrespective of the absolute decrease 
in both) and this negative BMU balance is the necessary 
and sufficient requirement for loss of bone from the skel-
eton, structural decay, and bone fragility. 

   There is evidence using noninvasive methods such 
as densitometry or computed tomography for a decline 
in bone mass in young adulthood in women and in men 
( Riggs  et al.,  1986 ;  Gilsanz  et al.,  1987 ;  Riggs  et al.,  
2007 ). Assuming the decline is not an artifact produced by 
an increase in marrow fat with age ( Bolotin and Sievänen, 
2001 ), this decline is likely to be the result of bone loss 
driven by a decline in bone formation. More definitive 
statements cannot be made due to lack of histomorphomet-
ric data in premenopausal women and young adult men. 

   Riggs  et al.  report a decline in trabecular volumet-
ric density prior menopause in a 3-year prospective study 
of 553 women and men ( Riggs  et al.,  2007 ). Before age 
50, women lose 37% and men 42% of the total trabecular 
bone lost across life, and 6% and 15% of lifetime cortical 
bone loss. The structural and biomechanical consequences 
are likely to be less than bone loss later in life because (1) 
remodeling rate is slow, (2) trabecular bone loss probably 
proceeds by reduced bone formation rather than increased 
bone resorption in the BMU, (3) bone loss proceeds by 
trabecular thinning rather than loss of connectivity so a 
given decrement in trabecular BMD produces less loss of 
strength than produced by loss of connectivity (van der    
Linden  et al.,  2001), and (4) continued periosteal apposi-
tion partly offsets endocortical bone loss shifting the cor-
tices radially maintaining cortical area and resistance to 
bending ( Szulc  et al.,  2006 ).  

          Bone Loss During Menopause and 
Advancing Age 

   Variance in the positive BMU balance on trabecular sur-
faces during growth is small compared with the variance in 
the rate of remodeling so that the rate of gain in bone mass 
is driven more by the remodeling rate. Similarly, the vari-
ance in the negative BMU balance during aging is small 
compared with the variance in the rate of remodeling so 
the rate of bone loss during menopause and aging is driven 
more by the remodeling rate. 

   Thus, the higher rate of bone remodeling is a most impor-
tant determinant of bone loss and the increase in remodeling 
rate in midlife associated with estrogen deficiency is respon-
sible for accelerated bone loss. Perimenopausal women with 
remodeling rates in the lowest quartile lose little bone ( Szulc 
 et al.,  2006 ). Estrogen deficiency also increases the volume 
of bone resorbed by each BMU by prolonging the life span 

of osteoclasts, and reduces the volume of bone formed by 
each BMU by reducing the life span of osteoblasts, thereby 
aggravating the negative BMU balance ( Manolagas, 2000 ). 
Whether the changes in the life span of the cells is perma-
nent or temporary is not known but the combination of a 
rapid remodeling and a more    negative BMU balance than 
observed before menopause accelerates bone loss and struc-
tural decay after menopause. 

   Before menopause, remodeling is slow. The birth rate of 
new BMUs creating resorption cavities is matched by slow 
completion of previously created BMUs in their forma-
tion phase. At menopause, this steady state is perturbed by 
an increase in the birth rate of new BMUs on bone’s endos-
teal envelope. The now many BMUs remove bone while the 
fewer BMUs created before menopause complete remodeling 
by depositing bone. This perturbation produces a net acceler-
ation in bone loss and a rapid decline in BMD ( Fig. 11   ). 

   This is the remodeling transient, a reversible loss of 
bone mass and bone mineral that is a consequence of the 
normal delay in onset and slower progression of the forma-
tion phase of the remodeling cycle in the many remodeling 
foci created after menopause ( Parfitt, 1980 ). The temporary 
deficit in bone mass and mineral has three components: the 
excavation site that lacks osteoid and mineral, the osteoid 
that lacks mineral, and bone that has undergone primary 
but not secondary mineralization. Primary mineralization 
occurs rapidly, secondary mineralization, the slow enlarge-
ment of crystals of calcium hydroxy-apatite-like mineral 
takes many months to years to go to completion ( Akkus 
 et al.,  2003 ). At any time, there are osteons created in the 
immediate postmenopausal period and fewer, earlier cre-
ated, osteons at various stages of completing secondary 
mineralization. 

   Bone loss slows in the three to five years following 
menopause, not because remodeling rate slows. It doesn’t. 
The rate of bone loss slows because steady state is restored 
at the new higher remodeling rate. Now the large num-
bers of BMUs excavating resorption cavities are matched 
by completion of remodeling by bone formation the large 
numbers of BMUs created in early menopause. Bone loss 
continues at a faster rate than before menopause but at a 
slower rate than immediately after menopause because 
BMU balance is negative, perhaps more negative than 
before menopause producing a permanent deficit in bone 
mass and mineral mass. The higher the remodeling rate 
and the more negative the BMU balance, the greater the 
bone loss and structural decay. If the worsening BMU bal-
ance produced by changes in the life span of osteoclasts 
and osteoblasts is temporary, and the negative BMU bal-
ance lessens but persists, the rate of loss will also lessen, 
but it will persist because bone loss is driven by the high 
remodeling rate. 

   Remodeling occurs on bone surfaces (envelopes), much 
more on the endosteal envelope than the periosteal enve-
lope ( Balena  et al.,  1992 ;  Orwoll, 2003 ), and more on the 
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trabecular than endocortical and intracortical surfaces of the 
endosteal envelope. Trabecular bone has more surface per 
unit bone volume than cortical bone so that trabecular bone 
is more likely to be remodeled than cortical bone. Excavated 
resorption sites create stress “concentrators, ”    that focus 
stresses to a single point (as a small cut in a test tube makes 
it easy to snap) ( Hernandez  et al.,  2006 ) ( Fig. 12   , upper pan-
els). The high remodeling rate and negative BMU balance 
produces trabecular thinning and complete loss of trabecu-
lae. Increased resorption depth is more likely to produce per-
foration and complete loss of trabeculae than either greater 
numbers of resorption cavities or reduced formation in the 
BMU in women ( Parfitt, 1996 ). A 10% loss of trabecular 
density by perforation reduces strength more greatly than 
the same loss by trabecular thinning ( Fig. 12 , lower panel). 

   As remodeling continues, trabeculae are lost so the 
trabecular surface available for resorption decreases but 
remodeling on endocortical surface continues increasing 
the endocortical surface (like the folds of a curtain) ( Parfitt, 
1984 ;  Brown  et al.,  1987 ;  Arlot  et al.,  1990 ;  Foldes  et al.,  
1991 ). Remodeling on the intracortical surface (haver-
sian canals) increases intracortical porosity ( Martin, 1984 ; 
 Brockstedt  et al.,  1993 ;  Yeni  et al.,  1997 ) ( Fig. 13   ). Increased 
porosity due to increased numbers of pores and/or increased 
size of pores by coalescence of adjacent remodeling cavities 
increases the surface available for remodeling  “ trabecular-
izing ”  the cortex. Either total bone surface does not change 

(increasing in cortical bone, decreasing in trabecular bone) 
or increases (in regions of cortical bone only) so that late in 
life, bone loss is more cortical than trabecular in origin. 

   As age advances and remodeling continues at the same 
intensity due to estrogen deficiency and perhaps second-
ary hyperparathyroidism, the extent of coalescence of 
pores increases so the number of pores in cortical bone 
decreases but the total area of porosity increases, and per-
haps more so in patients with hip fractures than controls 
( Bell  et al.,  1999 ). Cortices porosity reduces the ability of 
bone to limit crack propagation so that bone cannot absorb 
the energy imparted by a fall and so it is released in the 
most undesirable way by fracturing ( Martin, 1984 ;  Yeni 
 et al.,  1997 ). The continued remodeling at a similar inten-
sity with its negative BMU balance, on the same amount 
or more surface, removes the same amount of bone from 
an ever-decreasing amount of bone accelerating the loss of 
bone and structural decay. 

   Rapid remodeling also modifies the material properties 
of bone increasing fracture risk. More densely mineralized 
bone is removed and replaced with younger, less densely 
mineralized bone, reducing stiffness ( Boivin and Meunier, 
2002 ;  Boivin  et al.,  2003 ). Increased remodeling impairs 
isomerization of collagen reducing bone strength (Viguet-
Carrin et al., 2006; Garnero et al., 1996)  . Interstitial bone 
deep to surface remodeling becomes more densely mineral-
ized and more highly cross linked with advanced glycation 

BMD

(i) Bone loss before menopause (ii) Bone loss during menopause (iii) Bone loss after menopause

Time

Untreated

 FIGURE 11          (i) Bone loss is slow before menopause because remodeling is slow; only a few sites on the trabecular surface remove bone (open 
arrows). (ii) Bone loss accelerates at menopause as remodeling rate increases. Now many basic multicellular units (BMUs) remove bone (black arrows) 
while the three BMUs initiated before menopause deposit bone. (iii) Bone loss after menopause slows because steady state is restored. The many BMUs 
removing bone at menopause are now in their formation phase but as many new BMUs are created and resorb bone. Bone is lost because each remodel-
ing event removes bone from bone. E. Seeman   with permission.    
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products (AGEs) like pentosidine, both processes reducing 
bone toughness; it is easier for microcracks to travel through 
homogeneously mineralized bone and lengthen. Interstitial 
bone (between osteons) has reduced osteocyte numbers, 
accumulating microdamage ( Bailey  et al.,  1999 ;  Banse  et al.,  
2002 ;  Nalla  et al.,  2004 ; Qui  et al.,  2005;  Yeni  et al.,  1997 ).  

          Net Effects of Reduced Periosteal Bone 
Formation and Endosteal Bone Loss 

   The challenges regarding identifying the existence of peri-
osteal apposition during adulthood, its site specificity, 
magnitude, and sex differences are considerable. In cross-
sectional studies, secular changes in bone size may obscure 
or exaggerate periosteal apposition. These  problems are 
not necessarily resolved by adjusting for height. Secular 
increases in stature occur in one or both sexes, in some 
races but not others and may occur in the skelton of the 

upper or lower body ( Bakwin, 1964 ;  Meredith, 1978 ; 
 Cameron  et al.,  1982 ;  Tanner  et al.,  1982 ;  Malina and 
Brown, 1987 ). These secular trends can produce misleading 
inferences when increments or lack of increments in bone 
diameters are used as surrogates of periosteal apposition. 

   For example, in cross-sectional studies, absence of an 
increment in periosteal diameter across age may not mean 
periosteal apposition was absent. Earlier born individuals 
(the elderly in a cross-sectional sample) may have been 
shorter and had more slender bones than later born indi-
viduals (young normals in a cross-sectional sample). When 
periosteal apposition occurs, earlier born with more slen-
der bones have an increase in bone diameter that comes 
to equal that in later born group (who have not yet had 
age-related periosteal apposition) leading to the flawed 
inference that there was no periosteal apposition in the 
cross-sectional sample. 

   When comparisons are made between sexes (or races) 
in cross-sectional studies, if the truth is that periosteal 
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apposition is greater in men than women but men have a 
secular increase in bone size and women do not, then the 
secular increase in men will blunt the increment in bone 
width across age in men and make it appear that the age-
related increase in vertebral and femoral neck diameters 
(and so periosteal apposition) is similar in women and 
men. Longitudinal studies are also problematic because 
changes in periosteal apposition during aging are small 
( Balena  et al.,  1992 ). The precision of methods to deter-
mine bone diameter, usually bone densitometry, and prob-
lems with edge detection when bone mineral density is 
changing limit the credibility of these measurements. 

   Periosteal apposition is believed to increase as an 
adaptive response to compensate for the loss of strength 
produced by endocortical bone loss, so there will be no 
 net  loss of bone, no cortical thinning, and no loss of bone 
strength (Alhborg   et al., 2003). In a 7-prospective study of 
over 600 women, Szulc  et al.  report that endocortical bone 
loss occurred in premenopausal women with  concurrent 
periosteal apposition ( Szulc  et al.,  2006 ) ( Fig. 14   ). As peri-
osteal apposition was less than endocortical resorption, the 
cortices thinned but there was no  net  bone loss because 

the thinner cortex was now distributed around a larger 
perimeter conserving total bone mass. Moreover, resistance 
to bending increased despite bone loss and cortical thin-
ning because this same amount of bone was now distrib-
uted further from the neutral axis. So bone mass alone is a 
poor predictor of strength because resistance to bending is 
determined by the spatial distribution of the bone. 

   Endocortical resorption increased during the perimeno-
pausal period, yet periosteal apposition decreased – it 
did not increase as predicted if the notion that periosteal 
apposition is a compensatory mechanism is correct. The 
cortices thinned as periosteal apposition declined further. 
Nevertheless, bending strength remained unchanged –
despite bone loss and cortical thinning because periosteal 
apposition was still sufficient to shift the thinning cortex 
outwards. 

   Bone fragility emerged only after menopause when 
accelerated in endocortical bone resorption and deceleration 
in periosteal apposition produce further cortical thinning. 
As periosteal apposition was now minimal, there was little 
outward displacement of the thinning cortex so cortical area 
now declined as did resistance to bending. Endocortical 
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 FIGURE 13          Cortical porosity increases as age advances ( Brockstedt et al. 1993 ). This is associated with a decline in ultimate stress (adapted from 
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(See plate section)     
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resorption was reduced but not abolished in women receiv-
ing hormone replacement therapy while periosteal apposi-
tion was no different to untreated women; cortical thinning 
was reduced and the resistance to bending occurred but less 
than in untreated women. 

   Periosteal envelope is regarded exclusively as a bone-
forming surface. This is incorrect ( Balena  et al.,  1992 ). 
During growth, bone resorption is critical for the in-wasting
that produces the fan-shaped metaphyses ( Rauch  et al.,  
2001 ). Blizoites and colleagues report that bone resorption 
occurs in adult nonhuman primates ( Blizoites  et al.,  2006 ). 
Femur specimens from 16 intact adult male and female 
nonhuman primates showed that periosteal remodeling 
of the femoral neck in intact animals was slower than in 
cancellous bone but more rapid than at the femoral shaft. 
Gonadectomized females showed an increase in osteoclast 
number on the periosteal surface compared with intact 
controls. If these data are correct, adult skeletal dimensions 
may decrease in size as age advances. 

   Thus, even though the genius of bone biology Fuller 
Albright suggested over 65 years ago that osteoporosis 
was a disorder of reduced bone formation ( Albright  et al.,  
1941 ), research into the pathogenesis of bone fragility dur-
ing the last 40 years has focused on the role of increased 
bone resorption. During aging, both increasing endocorti-
cal bone resorption and reduced periosteal apposition cause 
 net  bone loss, alterations in the distribution of the remain-
ing bone, and the emergence of the bone fragility. The cel-
lular basis of the vigor of bone formation during growth 
and progressive decline in vigor during aging on the peri-
osteal surface and within each BMU is yet to be defined.    

          Sex and Racial Differences in Trabecular 
and Cortical Bone Loss 

   A greater proportion of women than men sustain fragility 
fractures during their lifetime. The reasons for this  sexual 
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 FIGURE 14          The amount of bone resorbed by endocortical resorption (open bar) increases with age. The amount deposited by periosteal apposi-
tion (black bar) decreases. The net effect is a decline in cortical thickness (grey bar). In premenopausal women, the thinner cortex is displaced radially 
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dimorphism are not clear. Men have a larger skeleton than 
women do so that resistance to bending is greater in men 
than women. Bone loss in most, but not all, men is the 
result of a negative BMU balance produced by reduced 
formation rather than increased resorption by the BMUs, 
so trabecular bone loss occurs by thinning rather than loss 
of connectivity ( Aaron  et al.,  1987 ). Men do not have a 
midlife decline in sex hormones and increase in remod-
eling rate that drives structural decay produced by the 
negative BMU balance. Better preservation of trabecular 
bone in elderly men leaves more trabecular surfaces for 
remodeling to occur upon so trabecular bone loss con-
tinues longer in men ( Aaron  et al.,  1987 ). Net trabecular 
bone loss across age is only slightly greater in women than 
men ( Riggs  et al.,  2004 ), or is similar ( Aaron  et al.,  1987 ; 
 Meunier  et al.,  1990 ;  Kalender  et al.,  1989 ;  Mosekilde and 
Mosekilde, 1990 ;  Seeman, 1997 ;  Seeman  et al.,  2001 ). 
However, the same deficit in trabecular density produced 
by thinning (as occurs in men) produces less reduction in 
strength than produced by loss of connectivity (as occurs 
in women) (Van der Linden    et al. , 2001). 

   Marrow cavity expansion occurs in both sexes but 
whether it is greater in women than men is uncertain ( Riggs 
 et al.,  2004 ). Cortical porosity increases less in men than in 
women because remodeling rate is lower in men and so crack 
propagation in cortical bone is probably better resisted in men 
than in women. Periosteal apposition is reported to be greater 
in men than in women in some ( Duan  et al.,  2001 ,  Duan  
et al.,  2003 ,  Duan  et al.,  2005 ,        Wang  et al.,  2005 ,  Seeman  et al.,
 2001 ) but not all studies ( Riggs  et al.,  2004 ). 

   Thus, methodological issues must temper the inferences 
that can be made regarding the basis of sexual dimorphism 
in bone strength ( Seeman  et al.,  2004 ). The absolute risk 
for fracture in women and men of the same age and BMD 
is similar ( Kanis  et al.,  2001 ;  Kanis  et al.,  2005 ). The lower 
fracture incidence in men than in women is likely to be the 
result of lower proportion of elderly men than elderly women 
having material and structural properties (cortical thinning, 
porosity, trabecular thinning, loss of connectivity, micro-
damage) below the critical level at which the loads on the 
bone are greater than the bone’s net ability to tolerate them. 
Structural failure occurs less in men because the relationship 
between load and bone strength is better maintained in men 
than in women ( Riggs  et al.,  2006 ,  Bouxsein  et al.,  2006 ).  

          The Heterogeneous Material and Structural 
Basis of Bone Fragility in Patients with 
Fractures 

   Patients with fractures are grouped by having  “ one or more 
minimal trauma vertebral fractures, ”  or sustaining a fall 
from  “ no greater than the standing position. ”  However, 
the pathogenesis and structural basis of the bone  fragility 
 underlying the fractures is heterogeneous. Patients with 

vertebral fractures may have high, normal, or low remod-
eling rates ( Brown  et al.,  1984 ;  Arlot  et al.,  1990 ;  Delmas, 
2000 ). Some have a negative BMU balance due to reduced 
formation, increased resorption, or both, or no negative 
BMU balance at all (Ericksen  et al.,  1990). Some patients 
with vertebral fractures have increased, whereas others have 
reduced, tissue mineral density ( Ciarelli  et al.,  2003 ) ( Fig. 
15   ). Some patients have reduced osteocyte density; others 
do not ( Qui  et al.,  2003 ; Qui  et al.,  2005). Contemporary 
therapeutics gives no consideration to the underlying patho-
genesis or structural abnormalities present in an individual. 
Whether anti-fracture efficacy can be improved from its cur-
rent values of 50% for vertebral and hip fractures and 20% 
for nonvertebral fractures ( Delmas, 2002 ) by defining the 
pathogenesis and structural basis in an individual remains 
uncertain, but it is worthy of exploration.   

          SUMMARY AND CONCLUSION 

   The purpose of modeling and remodeling during growth is 
to optimize bone strength by depositing bone where it is 
needed and to minimize mass by removing it from where 
it is not needed. Bone must be stiff – resistant to deforma-
tion, yet flexible – able to store energy in elastic deforma-
tion or to dissipate it. Otherwise, energy will be released 
by structural failure – fracture. 

   These paradoxical properties are achieved by bone’s 
material composition and structural design. Material com-
position is similar among mammals so differences in bone 
strength in adulthood are largely the result of  structural 
diversity. This diversity is already expressed before puberty. 
The magnitude of the variance in bone size and mass in 
prepubertal children is similar to that in their parents. 
Individuals with traits in the 5th, 50th, or 95th percentile 
in adulthood occupied these positions in early life because 
traits track along their percentile of origin. Long bones 
with a larger cross-section have a biomechanical advantage 
so the same periosteal apposition on a larger cross-section 
(i.e., less relative to size) confers greater stiffness than on a 
smaller cross-section. Endocortical resorption excavates a 
larger marrow cavity shifting the cortex radially, increasing 
stiffness and minimizing mass; larger bone cross-sections 
have a lower volumetric bone mineral density (vBMD). 
In slender bones, higher vBMD is the result of similar 
amounts of periosteal apposition (more relative to size) 
and less endocortical resorption, which excavates a smaller 
marrow leaving a relatively thicker cortex to offset the fra-
gility of slenderness. Varying cellular activity around the 
periosteal and endocortical envelopes fashions the diverse 
shapes of adjacent cross-sections. Vertebral bodies are fash-
ioned as a honeycomb of trabecular plates and void spaces 
conferring flexibility and lightness. 

   Modeling and remodeling are successful during growth, 
not adulthood. The purpose of modeling and remodeling 
during adulthood is to maintain bone strength by damage 
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repair but four age-related changes compromise bone’s 
material composition and structure; a decline in periosteal 
bone formation, a decline in the volume of bone formed by 
each basic multicellular unit (BMU), continued resorption 
by each BMU, and high remodeling. Bone loss occurs in 
early adulthood but the structural and biomechanical con-
sequences are modest because the negative BMU balance 
is driven by reduced bone formation not increased resorp-
tion, remodeling is slow and modest periosteal apposition 
offsets endocortical bone loss shifting the thinner cortex 
radially. After menopause, increased remodeling, wors-
ening negative BMU balance, and a decline in periosteal 
apposition accelerate cortical thinning and porosity, tra-
becular thinning, and loss of connectivity. Interstitial bone, 
deep to surface remodeling, becomes more densely miner-
alized, has few osteocytes, greater collagen cross-linking, 
and accumulating microdamage. Late in life secondary 
hyperparathyroidism sustains high remodeling producing 
further cortical thinning and porosity. These age-related 
changes produce the material and structural abnormalities 
responsible for bone fragility. 

   Recent advances raise many questions concerning 
the uni-, bi- and multidirectional regulation and steps in 

remodeling, how resorption and formation phases are regu-
lated and co-regulated, how osteocytogenesis occurs and 
the lacunar-canalicular system is reestablished for mecha-
notransduction and damage detection. Damage removal 
may not be the only reason bone remodels but is likely to 
be one of its main purposes in adulthood. However, the 
nature of  “ damage ”  has not been systematically defined 
and so questions remain concerning the determinants of 
damage production, its biomechanical consequences, and 
how different types of damage are signaled for repair. 
Thus, our understanding of why or how bones fail at the 
material and structural level remains incomplete. This is an 
essential direction of enquiry if we are to provide targeted 
approaches to drug therapy.  
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