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Preface to the Ninth Edition of the Primer

Over 30 years ago, pioneers of the ASBMR, in its early years 
of existence, had a remarkable vision, namely to create 
a Primer on the Metabolic Bone Diseases and Disorders 
of  Mineral Metabolism, to provide ‘a  comprehensive, 
yet  concise description of the clinical manifestations, 
pathophysiology, diagnostic approaches, and therapeutics 
of diseases that come under the rubric of bone and min-
eral disorders.’ At that time, they pointed out that there 
was no repository of such information in specialty text-
books. The pioneers also had the remarkable vision to 
appoint Murray Favus as the inaugural Editor-in-Chief of 
the Primer. The first edition was published in 1990. With 
enviable longevity, Murray served as Editor-in-Chief of the 
Primer for the next 18 years, when Cliff Rosen assumed the 
role in 2008. Under Cliff’s leadership, the Primer continued 
to reign as the undisputed source of key information in our 
field, not only for those being introduced to our specialty 
but also to those of us who periodically need to be refreshed. 
I am pleased and honored to have been selected to serve as 
the Editor-in-Chief of this ninth edition of the Primer.

The goals of the ninth edition are to continue to pro-
vide the most accurate, up-to-date evidence-based infor-
mation on basic and clinical bone science to beginners 
and experts, in segments that are concise and eminently 
readable. Attesting to the vibrancy of our field, we have 
seen much change since the last edition was published in 
2013. The revised chapters and the new ones reflect these 
changes. We have broadened the authorship to include 
our younger generation as well as greater international 
representation. Fully half of the 290 authors are new to 
the ninth edition. Many of them are our younger stars. 
One-third of the authorship is from outside the USA. 
These two points, namely younger and international rep-
resentation, represent substantial increments over the 
eighth edition. The highlights of our 30-year history, as 
represented regularly in all nine editions of the Primer, 
are illustrated on the cover. They display great advances, 
framed and ready to be shown in a museum!

I am grateful to Juliet Compston and Roger Bouillon for 
returning as Senior Associate Editors of the ninth edition 
and to Tom Clemens for joining us at the Senior Associate 
Editor level. I am grateful also to the returning Section 
Editors who served in this capacity in the previous edi-
tion (Doug Bauer, Suzanne Jan de Beur, Theresa Guise, 
Karen Lyons, Laurie McCauley, Paul Miller, Socrates 
Papapoulos, Ego Seeman, Raj Thakker, and Mone Zaidi) 
and to the Section Editors who are new to this edition 
(Peter Ebeling, Klaus Engelke, David Goltzman, Harald 
Jüppner, Mike McClung, David Roodman, Cliff Rosen, 
and Mike Whyte). Kudos to Ann Elderkin, Executive 
Director of ASBMR, who took on this added administra-
tive responsibility, when it became necessary, and to 
Katie Duffy, Publications Director of ASBMR, who 
worked tirelessly with me, literally from the moment 
she joined ASBMR. I am also grateful to the Publications 
Committee under Bob Jilka and its current Chair, Michael 
Mannstadt.

Many outstanding texts in our field have been pub-
lished since 1990, when there were virtually none. 
The Primer, however, still stands tall as a unique 
resource for the broadest, most comprehensive, and 
easily readable text of them all. I hope all of you gain 
the knowledge, wisdom, and insights that are con-
tained in these pages. As a result, your work, whether 
it is basic or clinical research, or patient care, or any 
combination will be enhanced every time you take 
the Primer down from your real or electronic 
bookshelf.

John P. Bilezikian, MD, PhD (hon)
College of Physicians and Surgeons

Columbia University, New York, New York, USA
July 2018
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President’s Preface

The ninth edition of the Primer on the Metabolic Bone 
Diseases and Disorders of Mineral Metabolism was 
developed during the 40th anniversary year of American 
Society for Bone and Mineral Research, a huge milestone 
for this seminal text that has introduced students and fel-
lows to the field of bone, mineral, and musculoskeletal 
research since the first edition in 1990. We are grateful 
for the leadership of Editor-in-Chief John Bilezikian as 
well as Senior Associate Editors Tom Clemens, Juliet 
Compston, and Roger Bouillon and their outstanding 
team of 18 luminary Section Editors.

In this new edition, 11 sections capture the very cutting 
edge of research covering mineral homeostasis, osteopo-
rosis, and other metabolic bone diseases, skeletal meas-
urement technologies, genetics, and much, much more. 
The 135 chapters  –  15 of them new for this edition  – 
feature over 275 figures and almost 300 contributing 
authors from wide-ranging international research cent-
ers. Although the breadth of the Primer coverage is wide, 
John Bilezikian, the Associate Editors, and the Section 

Editors endeavored to condense essential materials into 
chapters with more compact reference lists, for easier 
reading and teaching.

The Primer represents the highest standards of collated 
scientific content and has evolved to include digital and 
print formats as well as a companion site at www.wiley.
com/go/asbmrprimer, where researchers, instructors, cli-
nicians, and students can download valuable teaching 
slides of tables and figures from the chapters. We hope 
that you will enjoy and value the extraordinary effort to 
capture the most current state of the field in the pages 
that follow.

Michael J. Econs, MD
Indiana University School of Medicine

Indianapolis, Indiana, USA
President, ASBMR

July 2018
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1

INTRODUCTION

Formation of the skeletal system is one of the hallmarks 
that distinguish vertebrates from invertebrates. In higher 
vertebrates (ie, birds and mammals), the skeletal 
system contains mainly cartilage and bone that are mes-
oderm-derived tissues and formed by chondrocytes 
and  osteoblasts, respectively, during embryogenesis. A 
common mesenchymal progenitor cell also referred 
to  as  the osteochondral progenitor gives rise to both 
chondrocytes and osteoblasts. Skeletal development 
starts from mesenchymal condensation, during which 
mesenchymal progenitor cells aggregate at future skele-
tal locations. Because mesenchymal cells in different 
parts of the embryo are derived from different cell line-
ages, the locations of initial skeletal formation determine 
which of the three mesenchymal cell lineages contribute 
to the future skeleton. Neural crest cells from the 
branchial arches contribute to the craniofacial bone, the 
sclerotome compartment of the somites gives rise to 
most axial skeletons, and lateral plate mesoderm forms 
the limb mesenchyme, from which limb skeletons are 
derived (Fig. 1.1). Ossification is one of the most critical 
processes in skeletal development and this process is 
controlled by two major mechanisms: intramembranous 
and endochondral ossification. Osteochondral pro
genitors differentiate into osteoblasts to form the mem-
branous bone during intramembranous ossification, 
whereas during endochondral ossification, osteochondral 
progenitors differentiate into chondrocytes instead to 
form a cartilage template of the future bone. The location 
of each skeletal element also determines its ossification 
mechanism and unique anatomic properties such as the 
shape and size. Importantly, the positional identity of 

each skeletal element is acquired early in embryonic 
development, even before mesenchymal condensation, 
through a process called pattern formation.

Cell–cell communication that coordinates cell pro
liferation, differentiation, and polarity plays a critical 
role in pattern formation. Patterning of the early skeletal 
system is controlled by several major signaling pathways 
that also regulate other pattern formation processes. 
These signaling pathways are mediated by morphogens 
including Wnts, Hedgehogs (Hhs), bone morphogenetic 
proteins (BMPs), fibroblast growth factors (FGFs), and 
Notch/Delta. Recently, the Turing model [1] of pattern 
formation that determines skeletal formation spatially 
and temporally has drawn increasing attention. In his 
seminar paper [1], Turing proposed an ingenious 
hypothesis that the patterns we observe during embryonic 
development arise in response to a spatial prepattern in 
morphogens. Cells would then respond to this prepattern 
by differentiating in a threshold-dependent way. Thus, 
Turing hypothesized that the patterns we see in nature, 
such as skeletal structures, are controlled by a self-organ-
izing network of interacting morphogens. The Turing 
model has been successfully tested in limb skeletal pat-
terning with combined computational modeling and 
experimental approaches [2–5].

EARLY SKELETAL PATTERNING

In the craniofacial region, neural crest cells are major 
sources of cells establishing the craniofacial skeleton [6]. 
It is the temporal and spatial-dependent reciprocal 
signaling between and among the neural crest cells and 
the epithelial cells (surface ectoderm, neural ectoderm, 
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or endodermal cells) that ultimately establish the pattern 
of craniofacial skeleton formed by neural crest cells [7].

The most striking feature of axial skeleton patterning 
is the periodic organization of the vertebral columns 
along the anterior–posterior (A–P) axis. This pattern is 
established when somites, which are segmented 
mesodermal structures on either side of the neural tube 
and the underlying notochord, bud off at a defined pace 
from the anterior tip of the embryo’s presomitic 
mesoderm (PSM) [8]. Somites give rise to axial skeleton, 
striated muscle, and dorsal dermis [9]. The repetitive and 
left–right symmetrical patterning of axial skeleton is 
controlled by a molecular oscillator or the segmentation 
clock that act in the PSM (Fig. 1.2A). The segmentation 
clock is operated by a traveling wave of gene expression 
(or cyclic gene expression) along the embryonic A–P axis, 
which is generated by an interacting molecular network 
of the Notch, Wnt/β-catenin, and FGF signaling path-
ways (Fig. 1.2B). Understanding molecular control of ver-
tebrate segmentation has provided a conceptual 
framework to explain human diseases of the spine, such 
as congenital scoliosis [10].

The Notch signaling pathway mediates short-range 
communication between contacting cells [11]. The 
majority of cyclic genes are downstream targets of the 
Notch signaling pathway and code for Hairy/Enhancer of 
split (Hes) family members, Lunatic fringe (Lfng), and the 

Notch ligand Delta. The Wnt/β-catenin and FGF signal-
ing pathways mediate long-range signaling across several 
cell diameters. Upon activation, β-catenin is stabilized 
and translocates to the nucleus where it binds Lef/Tcf 
factors and activates expression of downstream genes. 
Axin2, Dkk1, Dac1, and Nkd1 are Wnt-activated nega-
tive regulators that are rhythmically expressed in the 
PSM. The FGF signaling pathway is also activated peri-
odically in the posterior PSM, indicated by the dynamic 
phosphorylation of ERK in the mouse PSM. FGF-negative 
feedback inhibitors, such as Sprouty homolog 2 and 4 
(Spry2 and Spry4) and Dual specificity phosphatase 4 and 
6 (Dusp4 and 6), are cyclically expressed. There are exten-
sive cross-talks among these major oscillating signaling 
pathways. However, current studies suggest that none of 
the three signaling pathways individually acts as a global 
pacemaker. If there is no unidentified master pacemaker, 
it likely that each of the three pathways has the capacity 
to generate its own oscillations, while interactions 
among them allow efficient coupling and entrain them to 
each other.

The retinoic acid (RA) signaling controls somitogenesis 
by regulating the competence of PSM cells to undergo seg-
mentation via antagonizing FGF signaling (Fig. 1.2A) [12]. 
RA signaling has an additional role in maintaining left–
right bilateral symmetry of somites by buffering asym-
metric signals that establish the left–right axis of the body, 
particularly Fgf8 [13].

The functional significance of the segmentation clock 
in human skeletal development is highlighted by 
congenital axial skeletal diseases. Abnormal vertebral 
segmentation (AVS) in humans is a relatively common 
malformation. For instance, mutations in NOTCH sign-
aling components cause at least two human disorders, 
spondylocostal dysostosis (SCD, #277300, #608681, and 
#609813) and Alagille syndrome (AGS, OMIM #118450, 
and #610205), both of which exhibit vertebral column 
defects. However, the identified mutations explain only 
a minor fraction of congenital scoliosis cases. More work 
needs to be performed to elucidate the pathological 
mechanism underlying congenital and idiopathic scolio-
sis in human.

The formed somite is also patterned along the dorsal–
ventral axis by cell signaling from the surface ectoderm, 
neural tube, and the notochord (Fig.  1.1). Ventralizing 
signals such as Sonic hedgehog (Shh) from the notochord 
and ventral neural tube is required to induce sclerotome 
formation on the ventral side [14,15], whereas Wnt 
signaling from the surface ectoderm and dorsal neural 
tube is required for the formation of dermomyotome 
on  the dorsal side of the somite (Fig.  1.1) [16,17]. The 
sclerotome gives rise to the axial skeleton and the ribs. 
In the mouse mutant that lacks Shh function, the verte-
bral column and posterior ribs fail to form. The paired 
domain transcription factor Pax1 is expressed in the 
sclerotome and Shh is required to regulate its expression 
[18,19]. However, axial skeletal phenotypes in Pax1 
mutant mice [20] were far less severe than those in the 
Shh mutants.

Ventral Lateral plate
mesoderm

Endoderm

Dorsal

Surface ectoderm

Myotome

SclerotomeNotochord

Floorplate

Dermatome

Pax1

Pax3

Wnt

NT

Shh

Neural crest cells

Fig.  1.1.  Cell lineage contribution of chondrocytes and 
osteoblasts. Neural crest cells are born at the junction of dorsal 
neural tube and surface ectoderm. In the craniofacial region, 
neural crest cells from the branchial arches differentiate into 
chondrocytes and osteoblasts. In the trunk, axial skeletal cells 
are derived from the ventral somite compartment, sclerotome. 
Shh secreted from the notochord and floor plate of the neural 
tube induces the formation of sclerotome which expresses Pax1. 
Wnts produced in the dorsal neural tube inhibits sclerotome 
formation and induces dermomyotome that expresses Pax3. 
Cells from the lateral plate mesoderm will form the limb mes-
enchyme, from which limb skeletons are derived. Source: [16,17]. 
Reproduced with permission of Elsevier.
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Limb skeletons are patterned along the proximal–distal 
(P–D, shoulder to digit tip), anterior–posterior (A–P, thumb 
to little finger) and dorsal–ventral (D–V, back of the hand 
to palm) axes (Fig.  1.3) [21,22]. Along the P–D axis, 
the limb skeletons form three major segments: humerus 
or femur at the proximal end, radius and ulna or tibia 
and  fibula in the middle and carpal/tarsal, metacarpal/
metatarsal, and digits in the distal end. Along  the A–P 
axis, the radius and ulna have distinct morphological fea-
tures, as do each of the five digits. Patterning along the 
D–V limb axis also results in characteristic skeletal shapes 
and structures. For instance, the sesamoid processes are 
located ventrally whereas the knee patella forms on the 
dorsal side of the knee. The three-dimensional limb pat-
terning events are regulated by three signaling centers in 
the early limb primodium, known as the limb bud, before 
mesenchymal condensation.

The apical ectoderm ridge (AER), a thickened epithelial 
structure formed at the distal tip of the limb bud, is the 
signaling center that directs P–D limb outgrowth 
(Fig.  1.3). Canonical Wnt signaling activated by Wnt3 
induces AER formation, whereas BMP signaling leads to 
AER regression. FGF family members Fgf4, Fgf8, Fgf9, 
and Fgf17 are expressed specifically in the AER and Fgf8 
alone is sufficient to mediate the function of AER. Fgf10, 
expressed in the presumptive limb mesoderm, is required 

for limb initiation and it also controls limb outgrowth by 
maintaining Fgf8 expression in the AER. It is interesting 
that exposure to the combined activities of distal signals 
(Wnt3a and Fgf8) and the proximal signal (RA) in the 
early limb bud or in culture maintains the potential to 
form both proximal and distal structures. As the limb 
bud grows, the proximal cells fall out of range of distal 
signals (Wnt3a and Fgf8) that act, in part, to keep the cells 
undifferentiated. Cells closer to the flank therefore 
differentiate and form proximal structures under the 
influence of proximal signals such as RA. The potential 
of distal mesenchymal cells becomes restricted over time 
to distal fates as they grow beyond the range of proximally 
produced RA [23,24]. Patterning of the limb bud 
progenitor cells into distinct segments along the P–D 
axis may also result in region-specific unique cellular 
properties such as cell sorting and aggregation behaviors 
that may direct their contribution toward specific 
skeletal elements such as the humerus or digits [25].

The second signaling center is the zone of polarizing 
activity (ZPA) which is a group of mesenchymal cells 
located at the posterior distal limb margin and 
immediately adjacent to the AER (Fig. 3.3B). When ZPA 
tissue is grafted to the anterior limb bud under the AER, 
it leads to digit duplication in mirror image of the 
endogenous ones [26]. Shh is expressed in the ZPA and is 
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Fig. 1.2.  Periodic and left–right symmetrical somite formation is controlled by signaling gradients and oscillations. (A) Somites 
form from the presomitic mesoderm (PSM) on either side of the neural tube in an anterior to posterior (A–P) wave. Each segment of 
the somite is also patterned along the A–P axis. Retinoic acid signaling controls the synchronization of somite formation on the left 
and right side of the neural tube. The most recent visible somite is marked by “0,” whereas the region in the anterior PSM that is 
already determined to form somites is marked by a determination front that is determined by Fgf8 and Wnt3a gradients. This FGF 
signaling gradient is antagonized by an opposing gradient of retinoic acid. (B) Periodic somite formation (one pair of somite/2 hours) 
is controlled by a segmentation clock, the molecular nature of which is oscillated expression of signaling components in the Notch 
and Wnt pathway. Notch signaling oscillates out of phase with Wnt signaling.
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both necessary and sufficient to mediate ZPA activity in 
patterning digit identity along the A–P axis [27]. However, 
the A–P axis of the limb is established before Shh signal-
ing. This pre-Shh A–P limb patterning is controlled by 
combined activities of Gli3, Alx4, and basic helix-loop-
helix (bHLH) transcription factors dHand and Twist1. 
The Gli3 repressor form (Gli3R) and Alx4 establish the 
anterior limb territory by restricting dHand expression to 
the posterior limb, which in turn activates Shh expres-
sion [28,29]. The activity of dHand in the posterior limb 
is also antagonized by Twist1 via a dHand-Twist1 heter-
odimer. Recently, the zinc finger factors Sall4 and Gli3 
have been found to cooperate for proper development of 
the A–P skeletal elements and also function upstream of 
Shh-dependent posterior skeletal element development 
[30].

Mutations in the human TWIST1 gene cause Saethre–
Chotzen syndrome (SCS, OMIM #101400), one of the 
most commonly inherited craniosynostosis conditions. 
The hallmarks of this syndrome are premature 
fusion  of  the calvarial bones and limb abnormalities. 
Mutations in the GLI3 gene also cause limb malforma-
tions including Greig cephalopolysyndactyly syndrome 
(GCPS, OMIM  #175700) and Pallister–Hall syndrome 
(PHS, OMIM #146510).

The third signaling center is the non-AER limb ecto-
derm that covers the limb bud. It sets up the D–V polarity 
of not only the ectoderm but also the underlying 
mesoderm (Fig. 1.3C) (review by [21,31]). Wnt and BMP 
signaling are required to control D–V limb polarity. 
Wnt7a is expressed specifically in the dorsal limb ecto-
derm and it activates the expression of Lmx1b, which 
encodes a dorsal-specific LIM homeobox transcription 
factor that determines the dorsal identity. Wnt7a 
expression in the ventral ectoderm is suppressed by En-1, 
which encodes a transcription factor that is expressed 

specifically in the ventral ectoderm. The BMP signaling 
pathway is also ventralizing in the early limb (Fig. 1.3C). 
It appears that the effects of BMP signaling are mediated 
by Msx1 and Msx2, two transcription factors that are also 
transcriptionally regulated by BMP signaling. The func-
tion of BMP signaling in the early limb ectoderm is 
upstream of En-1 in controlling D–V limb polarity [32]. 
However, when BMPRIA is specifically inactivated only 
in the mouse limb bud mesoderm, the distal limb is dor-
salized without altering the expression of Wnt7a and 
En-1 in the limb ectoderm [33]. Thus, BMPs also have 
En-1-independent ventralization activity by directly 
signaling to the limb mesenchyme to inhibit Lmx1b 
expression.

Limb development is a coordinated three-dimensional 
event. Indeed, the three signaling centers interact with 
each other through interactions of the mediating signaling 
molecules. First, there is a positive feedback loop between 
Shh and FGFs expressed in the AER, which connects A–P 
limb patterning with P–D limb outgrowth (Fig.  1.3B) 
[21,22]. This positive feedback loop is antagonized by an 
FGF/Grem1 inhibitory loop that attenuates strong FGF 
signaling and terminates limb outgrowth signals in order 
to maintain a proper limb size [34]. Second, the dorsalizing 
signal Wnt7a is required for maintaining the expression 
of Shh that patterns the A–P axis [35,36]. Third, Wnt/β-
catenin signaling has been found to be both distalizing 
and dorsalizing [37–39].

Identification of these interacting signaling networks 
in early limb patterning has provided a fertile ground to 
test the self-organizing Turing models [1] that simulate 
the pattern of digit formation in the limb. By combining 
experiments and modeling, a self-organizing Turing net-
work implemented by BMP, Sox9, and Wnt has been 
found to drive digit specification. When modulated by 
morphogen gradients, the network is able to recapitulate 
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the expression patterns of Sox9 in the wild type and in 
perturbation experiments [2]. Interestingly, the Turing 
model is also found to explain the dose effects of 
distal  Hox genes in modulating the digit period or 
wavelength  [3]. Progressive reduction in Hoxa13 and 
Hoxd11-Hoxd13 genes from the Gli3-null background 
results in progressively more severe polydactyly, display-
ing thinner and densely packed digits.

Recently, the generality and contribution of this Turing 
network implemented by BMP, Sox9, and Wnt to the 
morphological diversity of fins and limbs has been further 
explored [5]. Is has been suggested that the skeletal 
patterning of the catshark Scyliorhinus canicula pectoral 
fin is likely driven by a deeply conserved BMP–Sox9–Wnt 
Turing network. Therefore, the union of theory and 
experimentation is a powerful approach to not only 
identify and validate the minimal components of a 
network regulating digit pattern, but also to ask a new set 
of questions that will undoubtedly be answered as a 
result of the continued merging of disciplines.

EMBRYONIC CARTILAGE AND BONE 
FORMATION

The early patterning events determine where and when 
the mesenchymal cells condense, though the mechanism 
remains to be elucidated. Subsequently, osteochondral 
progenitors in the condensation form either chondrocytes 
or osteoblasts. Sox9 and Runx2, master transcription fac-
tors that are required for the determination of chondro-
cyte and osteoblast cell fates respectively [40,41], are both 
expressed in osteochondral progenitor cells, but Sox9 
expression precedes that of Runx2 in the mesenchymal 
condensation in the limb [42]. Early Sox9-expressing cells 
give rise to both chondrocytes and osteoblasts regardless 
of ossification mechanisms [43]. Loss of Sox9 function in 
the limb leads to loss of mesenchymal condensation and 
Runx2 expression [42]. Coexpression of Sox9 and Runx2 
is terminated upon chondrocyte and osteoblast differen-
tiation when Sox9 and Runx2 expression is quickly segre-
gated into chondrocytes and osteoblasts respectively. The 
mechanism controlling lineage-specific Sox9 and Runx2 
expression is fundamental to the regulation of chondro-
cyte and osteoblast differentiation and the determination 
of ossification mechanisms. It is clear that cell–cell sign-
aling, particularly those mediated by Wnts and Indian 
hedgehog (Ihh), are required for cell fate determination of 
chondrocytes and osteoblasts by controlling the expres-
sion of Sox9 and Runx2.

Active Wnt/β-catenin signaling is detected in the 
developing calvarium and perichondrium where osteo-
blasts differentiate through either intramembranous or 
endochondral ossification. Indeed, enhanced Wnt/β-
catenin signaling enhanced bone formation and Runx2 
expression, but inhibited chondrocyte differentiation 
and Sox9 expression [44–46]. Conversely, removal of 
β-catenin in osteochondral progenitor cells resulted in 

ectopic chondrocyte differentiation at the expense of 
osteolasts during both intramembranous and endochon-
dral ossification [46–48]. Therefore, during intramem-
branous ossification, Wnt/β-catenin signaling levels in 
the condensation are higher, which promotes osteoblast 
differentiation while inhibiting chondrocyte differentia-
tion. During endochondral ossification, however, Wnt/β-
catenin signaling in the condensation is initially lower, 
such that only chondrocytes can differentiate. Later, 
when Wnt/β-catenin signaling is upregulated in the 
periphery of the cartilage, osteoblasts will differentiate. 
It is likely that by manipulating Wnt signaling, mesen-
chymal progenitor cells, and perhaps even mesenchymal 
stem cells, can be directed to form only chondrocytes, 
which are needed to repair cartilage damage in osteoar-
thritis, or only form osteoblasts, which will lead to 
new therapeutic strategies to treat osteoporosis. These 
studies have provided new insights into tissue engineer-
ing that aims to fabricate cartilage or bone in vitro using 
mesenchymal progenitor cells or stem cells.

Ihh signaling is required for osteoblast differentiation by 
activating Runx2 expression only during endochondral 
bone formation [49]. Ihh is expressed in newly differenti-
ated chondrocytes and Ihh signaling does not seem to affect 
chondrocyte differentiation from mesenchymal progeni-
tors. However, when Hh signaling is inactivated in the peri-
chondrium cells, they ectopically form chondrocytes that 
express Sox9 at the expense of Runx2. This is similar to 
what has been observed in the Osterix (Osx) mutant 
embryos, except that in the Osx−/− embryos, ectopic chon-
drocytes express both Sox9 and Runx2 [50], suggesting that 
Runx2 is not sufficient to inhibit Sox9 expression and chon-
drocyte differentiation. It is still not clear what controls 
Ihh-independent Runx2 expression during intramembra-
nous ossification. One likely scenario is that the function of 
Ihh is compensated by Shh in the developing calvarium or 
Hh signaling is activated in a ligand-independent manner in 
the developing calvarium. Indeed, it has been recently 
found that in the rare human genetic disease progressive 
osseous heteroplasia (POH), which is caused by null muta-
tions in GNAS that encodes Gαs, Hedgehog signaling is 
upregulated. Such activation of Hh signaling is independent 
of Hh ligands and is both necessary and sufficient to induce 
ectopic osteoblast cell differentiation in soft tissues [51]. 
Importantly, GNAS gain-of-function mutations upregulate 
Wnt/β-catenin signaling in osteoblast progenitor cells, 
resulting in their defective differentiation and fibrous dys-
plasia [52]. Therefore, studies of human genetic diseases 
identify Gαs as a key regulator of proper osteoblast differen-
tiation through its maintenance of a balance between the 
Wnt/β-catenin and Hedgehog pathways.

Both Wnt/β-catenin and Ihh signaling pathways are 
required for endochondral bone formation. To understand 
which one acts first, a genetic epistatic test was carried 
out [53]. These studies found that β-catenin is required 
downstream of not just Ihh, but also Osx in promoting 
osteoblast maturation. By contrast, Ihh signaling is not 
required after Osx expression for osteoblast differentiation 
[54]. The sequential actions of Hh and Wnt signaling in 
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osteoblast differentiation and maturation suggest that 
Hh and Wnt signaling need to be manipulated at distinct 
stages during fracture repair and tissue engineering.

BMPs are the transforming growth factor (TGF) 
superfamily members that were identified as secreted 
proteins able to promote ectopic cartilage and bone 
formation [55]. Unlike Ihh and Wnt signaling, BMP 
signaling promotes the differentiation of both osteoblast 
and chondrocyte differentiation from mesenchymal 
progenitors. The mechanisms underlying these unique 
activities of BMPs have been under intense investigation 
for the past two decades. During this time, our 
understanding of BMP action in chondrogenesis and 
osteogenesis has benefited greatly from molecular studies 
of BMP signal transduction [56]. Reducing BMP signaling 
by removing BMP receptors leads to impaired chondrocyte 
and osteoblast differentiation and maturation [57].

FGF ligands and FGF receptors (FGFR) are both 
expressed in the developing skeletal system. The signifi-
cant role of FGF signaling in skeletal development was 
first identified by the discovery that achondroplasia 
(ACH, OMIM #100800), the most common form of skel-
etal dwarfism in humans, was caused by a missense muta-
tion in FGFR3. Later, hypochondroplasia (HCH, OMIM 
#146000), a milder form of dwarfism and thanatophoric 
dysplasia (TD, OMIM #187600, and 187601), a more 
severe form of dwarfism, were also found to result from 
mutations in FGFR3. FGFR3 signaling acts to regulate the 
proliferation and hypertrophy of the differentiated chon-
drocytes. However, the function of FGF signaling in mes-
enchymal condensation and chondrocyte differentiation 
from progenitors remains to be elucidated as complete 
genetic inactivation of FGF signaling in mesenchymal 
condensation has not been achieved. Nevertheless, it is 
clear that FGF signaling acts in mesenchymal condensa-
tion to control osteoblast differentiation during intram-
embranous bone formation. Mutations in FGFR 1, 2 and 3 
cause craniosynostosis (premature fusion of the cranial 
sutures). The craniosynostosis syndromes involving 
FGFR 1, 2, 3 mutations include Apert syndrome (AS, 
OMIM #101200), Beare-Stevenson cutis gyrata (OMIM 
#123790), Crouzon syndrome (CS, OMIM #123500), 
Pfeiffer syndrome (PS, OMIM #101600), Jackson-Weiss 
syndrome (JWS, OMIM #123150), Muenke syndrome 
(MS, OMIM #602849), crouzonodermoskeletal syndrome 
(OMIM #134934) and osteoglophonic dysplasia (OGD, 
OMIM #166250), a disease characterized by craniosynos-
tosis, a prominent supraorbital ridge, and a depressed 
nasal bridge, as well as rhizomelic dwarfism and nonos-
sifying bone lesions. All these mutations are autosomal 
dominant and many of them are activating mutations of 
FGF receptors. FGF signaling can promote or inhibit oste-
oblast proliferation and differentiation depending on the 
cell context. It does so either directly or through interac-
tion with the Wnt and BMP signaling pathways.

Apart from having the right types of cells and proper 
size, cartilage and bone also have distinct morphologies 
which are required for their function. For example, the 
limb and long bones preferentially elongate along the 

P–D axis. It is well understood that Wnts can act as mor-
phogens by forming gradients that specify distinct cell 
types in distinct spatial orders by inducing the expression 
of different target genes at threshold concentrations. In 
this regard, morphogen gradients provide quantitative 
information to generate a distinct pattern by coordinat-
ing cell proliferation and differentiation. Because the 
limbs are elongated organs instead of a three-dimension-
ally symmetrical ball, directional information has to be 
provided during limb and long bone elongation.
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Fig. 1.4.  Wnt5a gradient controls directional morphogene-
sis by regulating Vangl2 phosphorylation and asymmetrical 
localization. (A) Schematics of skeletons in a human limb 
that preferentially elongates along the proximal–distal (P–D) 
axis. (B) A model of a Wnt5a gradient controlling P–D limb 
elongation by providing a global directional cue. Wnt5a is 
expressed in a gradient (orange) in the developing limb bud 
and this Wnt5a gradient is translated into an activity gradient 
of Vangl2 by inducing different levels of Vangl2 phosphoryla-
tion (blue). In the distal limb bud of an E12.5 mouse embryo 
showing the forming digit cartilage, the Vangl2 activity gradi-
ent then induces asymmetrical Vangl2 localization (blue) and 
downstream polarized events.
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Although the molecular mechanism underlying such 
directional morphogenesis was poorly understood in the 
past, there is evidence that alignment of the columnary 
chondrocytes of the growth plate might be regulated by 
planar cell polarity (PCP) during directional elongation 
of  the formed cartilage [58]. PCP is an evolutionarily 
conserved pathway that is required in many directional 
morphogenetic processes including left–right asymme-
try, neural tube closure, body axis elongation and brain 
wiring [59]. Recently, a major breakthrough has been 
made by demonstrating that newly differentiated chon-
drocytes in the developing long bones in the limb are 
polarized along the P–D axis. For the first time it was 
found with a definitive molecular marker, Vangl2 pro-
tein, a core regulatory component in the PCP pathway. 
Vangl2 protein is asymmetrically localized on the proxi-
mal side of the Sox9 positive chondrocytes, not in Sox9 
negative interdigital mesenchymal cells [60]. Importantly, 
Vangl2 protein asymmetrical localization requires a 
Wnt5a signaling gradient. In the Wnt5a−/− mutant limb, 
the cartilage forms a ball-like structure and Vangl2 is 
symmetrically distributed on the cell membrane 
(Fig. 1.4). PCP mutations in the WNT5a and ROR2 genes 
have been found in skeletal malformations such as the 
Robinow syndrome and brachydactyly type B1, which 
both exhibit short-limb dwarfisms [61–65]. In addition, 
mutations in PCP signaling components such as VANGL1 
has been found in adolescent idiopathic scoliosis (AIS).

CONCLUSION

Skeletal formation is a process that has been perfected by 
nature in embryos during vertebrate evolution. 
Understanding the underlying molecular mechanisms of 
cartilage and bone formation in embryonic development 
will advance our knowledge of vertebrate embryonic 
morphogenesis in general. This knowledge will allow us 
to develop the strategy to promote skeletal tissue repair 
by endogenous cells or rejuvenate old skeletal tissues 
without having to use cells cultured in vitro. In addition, 
to use autologous cells and tissues or iPS (induced pluri-
potent stem) cells to repair bone and cartilage damaged 
during injury and disease, we require a more complete 
knowledge of skeletal development so that cartilage or 
bone can be fabricated using the body’s own cells. 
Understanding skeletal development is indispensable for 
understanding pathological mechanisms of skeletal dis-
eases, finding therapeutic targets, promoting consistent 
cartilage or bone repair in vivo, and eventually growing 
functional cartilage or bone in vitro.
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2

INTRODUCTION

A defining feature of vertebrates is the presence of a 
mineralized skeleton. Aside from giving animals their 
characteristic shape, the skeleton provides diverse 
functions including protecting internal organs, support­
ing body mass and movement, production of blood cells, 
calcium storage, and endocrine signaling. The skeleton 
is comprised primarily of two tissues, cartilage and bone, 
which are formed embryonically by chondrocytes and 
osteoblasts respectively. During skeletal development, 
these specialized cells are derived from a common 
mesenchymal progenitor of either neural crest origin in 
the craniofacial region or mesodermal origin for bones 
formed elsewhere in the body. Bones develop via 
two  distinct mechanisms: intramembranous or endo­
chondral ossification. Intramembranous ossification is 
responsible for forming specific parts of the skull and the 
clavicle, whereby mesenchymal progenitors differenti­
ate directly into osteoblasts responsible for secreting 
bone matrix. In contrast, endochondral ossification, the 
process responsible for generating most of the skeleton, 
requires a cartilage intermediate before forming 
bone. Here we will discuss the major cellular events of 
endochondral ossification: chondrogenesis, chondrocyte 
hypertrophy, and osteoblast differentiation, as well as 
important molecular mediators governing each of these 
processes.

CHONDROGENESIS AND CHONDROCYTE 
HYPERTROPHY DURING ENDOCHONDRAL 
OSSIFICATION

Bones within the limbs serve as the model for endochon­
dral ossification. Development of the limb skeleton initi­
ates during embryogenesis via the migration of 
multipotent mesenchymal progenitors from the lateral 
plate mesoderm into the developing limb field. These 
progenitors rapidly proliferate, expanding the limb bud, 
followed by the formation of condensations ultimately 
giving rise to cartilage anlagen (Fig. 2.1A,B). During the 
condensation phase, mesenchymal progenitors express 
multiple cell adhesion related molecules such as: 
N‐cadherin (Ncad), N‐cam (Ncam1), and tenascin C 
(Tnc) aiding in mesenchymal cell compaction. Cells 
within condensations undergo differentiation to generate 
mature chondrocytes (cartilage cells), a process known as 
chondrogenesis (Fig.  2.1A,B). Newly formed chondro­
cytes take on a characteristic round shape, continue to 
proliferate, and begin producing an extracellular matrix 
rich in type II, type IX, and type XI collagens (COL2A1, 
COL9A1, COL11A1) and the proteoglycan, aggrecan 
(ACAN). As cartilage rudiments continue to grow, chon­
drocytes nearest the epiphyseal ends maintain their 
round appearance and reduce their proliferative index, 
whereas chondrocytes near the center of rudiments 
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enhance their rate of proliferation, adopt a flattened 
appearance, and align into columns, driving longitudinal 
growth of the cartilage elements (Fig. 2.1C). A combina­
tion of chondrogenesis and chondrocyte proliferation 
establishes the early cartilaginous skeleton, which serves 
as the template for endochondral bone development.

Calcification and ossification of the endochondral 
skeleton begins with chondrocyte hypertrophy. During 
this process, columnar chondrocytes located at the center 
of growing cartilage rudiments, also known as prehyper­
trophic and hypertrophic chondrocytes, undergo further 
differentiation after exiting the cell cycle. Hypertrophic 
differentiation consists of genetic programs responsible 
for dramatically increasing chondrocyte cell size, switch­
ing the production of type II collagen to type X collagen 
(COL10A1), and inducing factors responsible for calcifi­
cation and vascularization of the cartilage matrix such as 
ALP and VEGF respectively (Fig.  2.1C). Hypertrophic 
chondrocytes express transcriptional regulators and a 
myriad of growth factors that not only coordinate the 
hypertrophic chondrocyte differentiation process, but 
also induce osteoblast differentiation of surrounding 
perichondrial cells and promote vascularization of the 
calcified cartilage by surrounding blood vessels, estab­
lishing a marrow cavity and primary ossification center 
(POC) (Fig. 1.1D). Late stage hypertrophic chondrocytes 
secrete the catabolic enzyme matrix metalloprotease 

13 (MMP13), which helps to degrade the cartilage matrix. 
Previously coined as terminal hypertrophic chondro­
cytes, these cells were thought to undergo exclusively a 
form of programmed cell death; however, lineage tracing 
studies recently showed that many hypertrophic chon­
drocytes undergo transdifferentiation into the osteoblast 
lineage. The combination of calcified cartilage degrada­
tion and hypertrophic chondrocyte transdifferentiation 
provides both a scaffold and a cell source for the genera­
tion of bone within the POC. Concominant with the 
ossification process directly associated with cartilage, 
osteoblasts derived from perichondrial cells and 
perivascular mesenchymal progenitors also utilize the 
degrading cartilage as a scaffold for further bone 
formation. The continuous processes of chondrocyte pro­
liferation, hypertrophy, calcification, vascularization, 
cartilage matrix degradation, transdifferentiation, and 
bone formation drive embryonic and postnatal endo­
chondral bone growth.

During early postnatal endochondral ossification, round 
chondrocytes maintained near the epiphyseal ends of 
bones undergo a maturation process similar to chondro­
cytes during embryonic skeletogenesis. Epiphyseal chon­
drocytes hypertrophy, generate a calcified matrix, degrade 
the matrix, undergo apoptosis and/or transdifferentiation, 
and eventually are replaced by invading vasculature and 
osteoblasts to create the secondary ossification center 
(SOC) (Fig. 2.1D,E). This SOC serves an important support 
role within weight‐bearing articulating joints and sepa­
rates the only two areas of remaining cartilage within the 
adult endochondral skeleton: the articular cartilage (AC) 
and growth plate (GP) cartilage (Fig.  2.1E). As cartilage 
growth and turnover decreases in the postnatal or adult 
skeleton, the contribution of cartilage to bone formation 
dramatically decreases, ultimately terminating the 
process of endochondral ossification.

MOLECULAR MEDIATORS OF CARTILAGE 
DEVELOPMENT

Specific transcriptional regulators are critical in establish­
ing the cartilage phase of the endochondral skeleton. 
Several Sry‐box (SOX) factors are required for chondrogen­
esis and early cartilage development. The master regulator 
of cartilage development, SOX9, is expressed in mesen­
chymal progenitors, osteochondral progenitors, and 
immature chondrocytes. SOX9 controls cell morphology 
at the mesenchyme to chondrocyte transition [1], while 
also directly regulating the expression of Col2a1, Col9a1, 
Col11a1, Acan, and other cartilage‐related genes [2]. 
Much of the transcriptional regulation imposed by SOX9 
occurs via interactions with other SOX factors, specifi­
cally SOX5 and SOX6, which together form the SOX trio. 
Mouse genetic studies in which Sox9 is either removed 
from the germline or specifically within the limb 
mesenchyme highlight the requirement for SOX9 in 
forming organized condensations capable of undergoing 

(A)

(B)
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SOC POC
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Fig. 2.1.  Stages of endochondral ossification. (A) Mesenchymal 
condensation (orange cells = mesenchymal progenitors). 
(B)  Chondrogenesis (blue cells = chondrocytes; orange cells = 
perichondrial progenitors. (C) Chondrocyte hypertrophy 
(blue cells = epiphyseal round chondrocytes and flat columnar 
chondrocytes; purple cells = prehypertrophic chondrocytes; 
green cells = hypertrophic chondrocytes; orange cells = late stage 
hypertrophic chondrocytes. (D) Formation of the primary ossifi­
cation center (POC) (all cells colored as described above; blood 
vessels and marrow cells in red; osteoblasts and bone matrix in 
black). (E)  Formation of secondary ossification center (SOC) 
separates the articular chondrocytes (AC) from growth plate (GP) 
chondrocytes (light blue cells = articular chondrocytes; all other 
cells/tissues as previously described).
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chondrogenesis [2, 3]. Interestingly, Sox5–/– Sox6–/– double 
mutant mice develop normal mesenchymal cell conden­
sations, but subsequently show impaired chondrogenesis, 
columnar chondrocyte disruption, and failure to maintain 
the chondrocyte phenotype, even though Sox9 expression 
is maintained [4]. Similarly, oseteochondral progenitor 
cell deletion of Sox9 results in normal condensations, but 
mutants subsequently develop a severe chondrodysplasia 
phenotype. These mouse genetic studies underscore the 
critical and sequential roles for SOX9, SOX5, and SOX6 
during cartilage development.

Numerous developmental signaling pathways are criti­
cal during chondrogenesis and early phases of endochon­
dral ossification. Factors such as the BMPs play key roles 
in the compaction of mesenchymal cells and shaping 
of  condensations [1]. Both the BMP and related TGFβ 
pathways induce Sox9 expression to promote chondro­
genesis and cartilage development. Conditional mutant 
mouse models with Bmpr1a floxed alleles deleted in 
osteochondral progenitors of a Bmpr1b–/– background 

display a severe generalized chondrodysplasia in which 
formation of mesenchymal condensations and chondro­
genic rudiments fail because of a lack of Sox9, Sox5, and 
Sox6 expression [5]. SMAD proteins are intracellular 
mediators of BMP signaling. Genetic removal of Smad1 
and Smad5 floxed alleles in osteochondral progenitors 
results in reduced condensation size, more compacted 
cells with less cartilage matrix, decreased chondro­
cyte proliferation, and an increased incidence of imma­
ture chondrocyte cell death, a phenotype slightly less 
severe  than that of BMP receptor mutant mice. These 
data suggest that whereas BMPs mostly exert their pro‐
chondrogenic functions via SMAD activation, alterna­
tive signaling mechanisms important for BMP‐mediated 
regulation of endochondral ossification likely exist 
(Fig.  2.2) [6]. The TGFβ pathway signals through the 
TGFβ‐related SMADS, SMAD2, and SMAD3. TGFβ1, 
TGFβ2, and TGFβ3 are each sufficient to induce chondro­
genesis and cartilage matrix synthesis (Fig. 2.2); however, 
individual mutant mice have not defined a requisite role 
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Fig. 2.2.  Cell differentiation and signaling regulators of endochondral ossification. Mesenchymal progenitor cells (yellow) differ­
entiate into osteochondral progenitors (light blue) before committing to either the osteoblast (shades of green; osteoblastogenesis) or 
chondrocyte lineages (shades of blue; chondrogenesis). Osteoblast differentiation proceeds from immature osteoblasts to mature 
osteoblasts before becoming an osteocyte. Chondrocyte differentiation proceeds from committed chondrocytes to prehypertrophic 
and hypertrophic chondrocytes before undergoing cell death or transdifferentiation into the osteoblast lineage (pink cells = perivascular 
mesenchyme progenitors). The NOTCH, BMP, TGFβ, IHH, and WNT pathways play important roles in regulating chondrogenesis, 
chondrocyte hypertrophy, and osteoblast differentiation during endochondral ossificaiton. Question marks indicate unknown 
molecular mechanisms.
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for any one TGFβ ligand in regulating chondrogenesis. 
Analyses of Smad2–/– and Tgfβr2 or Smad3 conditional 
mutant mice in which floxed alleles were deleted from 
mesenchymal or osteochondral progenitors have also yet 
to uncover a requisite role for TGFβ signaling during 
overt chondrogenesis [7–9]; however, important compo­
nents of the pathway that may be critical in promoting 
chondrogenesis have yet to be scruitinized. As an opposi­
tion to BMP/TGFβ signaling, the WNT and NOTCH 
signaling pathways antagonize the formation of mesen­
chymal condensations and inhibit chondrogenic differen­
tiation. Activation of WNT signaling in mesenchymal 
progenitors using a stabilized β‐catenin floxed allele 
(β‐cateninex3/ex3) inhibits Sox9, resulting in impaired con­
densation formation and suppression of chondrogenesis, 
ultimately leading to a failure of endochondral ossifi­
cation (Fig.  2.2) [10]. Conversely, genetic deletion of  
β‐catenin floxed alleles in mesenchymal or osteochondral 
progenitors resulting in WNT pathway loss of function 
leads to enhanced Sox9 expression and accelerated 
chondrogenesis at the expense of osteoblastogenesis, 
indicating that WNT/β‐catenin signaling regulates a 
critical fate switch in osteochondral progenitors by inhib­
iting the chondrogenic fate (Fig. 2.2) [10, 11]. Similar to 
WNT effects on chondrogenesis, NOTCH signaling sup­
presses condensation formation and chondrogenic differ­
entiation. Activation of NOTCH signaling via conditional 
overexpression of the NOTCH intracellular domain 
(NICD) within mesenchymal progenitors suppresses 
expression of Sox9, Sox5, and Sox6, disrupts formation of 
mesenchymal condensations, and completely blocks 
endochondral ossification, an effect that is overturned 
via the simultaneous genetic removal of the NOTCH 
nuclear effector, RBPjk. Analyses of mutant mice in 
which only Rbpjk floxed alleles were deleted in mesen­
chymal progenitors showed an increase in chondrogene­
sis and chondrogenic gene expression, indicating the 
requirement for RBPjk‐dependent NOTCH signaling as a 
regulator of the pace of chondrogenesis and endochondral 
ossification (Fig. 2.2) [12]. Similar, although less severe, 
effects on chondrogenesis were also observed in gain‐ 
and loss‐of‐function studies for the NOTCH target genes, 
Hes1 and Hes5, indicating that NOTCH regulation 
of  chondrogenesis occurs at least partially via a HES‐
mediated mechanism [13]. Each of these pathways 
exhibits distinct functions in space and time to regulate 
mesenchymal condensations and chondrogenesis; how­
ever, it is likely all intersect on a common transcriptional 
program governed by the SOX trio.

Chondrocyte hypertrophy is coordinated by balancing 
the expression and activities of specific transcriptional 
regulators including: runt‐related transcription factor 2 
(RUNX2), runt‐related transcription factor 3 (RUNX3), 
osterix (OSX), myocyte enhancer factor 2c (MEF2C), 
myocyte enhancer factor 2d (MEF2D), histone deacety­
lase 4  (HDAC4), and SOX9. RUNX2 is expressed in 
prehypertrophic and hypertropic chondrocytes and regu­
lates Col10a1, Alpl, Vegf, and Mmp13 expression, coordi­
nating hypertrophic differentiation with calcification, 

vascularization, and catabolism of the hypertrophic 
cartilage matrix (Fig. 2.2). Assessments of various Runx2–/– 
isoform mutants, as well as conditional mutant mice in 
which Runx2 floxed alleles were removed from osteo­
chondral progenitors, show a significant delay or absence 
of hypertrophic differentiation, mineralization, and vas­
cularization of cartilage elements [14, 15]. Interestingly, 
combined Runx2–/–; Runx3–/– double mutants exhibit 
a  more robust blockade in hypertrophic differentiation 
leading to a complete failure of endochondral ossifica­
tion, showing an important and potentially redundant 
role for RUNX3 in cartilage development [16]. OSX is 
expressed in prehypertrophic and hypertrophic chondro­
cytes and is another critical regulator of chondrocyte 
hypertrophy, calcification, and catabolism of calicified 
cartilage functioning downstream of RUNX2 and RUNX3 
(Fig. 2.2). Germline deletion of Osx or conditional removal 
of Osx floxed alleles in mesenchymal or osteochondral 
progenitors results in severely delayed chondrocyte 
hypertrophy, failed matrix calcification, and an inability 
to catabolize the cartilage matrix [17]. The latter effects 
are probably manifest because of the direct transcrip­
tional regulation of Mmp13 by OSX. HDAC4 is yet 
another critical transcriptional regulator expressed in 
hypertrophic chondrocytes, but not osteoblasts (Fig. 2.2). 
Germline deletion of Hdac4 results in accelerated chon­
drocyte hypertrophy, cartilage calicifiation, and advanced 
endochondral ossification, whereas transgenic overex­
pression of Hdac4 suppresses chondrocyte hypertrophy 
and endochondral ossification, likely because of the chro­
matin and transcriptional regulation of Runx2 imposed 
by HDAC4 [18]. MEF2C and MEF2D are related transcrip­
tion factors also expressed in prehypertrophic and hyper­
trophic chondrocytes (Fig.  2.2). Conditional deletion of 
Mef2c alone or in combination with Mef2d from mesen­
chymal or osteochondral progenitors results in failed 
chondrocyte hypertrophy, cartilage vascularization, and 
endochondral ossification reminiscent of Runx2 mutants 
[19]. Genetic interactions between HDAC4 and MEF2C 
were shown by deleting either a single allele of Mef2c in 
a Hdac4–/– background or deleting a single Hdac4 allele in 
a Mef2c+/– background resulting in normalization of their 
respective mutant phenotypes. Molecular studies further 
determined that both factors converge on the regulation 
of Runx2 in controlling chondrocyte hypertrophy, 
calcification, vascularization, and overall endochondral 
ossification [19]. Finally, SOX9 not only regulates 
chondrogenic gene expression important for inducing 
and  maintaining immature chondrocytes, but also 
coordinates the onset of hypertrophy (Fig.  2.2). Forced 
expression of Sox9 in hypertrophic chondrocytes delays 
chondrocyte maturation and inhibits both calcification 
and vascularization of the hypertrophic cartilage [20], 
whereas cartilage‐specific loss of Sox9 showed roles for 
SOX9 in (i) maintaining early hypertrophic chondrocytes 
via appropriate transcriptional regulation of Col10a1 and 
(ii) acting as a counterbalance to RUNX2 and OSX activi­
ties, preventing osteoblast differentiation of chondrocytes 
and excessive endochondral ossification [21].
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Multiple signaling molecules regulate chondrocyte 
hypertrophy in both direct and indirect manners. Indian 
hedgehog (IHH) and PTHrP form a negative feedback loop 
critical for coordinating chondrocyte hypertrophy and 
endochondral ossification. IHH is secreted from prehy­
pertrophic chondrocytes and directly regulates PTHrP in 
epiphyseal chondrocytes, which in turn signals to its 
receptor, PTHrP‐R, on prehypertrophic chondrocytes to 
antagonize the pace of chondrocyte hypertrophy (Fig. 2.2). 
Germline deletions of Ihh and Ptrhp both exhibit reduced 
chondrocyte proliferation and precocious chondrocyte 
hypertrophy; however, Pthrp mutants generate acceler­
ated bone formation whereas Ihh mutants fail to form 
bone because of a critical function of IHH in osteoblast 
differentiation from perichondrial progenitors (see later) 
[22–24]. Cartilage specific deletions of Smoothened 
(Smo), a critical cell surface protein mediating hedgehog 
signaling, aided in uncoupling IHH effects on chondro­
cyte hypertrophy and endochondral ossification from 
perichodrial bone formation because mutants developed 
accelerated chondrocyte hypertrophy without defects in 
perichondrial bone formation [25]. A critical intracellular 
function of IHH signaling is to antagonize GLI3 repressor 
function while activating other GLI family members 
(GLI1 and GLI2). Analyses of Ihh–/–; Gli3–/– mutant mice 
identified the requirement for GLI3 in mediating IHH 
actions on PTHrP, chondrocyte hypertrophy, and endo­
chondral ossification, but not on vascularization of the 
cartilage or perichondrial osteoblast differentiation [26, 
27]. Finally, PTHrP induces dephosphorylation of HDAC4 
in turn decreasing HDAC4 and 14‐3‐3 protein interac­
tions in the cytoplasm to promote nuclear translocation 
of HDAC4 and repression of MEF2C transcriptional 
activation of Runx2, thereby establishing an IHH/ 
PTHrP‐HDAC4‐MEF2C‐RUNX2 molecular regulation of 
chondrocyte hypertrophy and endochondral ossification 
[28]. Antagonistic to the IHH/PTHrP pathway, both BMP 
and WNT signaling promote chondrocyte hypertrophy 
(Fig.  2.2). Conditional removal of Smad1 and Smad5 
floxed alleles from osteochondral progenitors [6] or 
Bmpr1a floxed alleles from osteochondral progenitors in 
a Bmpr1b+/– background [29] defined an extracellular to 
intracellular signaling cascade leading to BMP‐mediated 
chondrocyte proliferation, survival, hypertrophy, and 
proper endochondral ossification; a cascade culminating 
in SMAD‐mediated regulation of IHH signaling and tran­
scriptional control of Runx2. Similarly, conditional dele­
tion of β‐catenin floxed alleles in mesenchymal and 
osteochondral progenitors showed the role WNT/β‐
catenin plays in promoting chondrocyte hypertrophy, 
calcification, vascularization, and endochondral ossifica­
tion via β‐catenin induced degradation and antagonism of 
SOX9 combined with transcriptional activation of Osx 
(Fig. 2.2) [10, 11, 30, 31]. NOTCH signaling also promotes 
chondrocyte hypertrophy and endochondral ossification 
(Fig.  2.2), via alternative mechanisms, however. First, 
both in vivo and in vitro lines of evidence support 
NOTCH suppression of chondrocyte proliferation and 
cell cycle exit during early chondrocyte hypertrophy [32]. 

Second, conditional deletion of Notch1 and Notch2 
floxed alleles from mesenchymal progenitors or RBPjk 
floxed alleles from mesenchymal progenitors, osteochon­
dral progenitors, or chondrocytes leads to delayed onset 
of chondrocyte hypertrophy and cartilage matrix catabo­
lism, whereas overexpression of NICD in chondrocytes 
promotes these processes [32–34]. Molecular dissection 
of the pathway indicates that NOTCH indirectly pro­
motes chondrocyte hypertrophy in an RBPjk‐dependent 
manner via HES/HEY‐mediated downregulation of Sox9, 
Col2a1, Acan, and other chondrogenic genes [13], while 
simultaneously inducing cartilage catabolism and turno­
ver of growth plate cartilage via RBPjk‐mediated induc­
tion of numerous catabolic genes including Mmp13 [32, 
35]. Each of the aforementioned transcriptional regula­
tors and signaling pathways impart profound effects 
on  chondrocyte hypertrophy and maturation during 
endochondral ossification. However, the identification of 
signals positively or negatively regulating hypertrophic 
chondrocyte transdifferentiation into osteoblast lineage 
cells (mesenchymal progenitors or committed osteo­
blasts) remains to be elucidated (Fig. 2.2).

OSTEOBLAST DIFFERENTIATION AND 
BONE FORMATION

Osteoblasts are responsible for producing and secreting a 
combination of extracellular proteins that comprise the 
bone matrix. These include copious amounts of type 1 
collagen (COL1A1) and noncollagenous matrix proteins 
including ALPL, integrin‐linked bone sialoprotein (IBSP), 
and osteocalcin (BGLAP), which serve as markers of dis­
tinct stages of osteoblast differentiation in addition to 
regulating diverse aspects of bone matrix mineralization. 
The process of osteoblast differentiation begins with con­
densation of multipotent mesenchymal progenitors, 
specification of osteochondral progenitors, formation of 
committed preosteoblasts, differentiation into mature 
functional osteoblasts, and finally encasement in bone 
matrix to form osteocytes (Fig. 2.2). Unlike osteoblasts 
that secrete the bone matrix, osteocytes function as 
mechanosensory cells that transduce mechanical loads 
into biochemical signals to regulate osteoblast differen­
tiation and bone formation. Recent studies highlight the 
diverse cellular sources that can give rise to osteoblasts, 
including perichondrial cells, perivascular mesenchymal 
progenitors (pericytes) brought in during vascular inva­
sion, circulating progenitors, hypertrophic chondrocytes 
[36, 37], and other mesenchymal cells within the bone 
marrow (see also Chapters 3, 4, and 5). Extensive studies 
over the past few decades have identified a number 
of  transcription factors and developmental signals 
that  regulate osteoblast differentiation. Differentiating 
osteoblasts are characterized by the expression of master 
transcriptional regulators including Sox9 (expressed 
in  mesenchymal progenitors), Runx2 (expressed in 
osteochondral progenitors and mature osteoblasts), 
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Osterix (Osx, preosteoblasts and mature osteoblasts), 
and Atf4 (mature osteoblasts) (Fig. 2.2). RUNX2 is indis­
pensable for osteoblast differentiation and promotes the 
differentiation of osteochondral progenitors into preoste­
oblasts as well as the proper function of mature osteo­
blasts. Homozygous deletion of Runx2 in mice results in 
a complete loss of osteoblasts. Like RUNX2, OSX is 
required for osteoblast differentiation and bone forma­
tion but functions downstream of Runx2. OSX is required 
for the transition from the preosteoblast to a functional 
mature osteoblast. Homozygous deletion of Osx in mice 
results in a thickened perichondrium at the diaphysis 
because of a failure of osteoblast differentiation. OSX is 
also crucial for postnatal osteoblast differentiation and 
function. ATF4 is required for terminal differentiation 
and regulates bone‐forming activities in mature osteo­
blasts. Homozygous deletion of Atf4 results in delayed 
osteoblast differentiation and decreased bone formation. 
ATF4 is dispensable for Runx2 and Osx expression but 
coregulates Ibsp and Bglap expression with RUNX2. 
ATF4 promotes amino acid uptake to facilitate protein 
synthesis and bone matrix production by osteoblasts. 
This appears to be the primary function of ATF in osteo­
blasts as a high protein diet can correct the bone pheno­
types of Atf4–/– mice.

Developmental signals such as NOTCH, IHH, WNT, 
and BMP are required at different stages and play unique 
roles in osteoblast differentiation. NOTCH signaling 
plays an important role in maintaining an osteochondral 
progenitor pool to provide osteoblasts throughout life. 
NOTCH signaling maintains the osteochondral progeni­
tor pool by inhibiting RUNX2 transcriptional activity 
and preventing osteoblast differentiation (Fig. 2.2). Loss 
of this blockade through genetic inhibition of NOTCH 
signaling in mesenchymal progenitors results in exuber­
ant differentiation and bone formation early in life 
with  a  severe reduction of bone mass later because of 
exhaustion of the progenitor pool. In committed 
osteoblasts, forced NOTCH activation inhibits terminal 
differentiation and stimulates osteoblast activity and 
bone formation by expanding the number of active osteo­
blasts resulting in sclerotic bone formation [41]. 
However, genetic ablation of NOTCH signaling in com­
mitted osteoblasts results in no discernable phenotype, 
underscoring the uncertainty of a physiological role for 
NOTCH signaling in mature osteoblasts. Conversely, 
Hedgehog signaling is required to initiate osteoblast dif­
ferentiation. IHH, expressed in prehypertrophic and 
hypertrophic chondrocytes, signals to adjacent perichon­
drial cells to initiate osteoblast differentiation by regulat­
ing Runx2 and Osx expression (Fig.  2.2). The WNT 
pathway similarly promotes osteoblast differentiation 
but functions downstream of IHH (Fig.  2.2) (also see 
Chapter 9). The WNT transcriptional effector β‐catenin 
(encoded by Catnnb1) is required for osteoblast 
differentiation. Genetic deletion of Catnnb1 in mesen­
chymal progenitors abolishes osteoblast formation and 
results in  ectopic cartilage formation. Both β‐catenin 
dependent and independent WNT signaling are required 

for progression from the Runx2 positive progenitor to the 
Osx positive preosteoblast and from the preosteoblast to 
the mature osteoblast stages [11, 31, 44, 45]. Recent 
studies implicate cellular metabolism as a target of 
WNT regulation during differentiation. WNT stimulates 
glucose uptake, which favors osteoblast differentiation 
by increasing RUNX2 expression and activity [46, 47]. In 
mature osteoblasts, WNT stimulates glutamine catabo­
lism which increases ATF4 translation to stimulate oste­
oblast activity and terminal differentiation [48]. Like 
WNT signaling, BMPs play multiple roles in regulating 
osteoblast differentiation [49]. BMP signaling directly 
regulates both Runx2 and Osx expression and is required 
to form preosteoblasts (Fig.  2.2) (see also Chapter  8). 
Later, BMP promotes differentiation by suppressing pro­
liferation in preosteoblasts and stimulating osteoblast 
activity. BMP signaling ultimately regulates osteoblast 
activity and bone formation by increasing ATF4 protein 
expression downstream of the unfolded protein response 
[50]. Combined, these signals cooperate in an elaborate and 
elegant web to coordinate endochondral ossification.

CONCLUSION

Here we have provided a general overview of endochondral 
ossification with a focus on the major cellular events 
(chondrogenesis, chondrocyte hypertrophy, and osteoblast 
differentiation), transcription factors (SOX trio, RUNX2, 
OSX, HDAC4, MEF2C/D, and ATF4), and signaling pathways 
(BMP/TGFB, WNT, IHH/PTHrP, and NOTCH) governing 
each stage of the process. In particular, we highlighted critical 
murine studies using sophisticated genetic approaches to 
determine the function(s) for many of the transcriptional 
regulators and signaling molecules important in coordinating 
proper development of the endochondral skeleton.
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