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vii

 “Structural Genomics” as an area of investigation arose from the recognition that genome 
sequence information could be combined with improved methods for macromolecular 
structure determination to allow high-throughput structure determination. One of the 
early justifi cations for developing the fi eld was the potential to make use of the structural 
information in drug discovery efforts. All three of these areas, genome sequencing, macro-
molecular structure determination, and structure-aided drug discovery, have seen dramatic 
improvements in technology and methodology. 

 This volume focuses on high-throughput structure determination methods and how 
they can be applied to lay the groundwork for structure-aided drug discovery. The methods 
and protocols that are described can be applied in any laboratory interested in using detailed 
structural information to advance the initial stages of drug discovery. Due to the advances 
in technology and methodology that have occurred during the past 10–15 years, even the 
nonspecialist can apply structural biology to most biomedical problems. The methods and 
approaches that distinguish structural genomics from “classical” structural biology have 
been decreasing as more and more research groups adopt high-throughput methods and 
apply them to their specifi c biological research problems. 

 In some respects, structure-aided drug discovery is very specifi c to the one particular 
protein target being studied and the approaches of structural genomics would not seem to 
be appropriate. However, if one looks at the problem broadly, there often is more than one 
protein that could be targeted, and when multiple proteins are being investigated, the 
advantages of carrying out most of the steps in parallel can increase productivity. 

 The initial chapters deal with bioinformatics and data management because selecting 
target proteins and planning how the large amount of diverse data will be handled are the 
fi rst steps. Following these are the chapters on high-throughput methods for cloning, 
expression and solubility testing, protein production, purifi cation, crystallization screening, 
and screening for suitability for NMR structure determination. One of the continuing 
problems faced by structural genomics efforts is the limited success rate that, not surpris-
ingly, accompanies increased throughput and the associated reduction in individual atten-
tion to each protein. Although there is no panacea, a number of chapters describe methods 
that can rescue, or salvage, target proteins that are failing as they proceed through the 
pipeline. Finally, the concluding chapters describe methods that use the proteins that have 
been produced in order to identify initial small molecule hits. These hits can then feed into 
drug discovery efforts. At this point in the process, the number of technically and biologi-
cally suitable targets will have been reduced and each protein, together with the hits that 
have been generated, will require individual attention. 

 The structural genomics approach provides an effi cient initial step toward drug discovery 
and the methods described will be useful to anyone interested in moving in this direction.  

    Chicago ,  IL ,  USA       Wayne     F.     Anderson      

  Pref ace   
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    Chapter 1   

 Data Management in the Modern Structural Biology 
and Biomedical Research Environment 

           Matthew     D.     Zimmerman    ,     Marek     Grabowski    ,     Marcin     J.     Domagalski    , 
    Elizabeth     M.     MacLean    ,     Maksymilian     Chruszcz    , and     Wladek     Minor    

    Abstract 

   Modern high-throughput structural biology laboratories produce vast amounts of raw experimental data. 
The traditional method of data reduction is very simple—results are summarized in peer-reviewed publica-
tions, which are hopefully published in high-impact journals. By their nature, publications include only the 
most important results derived from experiments that may have been performed over the course of many 
years. The main content of the published paper is a concise compilation of these data, an interpretation of 
the experimental results, and a comparison of these results with those obtained by other scientists. 

 Due to an avalanche of structural biology manuscripts submitted to scientifi c journals, in many recent 
cases descriptions of experimental methodology (and sometimes even experimental results) are pushed to 
supplementary materials that are only published online and sometimes may not be reviewed as thoroughly 
as the main body of a manuscript. Trouble may arise when experimental results are contradicting the 
results obtained by other scientists, which requires (in the best case) the reexamination of the original raw 
data or independent repetition of the experiment according to the published description of the experi-
ment. There are reports that a signifi cant fraction of experiments obtained in academic laboratories cannot 
be repeated in an industrial environment    (Begley CG & Ellis LM, Nature 483(7391):531–3, 2012). This 
is not an indication of scientifi c fraud but rather refl ects the inadequate description of experiments per-
formed on different equipment and on biological samples that were produced with disparate methods. For 
that reason the goal of a modern data management system is not only the simple replacement of the labo-
ratory notebook by an electronic one but also the creation of a sophisticated, internally consistent, scalable 
data management system that will combine data obtained by a variety of experiments performed by various 
individuals on diverse equipment. All data should be stored in a core database that can be used by custom 
applications to prepare internal reports, statistics, and perform other functions that are specifi c to the 
research that is pursued in a particular laboratory. 

 This chapter presents a general overview of the methods of data management and analysis used by 
structural genomics (SG) programs. In addition to a review of the existing literature on the subject, also 
presented is experience in the development of two SG data management systems, UniTrack and LabDB. 
The description is targeted to a general audience, as some technical details have been (or will be) published 
elsewhere. The focus is on “data management,” meaning the process of gathering, organizing, and storing 
data, but also briefl y discussed is “data mining,” the process of analysis ideally leading to an understanding 
of the data. In other words, data mining is the conversion of data into information. Clearly, effective 
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data management is a precondition for any useful data mining. If done properly, gathering details on 
millions of experiments on thousands of proteins and making them publicly available for analysis—even 
after the projects themselves have ended—may turn out to be one of the most important benefi ts of 
SG programs.  

  Key words     Databases  ,   Data management  ,   Structural biology  ,   LIMS  ,   PSI  ,   CSGID    

1      Introduction 

  Both structural genomics consortia and individual structural biology 
laboratories produce tremendous amounts of data, and having 
accurate, complete and consistent data is critical for reproducibility  
of biomedical research [ 1 ]. A single trip to a synchrotron for data 
collection by a productive crystallographic lab can generate hun-
dreds of datasets totaling around 2 TB of raw data [ 2 ]. Modern 
data processing software can reduce, on the fl y, a raw set of diffrac-
tion images into a single fi le that contains a description of every 
diffraction peak: Miller indices, intensity, and experimental uncer-
tainty (sigma). These data are further reduced into one relatively 
small file that contains scaled and merged diffraction intensities. 
However, each fi le has to be associated with a particular sample 
(protein crystal) and the description of the experiment, which is 
usually written in the header of the diffraction image. These data 
are further used for structure determination and/or for function–
structure relation studies. 

 To perform these studies the experimenter needs information 
about the protein (at a minimum, the protein sequence), crystalli-
zation conditions, and, for functional studies, protein production 
details. If this information is available, the process described above 
is simple to implement. Data harvesting from structure determina-
tion is relatively straightforward. The whole process following the 
placement of a crystal in the X-ray beam can be entirely controlled 
and captured by computer. 

 However, while this is very simple in theory, this simplicity has 
not yet been translated into practice. Analysis of the Protein Data 
Bank (PDB) [ 3 ,  4 ] shows that the number of data collection 
parameters marked as “NULL” in the header information (i.e., the 
detailed description of the experiment) is still signifi cant [ 5 ,  6 ]. 
Moreover, data in the header are sometimes self-contradictory, 
contradictory to the experimental description in the paper citing 
the structure, or both [ 7 ,  8 ]. In that case, contacting the authors 
of the deposit and paper may be the only way to resolve the arising 
problems. Taking into account that only a small fraction, about 
13 % [ 9 ], of structures determined by high-throughput consortia 
are converted (reduced) to peer-reviewed papers, the correctness 
of data uploaded to various databases like TargetTrack [ 10 ], 
TargetDB [ 11 ], and data banks like PDB is absolutely critical 
( see  below).  

1.1  Data in 
Structural Biology
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  Since their inception, many structural genomics efforts have 
adopted policies that experimental data produced by member 
consortia should be made available to the community from the 
moment of target selection. This has been particularly true for the 
two large initiatives from the National Institutes of Health (NIH): 
the Protein Structure Initiative (PSI) established in 2000 by the 
National Institute of General Medical Sciences (NIGMS) and 
the SG centers focusing on infectious diseases established in 2007 
by the National Institute of Allergy and Infectious Diseases 
(NIAID). Even some partially privately funded SG efforts like the 
Structural Genomics Consortium (SGC) have established policies 
to release some experimental data to the general public [ 12 ] (typi-
cally only after the structure is determined and deposited). In the 
specifi c case of the centers funded by NIGMS and NIAID, the 
NIH established the target registration database, TargetDB [ 11 ], 
and required that all member consortia deposit data on the prog-
ress of their targets. Subsequently many other SG centers world-
wide have deposited some of their experimental data as well. 

 Initially, the main purpose of TargetDB was the prevention of 
duplication of effort between different SG centers and maximiza-
tion of the structural coverage of the protein fold space. The scope 
of the data was very modest. It included protein identifi cation 
information (sequence, organism) and the timeline of changes in 
experimental status for each target. Status events included target 
selection, cloning, expression, purifi cation, as well as crystallization, 
diffraction, determination of crystal structure, and PDB deposition 
(for targets studied by X-ray crystallography) or obtaining the 
HSQC spectra, determination of NMR structure, and BMRB/PDB 
deposition (for targets studied by NMR). 

 However, even the modest amount of data available in 
TargetDB permitted interesting analyses of the overall SG struc-
ture determination pipeline [ 13 ,  14 ]. In particular, the overall effi -
ciency of the pipeline—the ratio of solved structures to clones—was 
found to be below 10 % even in the most productive centers. 
The two steps that contributed most to the failure of a target in the 
pipeline were production of soluble protein and diffraction-quality 
crystals. Not surprisingly, the success ratio depended very strongly 
on the type of protein as well as the methodology used by par-
ticular centers. There was not a single overall bottleneck factor. 
In 2004, TargetDB was extended to the Protein Expression, 
Purifi cation, and Crystallization Database (PepcDB) [ 15 ] which 
in addition to simple status history included multiple trials, track-
ing of failed as well as successful experiments, and more detailed 
descriptions of protocols. 

 In 2010, PepcDB and TargetDB were merged into a single 
new database, TargetTrack, part of the new PSI-Structural Biology 
Knowledge Base (PSI-SBKB) [ 10 ,  16 ]. The new repository 

1.2  Large-Scale 
Initiatives Create New 
Databases: TargetDB/
PepcDB/TargetTrack
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extended the defi nition of a target to include protein–protein 
complexes and incorporated tracking of biological assays needed in 
the PSI:Biology phase. As of January 2013, TargetTrack contained 
data on over 300,000 targets and over 1,000 protocols.  

  Development of effective data management systems was a necessity 
for the large-scale SG centers, not only in order to provide the data 
to the scientifi c community but also particularly to effectively han-
dle the huge amounts of experimental data, plan experiments, 
adjust experimental approaches (e.g., choice of cloning vectors, 
sequence truncation, crystallization conditions, structure deter-
mination procedures), and prioritize targets. These needs required 
gathering far more data than what was being required by 
TargetTrack. 

 In general, two levels of data management are needed in high- 
throughput, high-output structural biology programs: the  target 
tracking  level and the  experiment tracking  level. The target track-
ing level comprises target selection, overall experimental status of 
each target, center-wide effi ciency statistics, and generation of 
reports to the public and to other databases such as TargetTrack. 
Almost all SG centers have a separate target-tracking database, 
though some functionality (e.g., target selection) can be “offl oaded” 
to other specialized databases. The primary audience for the target- 
tracking level is everyone interested in a “high-level” view of the 
data produced by the center: the center’s scientists and adminis-
trators as well as members of the scientifi c community with inter-
est in the targeted proteins. This level is typically not designed for 
uploading new data or providing all details of individual experi-
ments; these tasks are better handled at the experimental tracking 
level. 

 The experimental tracking level comprises the tools used to 
collect the results of experiments performed in the laboratory. This 
type of tool is generally known as a “laboratory information 
management system” or LIMS. LIMSs are typically used day to 
day by the researchers conducting the experimental work of a labo-
ratory and may be highly customized to the protocols and work 
fl ow of a particular laboratory. LIMSs may also provide tools to 
help design experiments, operate laboratory equipment, semiauto-
matically harvest data, track the use of resources, etc. As a result, 
the primary audience for the LIMS is composed of those interested 
in a “low-level” view of the data, the center researchers themselves. 
As compared to the target-tracking level, it is not uncommon to 
use more than one LIMS in a single SG center, as different systems 
may be used in different laboratories. 

 It should be noted that splitting the data management system 
of a typical SG center into two distinct levels, “high-level” target 
tracking and “low-level” experiment tracking, is somewhat 
 arbitrary. Some data are natural candidates to be kept at the LIMS 

1.3  Diverse 
Approaches to Data 
Management in SG 
Centers
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level only, for example, the location in the freezer where a particular 
clone is stored or the particular lot of a reagent or a crystallization 
buffer. Conversely, some data may only apply at the target-tracking 
level, for example, the number of publications referencing a given 
protein. In principle, it is possible for a single database and/or data 
management system to fully implement both levels. However, in 
practice, it seems that solutions where the two levels are imple-
mented as separate systems/databases appear to be more common, 
especially for the larger scale projects. 

 There have been several “top-down” attempts to design a gen-
eral framework for SG data management systems in the form of 
data dictionaries [ 17 ] or a protein production UML data model 
[ 18 ]. The latter has been implemented by several systems, such as 
HalX [ 19 ] or the Protein Information Management System (PiMS) 
[ 20 ] used by a number of European SG labs. However, most of the 
SG centers set up data management systems in a more ad hoc, 
“bottom- up” manner. Initially, some centers attempted to use 
commercial LIMS, but often these solutions were not fl exible 
enough or even robust enough, and most SG centers developed 
their own solutions “in-house.” There are exceptions to this rule. 
For example, the Structural Genomics Consortium uses two com-
mercially available software systems: the Beehive LIMS (Molsoft 
LLC;   http://www.molsoft.com/beehive.html    ) and Electronic 
Laboratory Notebook (now iLabber; Contur Software;   http://
www.contur.com/home/    ). It should be noted however that unlike 
many SG consortia, SGC does not deposit the results of its experi-
ments to PepcDB or TargetTrack. Several of the SG-developed 
data management systems have been described in the literature 
[ 21 – 23 ], but to our knowledge, none of these systems have been 
fully commercialized. 

 One comprehensive data SG management system that has 
gained wider use is Sesame, developed by Zsolt Zolnai at Center 
for Eukaryotic Structural Genomics (CESG) [ 22 ]. It has been 
adopted by a number of labs and specialized centers. 

 The data management system for the Joint Center for Structural 
Genomics (JCSG) was developed by the center’s programming 
team in parallel with the construction of the physical pipeline. 
The LIMS part of the system functions as a hub of information, 
recording all pipeline steps from target selection to deposition. 
The tracking database uses Oracle as its engine and tracks 424 
experimental parameters, organized into 130 tables [ 24 ]. The 
tools and interfaces to the database contain approximately 360,000 
lines of code, which illustrates the level of complexity of this and 
similar systems. 

 The Northeast Structural Genomics (NESG) consortium’s 
data management system is organized as a “federated database 
framework,” comprising a set of distributed, interconnecting 
 databases [ 21 ]. The main target-tracking database, SPINE, serves 
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as an analysis system, utilizing data mining and machine learning 
tools. In particular, decision trees are used for predicting chances 
for protein solubility, successful purifi cation, and crystallization. 
These predictions are used in directing targets to X-ray crystallog-
raphy or NMR studies [ 14 ]. 

 The other two large-scale PSI:Biology centers—the Midwest 
Center for Structural Genomics (MCSG) and the New York 
Structural Genomics Research Consortium (NYSGRC)—use the 
data management system developed in the Minor Lab at the 
University of Virginia. In both cases, the system is based on a col-
lection of customized LIMS in each site laboratory and a central 
database (UniTrack, described below) that curates and unifi es data 
obtained by various laboratories. In the case of MCSG, several dif-
ferent LIMSs are used in different laboratories, including LabDB, 
Mnemosyne, and ANL-DB. In NYSGRC, two different instances 
of LabDB are used. Similar systems are also deployed in the Center 
for Structural Genomics of Infectious Diseases (CSGID) and the 
Enzyme Function Initiative (EFI).   

2     A Centralized Target Management System: UniTrack 

 The central, public system comprising the target-tracking level of 
the SG management system developed by the Minor Lab at the 
University of Virginia is named UniTrack. As mentioned above, 
the MCSG, NYSGRC, CSGID, and EFI consortia are all driven by 
variants of the UniTrack system. The system comprises a core 
abstraction based on 10 years of experience in SG data manage-
ment, with a common database architecture and set of tools for 
managing target and experimental data. Each site is based on the 
UniTrack core but is then highly customized for the needs of the 
particular center or consortium of research laboratories. In each 
case, the UniTrack-derived system comprises the central tracking 
database and a set of auxiliary databases and applications, which 
collect and integrate experimental data and are provided by distrib-
uted LIMSs deployed in participating laboratories (Fig.  1 ). 
Experimental data from different LIMSs are combined and incor-
porated into UniTrack via a standard protocol. In the most basic 
case, each LIMS generates XML fi les in a predefi ned format, which 
are parsed by UniTrack tools. An alternative (and more effi cient) 
method, where a LIMS directly communicates with the tracking 
database, has also been developed. The LIMSs can be very diverse; 
however, they all must be able to provide the minimum set of 
required data for cloning, expression, purifi cation, and crystalliza-
tion experiments.

   The experimental pipeline starts with target selection and 
validation, which is specifi c for a particular center. The validation 
 process is performed automatically and typically involves checking 
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the accuracy of the amino acid and the nucleotide sequences as 
well as checking if the selected protein is homologous to proteins 
with structures in the PDB or to targets selected by other SG centers. 
Validated targets are inserted into the tracking database. Protein 
annotations and related data are automatically imported from 
external databases such as NCBI GenBank [ 25 ], Uniprot [ 26 ], 
PDB, and the PSI-SBKB. Depending on the needs of a particular 
center, between 30 and 80 attributes of any given protein target 
are stored in UniTrack. 

 UniTrack keeps a history and the results of the experiments for 
each target (Fig.  2 ). About 400 distinct data attributes are used to 
describe an experimental trial, from the cloning of a target through 
the determination of its structure. Almost all protein production 
and crystallization data can be automatically imported from the 
local LIMS or equipment database. However, smaller labs that do 
not have a LIMS deployed can still contribute data to UniTrack by 
entering it manually using the customized interface. Diffraction 

  Fig. 1    The architecture of the UniTrack data management system. The central 
database interacts with LIMSs distributed in member labs. A number of auxiliary 
databases are used to store data from the PDB, data from other SG centers, and 
SG publications. The central database is responsible for producing reports for 
external data repositories such as PSI-SBKB. UniTrack databases are synchro-
nized with external data sources such as NCBI GenBank, UniProt, and PubMed 
via custom scripts. Users interact with the system via a web interface       
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and structure determination data is currently imported automati-
cally only from the LabDB instances that have the  hkldb  module 
enabled [ 27 ]. Researchers in other labs upload scaling logs and 
refi nement fi les manually via the interface.

   The tracking database also generates real-time internal reports 
and statistics as well as the XML fi les that are being submitted to 
the TargetTrack repository. In addition, the periodic reports 
required by various bodies are generated in real time from the 
database and accessible to the general public. In some sense, all of 
the portions of UniTrack that generate publicly accessible web 
pages serve as reports. 

 The customized instances of UniTrack for each center drive 
dynamic parts of the centers’ corresponding web portals. The web 
interfaces are implemented using the Model–View–Controller 
(MVC) architecture, with separate layers for data retrieval (model), 
“business logic” (controller), and web page rendering (view). 

  Fig. 2    Fragment of an experiment tree displayed in the UniTrack-based CSGID interface.  Boxes  represent 
particular experiments: purifi cation (P), crystallization drop (XD), crystal harvest (X), data collection (beamline 
name), structure solution (Sol), refi nement (R factor), and PDB deposit (PDB id).  Paths  in the tree represent 
trials for a particular sample. The  white box  that appears when the cursor hovers over an item displays addi-
tional details about a particular step. In addition, clicking on any of the boxes display all the data known about 
this step stored in the database       
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Even with the use of the CakePHP MVC framework (  http://
cakephp.org    ) the customized web interfaces for the centers are 
quite complicated; as an example, the implementation of the 
CSGID web interface contains over 50,000 lines of source code. 

  LabDB is a modular “super-LIMS,” originally developed to track 
the structure determination pipeline from cloning to structure 
determination (Fig.  3 ). The central component of the system is a 
PostgreSQL database server coupled with a web-based framework, 
along with two specialized tools:  Xtaldb , for designing and tracking 
crystallization experiments, and  hkldb , a module of the HKL- 
2000/3000 system [ 27 ] for incorporating information from crys-
tallographic data collection and structure determination.  hkldb  and 
Xtaldb can also be used with stand-alone databases.

   One of the fundamental design goals of LabDB is to harvest data 
automatically or semiautomatically from laboratory equipment 
whenever possible. To that end, the system has modules to import 
data from a variety of different types of laboratory equipment, 
including chromatography systems (GE Healthcare AKTA sys-
tems), electrophoresis documentation and separation systems 

2.1  The LabDB 
“Super-LIMS”

  Fig. 3    A typical target overview page in the LabDB LIMS       
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