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v

The mechanisms and physiological functions of water transport across bio-
logical membranes are subjects of long-standing interest. Recent advances in 
the molecular biology and physiology of water transport have yielded new 
insights into how and why water moves across cell membranes. Aquaporins 
(AQPs) are a group of water channel proteins that are specifically permeable 
to water and some other small molecules, such as glycerol, urea, etc. Thirteen 
water channel proteins (AQP0–AQP12) have been cloned, and gene organi-
zation, protein crystal structure, expression localization, and physiological 
functions of some AQPs have been studied and determined. In recent years, 
the studies in AQP knockout mouse models suggest that AQPs may be 
involved in some disease development and be useful targets for drug discov-
ery of selective inhibitors. Our aim in writing this book is to stimulate further 
research in new directions by providing novel provocative insights into fur-
ther mechanisms and physiological significance of water and some small 
molecule transport in mammals.

This book provides a state-of-the-art report on what has been learned 
recently about AQPs and where the field is going. Although some older work 
is cited, the main focus of this book is on advances made over the past 
30  years on the biophysics, genetics, protein structure, molecular biology, 
physiology, pathophysiology, and pharmacology of AQPs in mammalian cell 
membranes. It is likely that advances in understanding molecular biology and 
physiology of AQPs will yield new insights into biology and medicine.

In listing names, one always lives in fear of having forgotten someone. 
I thank all authors and colleagues for their contribution to this book.

Beijing, China� Baoxue Yang

Preface
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Molecular Biology of Aquaporins

Chunling Li and Weidong Wang

Abstract

Aquaporins (AQPs) are a family of membrane water channels that basi-
cally function as regulators of intracellular and intercellular water flow. 
To date, thirteen AQPs, which are distributed widely in specific cell 
types in various organs and tissues, have been characterized in humans. 
Four AQP monomers, each of which consists of six membrane-spanning 
alpha-helices that have a central water-transporting pore, assemble to 
form tetramers, forming the functional units in the membrane. AQP 
facilitates osmotic water transport across plasma membranes and thus 
transcellular fluid movement. The cellular functions of aquaporins are 
regulated by posttranslational modifications, e.g. phosphorylation, ubiq-
uitination, glycosylation, subcellular distribution, degradation, and pro-
tein interactions. Insight into the molecular mechanisms responsible for 
regulated aquaporin trafficking and synthesis is proving to be fundamen-
tal for development of novel therapeutic targets or reliable diagnostic 
and prognostic biomarkers.

Keywords

Aquaporin • Posttranslational modification • Endocytosis • Exocytosis

1.1	 �Classification of Aquaporins 
(AQPs)

1.1.1	 �Discovery of the First Water 
Channel

The existence of a water channel protein had 
been predicted for a long time. In early 1980s last 
century, people believed that a protein migrating 
as band 3 on the electrophoretogram of red blood 
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cell membrane was a common pore for water and 
electrolytes [214]. The membrane water channel 
was not identified until the pioneering discovery 
of AQP1 by Peter Agre and colleagues around 
late 1980s and early 1990s. During that period, 
Agre and coworkers had purified by chance a 
novel protein from the red blood cell membrane 
[47], with a non-glycosylated component of 
28 kDa and a glycosylated component migrating 
as a diffuse band of 35~60 kDa, which displayed 
a number of biochemical characteristics. The 
28-kDa polypeptide was found to exist as an 
oligomeric protein with the physical characteris-
tics of a tetramer. The amino acid sequence was 
later identified [213] and cDNA was subse-
quently cloned [190]. The new protein was ini-
tially called CHIP28 (CHannel-like Integral 
Protein of 28 kDa), but was later redubbed aqua-
porin-1 or AQP1 [2].

The AQP1 was identified by injecting its 
cRNA into Xenopus laevis oocytes, which exhib-
ited remarkably high osmotic water permeability 
causing the cells to swell rapidly and explode in 
hypotonic buffer [190]. To test the role of AQP1 
as a molecular water channel, highly purified 
AQP1 protein from human red blood cells was 
reconstituted with pure phospholipid into proteo-
liposomes and were compared with liposomes 
without AQP1 [260, 261]. The unit water perme-
ability (conductance per monomeric AQP1) was 
extremely high in the liposomes with AQP1 when 
compared with controls, in addition, AQP1 pro-
teoliposomes were not permeable to various 
small solutes or protons, thus suggesting that 
AQP1 was water selective (although later studies 
found that AQP1 is indeed gas permeable). These 
results confirmed that AQP1 is a molecular water 
channel and strongly suggested that AQP1 water 
channels were of fundamental importance for 
transmembrane or transcellular water transport in 
tissues where it is expressed. The discovery of 
AQP1 also laid the ground for the identification 
of other water channel family members by 
homology cloning and other means, which has 
led to the understanding that aquaporins play 
essential roles in water transport in tissues.

1.1.2	 �Classification of AQPs

A large number of evidences have shown an 
unexpected diversity of AQPs in both prokaryotic 
and eukaryotic organisms [1, 58] since the dis-
covery of AQP1. More than 300 different aqua-
porins have been discovered so far in which 
thirteen isoforms have been identified (AQP0–
AQP12) in human. AQPs are integral, hydropho-
bic, transmembrane proteins that primarily 
facilitate the passive transport of water depend-
ing on the osmotic pressure on both sides of 
membrane. Subsequent studies showed that 
AQPs can transport not only water molecules but 
also other small, uncharged molecules, i.e., glyc-
erol, urea, down their concentration gradients.

Structural analysis of several AQPs has estab-
lished that these protein channels share common 
structural features. The functional aquaporin unit 
is a homotetramer, which comprises six α-helix 
transmembrane domains with two conserved 
asparagine–proline–alanine (NPA) motifs 
embedding into the plasma membrane, a signa-
ture sequence of water channels, five loops (A-E) 
and intracellular N- and C-termini. The amino 
acid sequences of human AQPs are approxi-
mately 30–50% identical. Conformational 
changes of AQP protein permit other molecules 
passing through plasma membrane, i.e. urea, 
glycerol, H2O2, NH3, CO2, etc.

According to their structural and functional 
similarities, AQPs are initially subdivided into 
two subfamilies, classical AQPs (water-selective) 
and aquaglyceroporins (glycerol channel, Glps) 
aquaporins. However, this viewpoint was chal-
lenged by recent evidence revealing that both 
subfamilies overlap functionally, for examples, 
some classical AQPs transport water and other 
small solutes e.g. glycerol. In addition, a new 
group of AQPs discovered recently showed that 
their structure is highly deviated from the previ-
ous AQPs especially around the AQP NPA box 
[95, 104, 107]. This subfamily was later named 
superaquaporin (also called unorthodox aquapo-
rin) as it has very low homology with the previ-
ous two subfamilies [104]. This classification is 
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generally accepted and will be discussed in the 
current review. Aquaporins may also be organized 
into four categories, classical aquaporins, Aqp8-
type aquaammoniaporins, unorthodoxaquapo-
rins, and Glps, according to the phylogenetic tree 
(Fig. 1.1) or phylogenetic topology inferred from 
Bayesian inference [58, 104].

The first subfamily is that of aquaporins, the 
water selective or specific water channels, also 
named as “orthodox”, “classical” aquaporins, 
including AQP0, AQP1, AQP2, AQP4, AQP5, 
AQP6 and AQP8. This subfamily of AQPs has 
been extensively studied, which help us define 
regulation of AQP expression in the body and 
their potential roles in physiological and patho-
physiological states. Recent literature, however, 
appears to suggest that AQP6 and AQP8 be clas-
sified as unorthodox auquaporins, due to low 
water permeability of AQP6 [62, 256] and 
unique, different phylogenetics of AQP8 from 
others [122, 152].

The second subfamily is represented by aqua-
glyceroporins that are permeable to water and 
other small uncharged molecules (ammonia, 
urea, in particular glycerol). They also facilitate 
the diffusion of arsenite and antimonite and play 
a crucial role in metalloid homeostasis [15]. The 
aquaglyceroporins, including AQP3, AQP7, 
AQP9 and AQP10, can be distinguished from 
aquaporins based on amino acid sequence align-
ments [21]. AQP3 is the first mammalian aqua-
glyceroporin to be cloned, and it is permeable to 
glycerol and water [50, 252]. AQP7, AQP9, and 
AQP10 transport water, glycerol, and urea when 
expressed in Xenopus oocytes [100, 103, 232]. 
AQP9 is also permeable to a wide range of other 
solutes in oocytes [232]. Most aquaglyceroporins 
which transport glycerol and urea are less under-
stood yet.

The third subfamily of related proteins have 
low conserved amino acid sequences around the 
NPA boxes unclassifiable to the first two subfam-
ilies [104]. Mammalian AQP11 and AQP12 are 

Fig. 1.1  The phylogenetic tree of 13 human AQPs. The 
tree shows the classical AQPs (AQP0, AQP1, AQP2, 
AQP4, AQP5, AQP6, AQP8, note that AQP8 is also 
named as AQP8-related AQPs, as in phylogeny it is differ-

ent from other classical AQPs, light pink square); the 
aquaglyceroprins (AQP3, AQP7, AQP9, AQP10, light 
green square); and the superaquaporins (AQP11, AQP12, 
light yellow square) (Modified from Ref. [104])

1  Molecular Biology of Aquaporins
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