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Blurb

A practical guide to the design, conduction, analysis and reporting of clinical trials 
with anticancer drugs.
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Preface

The development of cancer drugs, from the preclinical studies to final randomized 
clinical trial is a science per se. The process involves multiples distinct steps and 
requires the participation of multiple individuals with unique expertise such as toxi-
cologist, pharmacologists, pathologists, statisticians, clinicians and ethics and regu-
latory experts. In addition, it involves several different organizations such as 
academic center, pharmaceutical industry and governmental organizations. Teaching 
and learning this process is not a simple task. The editors are seasoned clinical 
investigators with different backgrounds who spend considerable time teaching 
student and junior colleagues the nuts and bolts of drug development both at their 
own institutions but also through active participations in workshops and seminars 
on the topic. It became apparent to us that there are no sources in which the basis 
and principles of drug development are concisely summarize. This book has been 
written to fill that gap and to provide a guide for the beginners of drug development 
as well as a consultation manual for more advance drug developers. It is intended 
to provide a practical tool for the design, conduction, analysis and reporting of a 
clinical trial as well as to establish a developmental plan for a new agent.

The book is organized into five parts – all of them written by experts and 
renowned authors who have done a great job putting the chapters together. Part I 
summarizes basic concepts in biostatistics and in clinical and analytical pharma-
cology that are needed to understand the clinical drug development process. Part 
II provides a comprehensive summary of preclinical studies that are required 
before a medical agent can be tested in humans. Part III deals with clinical trial 
design from phase I to phase III as well as with correlative studies in clinical trials 
including the more classic pharmacokinetics and the newer molecular imaging and 
tissue biomarkers. Part IV is an important section that outlines the FDA require-
ment for testing and approving a drug for cancer treatment. Part V focuses on more 
specific descriptions of developmental strategies for the different classes of anti-
cancer agents ranging from conventional cytotoxic agents to molecularly targeted 
agents. The final section outlines the resources and perspective of the National 
Cancer Institute.

We expect this book to be a night table manual and guide for those interested in 
the complex but rewarding field of anticancer drug development and the place to 
get started when training in this field. We also hope that this text book would be 
useful to our peer teachers in drug development.

Manuel Hidalgo  
S. Gail Eckhardt

Elizabeth Garrett-Mayer
Neil J. Clendeninn 
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1.1 � Introduction

The purpose of this chapter is to acquaint the reader with some typically used 
biostatistical principles and methods in anticancer drug development for summarizing 
and analyzing data. Understanding and properly interpreting statistics is critically 
important for drug development. Each stage of development, ranging from preclinical 
studies to phase III clinical trials, utilizes some form of statistical analysis whether it 
is as simple as the calculation of a mean or as complex as a longitudinal model with 
a complicated correlation structure. Proper statistical design and analysis will be criti-
cal for making valid inferences and moving to the next phase of research.

Most cancer centers and pharmaceutical companies will have a biostatistics 
group or division. The role of these biostatisticians is to support cancer research by 
assisting with study design, statistical analysis, and presentation of results. It is 
highly recommended that, in addition to understanding the basic statistical princi-
ples utilized in oncology, oncology drug developers utilize the biostatisticians in 
their institution or company and consider and treat them as part of the research 
team. It is well-known that drug development cannot be done independently and 
requires a host of experts: biostatistical expertise is critical to valid and efficient 
research, from basic science to preclinical research to clinical trials.

1.2 � Example

The most effective way to demonstrate statistical methods used in drug develop-
ment is by example. In the sections that follow, we present selected results from a 
phase II study of the farnesyltransferase inhibitor tipifarnib in patients with acute 

E. Garrett-Mayer (*) 
Division of Biostatistics and Epidemiology, Hollings Cancer Center, Medical University  
of South Carolina, 86 Jonathan Lucas Street, Room 118G, Charleston, SC 29425, USA 
e-mail: garrettm@musc.edu

Chapter 1
Basic Biostatistics for the Clinical Trialist

Elizabeth G. Hill and Elizabeth Garrett-Mayer 
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myelogenous leukemia (AML) [3]. Briefly, farnesyltransferase inhibitors (FTIs) are 
potent and selective inhibitors of intracellular farnesyltransferase (FTase) which is 
an enzyme that catalyzes the transfer of farnesyl moiety to the cysteine terminal 
residue of a substrate protein. A number of intracellular proteins are substrates for 
prenylation via FTase (including Ras). Interruption of prenylation may prevent 
substrates from maturation which may result in inhibition of cellular events that 
depend on the function of those substrates. FTIs have been shown to be “unselective,” 
targeting proteins involved in different pathways, despite the initial presumption 
that FTase inhibition would specifically target posttranslational processing of Ras. 
The use of FTIs is expanding in the treatment of hematological malignancies, espe-
cially in AML but also in other leukemias, myelodysplastic syndromes, and myelo-
proliferative disorders in large part due to their oral bioavailability and acceptable 
toxicity profile. The FTI tipifarnib (Zarnestra, R115777) had been shown to have 
in vitro activity against a wide range of malignancies. Based on promising prelimi-
nary results in phase I testing, a multicenter phase II study was developed in poor-
risk previously untreated AML patients.

One-hundred fifty-eight patients with poor-risk AML were enrolled between 
March 2001 and December 2005 and followed in this single-arm study. “Poor-risk” 
was defined as having at least one of the following (1) age ³ 65; (2) adverse cyto-
genetic profile; (3) AML arising from an antecedent hematologic disorder; or (4) 
therapy-related AML. Patients received 600 mg oral tipifarnib twice daily for 21 days 
followed by a rest period of up to 42 days to allow for peripheral blood count recovery. 
Additional cycles were administered (up to a total of four) if stable disease or 
clinical response were observed. Clinical endpoints of interest included complete 
and partial remission, duration of complete remission (CR), overall survival, and 
tolerability. The authors also explored correlative endpoints including farnesylation 
of the surrogate protein HDJ-2 (measured at baseline and day 8) and normalized 
baseline expression levels of ERK and AKT phosphorylation and their relation to 
clinical outcomes. Note that only 15% (24 of 158) of AML patients had evaluable 
data for ERK and AKT expression. Additional information relating to the rationale, 
study design, and measurement of correlative endpoints can be found in the original 
article by Lancet et al. [3].

1.3 � Aims, Endpoints, and Data Analysis

The distinction between a study’s aims and endpoints is often unclear to cancer 
researchers, and subsequently these terms are commonly confused with one 
another. In most cancer research, a plan is developed where specific aims or goals 
are stated. In the AML example described below, the study’s primary aim was to 
define the antileukemic activity of tipifarnib (the investigational agent) in adults 
with poor-risk, previously untreated AML [3]. Secondary study aims described 
evaluating expression levels of ERK and AKT, and examining their ability to pre-
dict response to agents such as tipifarnib. For each aim, there is a corresponding 
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endpoint (or outcome) used for that aim’s quantitative assessment. An endpoint 
should be measurable in the sense that it can be observed and recorded for each 
individual in the study, whether the individual be mouse, patient, or cell line. For 
example, a measure of tipifarnib’s efficacy is its ability to induce a CR, and so, in 
the AML example, the investigators evaluate patients’ CR status (achieved or not) 
as the primary study endpoint. Whether or not a patient has a CR is determined by 
clinical criteria outlined in the study’s design, and CR status is recorded for each 
study subject. The endpoint is summarized across subjects using data analysis, 
resulting in both an estimated CR rate, as well as a measure of that estimate’s uncer-
tainty. Data analysis facilitates the averaging of information across subjects, result-
ing in measures (here, estimated CR rate and its associated uncertainty) that provide 
an objective assessment of a study’s primary aim.

To summarize, for any research project, the aims need to be clearly stated. For 
each aim, an endpoint of interest is identified which provides for a quantitative 
assessment of the aim. At the completion of the study, inference is made regarding 
the study’s aim via formal statistical analysis methods, some of which are described 
in this chapter.

1.4 � Variable Types

Biostatisticians in drug development generally refer to their data as comprising a 
set of “variables” because in most instances, the numerical observable data varies 
across subjects, where a subject may be a cell line, a mouse, a patient, etc. It is 
important to distinguish between several different kinds of variables and to specify, 
when defining a variable, how it is measured. As an example, we are often inter-
ested in gene expression. However, it is not always clear how gene expression is 
measured: in a given study, the researcher could be using two categories of expres-
sion (expressed vs. not expressed), or she could be using a numeric value of expres-
sion that can take any value within a specified range. These two different types of 
variables are treated differently in statistical analyses.

1.4.1 � Continuous Variables

Continuous variables can take any value within a given (and potentially wide) range 
of values. In our tipifarnib AML study, an example of a continuous variable is 
expression of phosphorylated AKT. Although it is does not have a wide distribu-
tion, the values of baseline AKT in our study range from 0.03 to 2.11, as shown in 
Fig. 1.1a. Another commonly utilized continuous variable is age. Note that age can 
be measured in fine increments, such as weeks, days, or even minutes. Age mea-
sured in days or weeks is commonly used in animal studies; however, for clinical 
applications age expressed in years is generally the preferred metric.
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Fig. 1.1  (a) Density plot of day 8 AKT expression values. Tick marks along x-axis indicate observed 
data points. Mean and median values are indicated by vertical solid and dashed gray lines, respec-
tively. (b) Density plot of day 8 AKT expression values on the log scale. Mean and median are the 
same and indicated by vertical solid gray line. Horizontal black line at height of 0.1 indicates the 95% 
confidence interval for the true day 8 log AKT expression value. (c) Density plot of difference 
between day 0 and day 8 log AKT expression. Horizontal black line at 0.1 shows 95% confidence 
interval for the difference. Vertical gray line is plotted at 0, indicating no difference in values
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1.4.2 � Categorical Variables

Categorical variables have several categories to which an individual may belong. 
Categorical variables with only two categories are called binary or dichotomous 
and examples could include gender (with categories of male and female), mutant 
(with categories of mutant vs. wild-type), or clinical response (with categories of 
nonresponders and responders). More than two categories are possible as well: a 
variable with three categories could be genotype, with levels defined as homozy-
gous dominant, homozygous recessive, and heterozygous. Note that there is no 
specific ordering to genotype: it could be coded numerically with 1 = homozygous 
dominant, 2 = heterozygous, and 3 = homozygous recessive. Or, the numeric assign-
ments could be transposed without any loss of interpretation. This implies that 
genotype is a nominal categorical variable. Another common example of a nominal 
categorical variable is race, which can take a number of categories, but the numeric 
values assigned are irrelevant.

Another class of categorical variables is ordinal variables, where there are a 
fixed (and relatively small) number of categories, but the ordering is meaningful. 
Common examples of ordinal variables in clinical cancer research are cancer stage, 
performance status, or grade. For example, there are discrete values assigned to 
cancer stage and the ordering of the categories is meaningful: stage 2 is higher than 
stage 1, and stage 3 is higher than stage 2.

1.4.3 � Time-to-Event Variables

The predominant clinical outcomes in cancer research are time-to-event variables: 
overall survival (time to death), progression-free survival (time to progression or 
death), and disease-free survival [time to relapse or recurrence (or death)]. Time-to-
event variables are defined by the occurrence of an event. In a clinical trial, the time 
from enrollment until death is used to measure overall survival. At first glance, this 
may seem to be a continuous variable because it is a time that can be measured in 
very small increments. However, most time-to-event variables in cancer research 
have the additional characteristic that they can be censored, meaning that some of 
the individuals under study may not experience the event during the time course of 
the experiment or trial. In the example of overall survival, patients who do not die 
by the end of the study are considered censored at the time at which they were last 
known to be alive.

1.4.4 � Variable Transformation

In many cases, variables will naturally take one form, but be transformed to another 
for convenience. For example, age is a continuous variable, but for the purposes of 
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analysis and interpretation, it may make more sense to create a new variable with 
three age categories, such as <40 years, 40–65 years, and >65 years. This may have 
some utility, as mentioned, for interpretation, but some information about age is 
lost. Specifically, when using the categorical example of age above, two patients 
whose ages are 66 and 91 are considered equivalent with respect to age.

Other common transformations are applied to continuous variables to reduce 
skewness or asymmetry in their distributions. Skewness can create problems in data 
analysis by allowing a few data values that are relatively extreme (i.e., outliers) to 
have substantial influence on inferences. An example of skewness can be seen in 
Fig. 1.1a where a density plot of AKT at day 8 is shown. Notice that most of the 
data lies close to the left side of the plot toward 0; however, there are a few points 
scattered to the right. This distribution is called right skewed (or positively skewed) 
because it has a long right tail. To symmetrize the distribution of day 8 AKT, we 
can apply a logarithmic transformation, shown in Fig. 1.1b, that results in “pulling 
in” the right tail and making the distribution look more bell shaped. Notice how the 
points that may have been considered outliers in Fig.  1.1a would no longer be 
labeled as outliers after this transformation.

1.5 � Data Description and Displays

In statistical practice, there is an important distinction between a parameter and a 
statistic. A parameter is a quantity whose true value is unknown and is the measure 
we are trying to estimate. For example, in theory there is a true CR rate to tipifarnib 
in poor-risk AML patients. This could be determined by treating every poor-risk 
AML patient with tipifarnib and observing their response. This approach is, of 
course, impractical. Instead, we collect data on a sample of patients from the identi-
fied population, and construct a statistic (or estimate) as our best guess of the true 
parameter’s value. Statisticians are also concerned with an estimated parameter’s 
uncertainty – how much faith do I have that the estimate represents the truth? – and 
so accompanying each estimated statistic is a measure (usually an interval) describing 
a range of values consistent with the data within which the true parameter could lie. 
Thus, the parameter is the unknown value we are trying to make inferences about, 
and the statistic and its associated uncertainty are quantities calculated based on 
sample data.

1.5.1 � Continuous Variables

Continuous variables have a number of summary statistics used to describe their 
distributions which generally fall into two common types: statistics to summarize 
the center of the distribution, and those to describe the data’s variability or spread. 
Statistics used to summarize the center are usually the mean and the median. 
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The mean is simply the arithmetic average, calculated by adding up all the observed 
values of the variable and dividing by the number of values. The median is the 
middle observation (or 50th percentile) and can be found by sorting the data from 
lowest to highest and identifying the value in the middle of the sorted list. In the 
case where there is an even number of values, the median is the average of the 
middle two data points. In our AML example, the mean AKT expression on day 8 
is 0.51 and the median is 0.33, as shown in Fig. 1.1a. In the case of skewed data, 
this is a common result: the median and the mean are different. The mean will be 
quite sensitive to skewness and extreme values, while the median will not be sensi-
tive. In Fig. 1.1a, notice that the median is closer to the bulk of the data points while 
the mean tends to be displaced in the direction of the outliers. When describing the 
center of skewed data, the median is often preferred. Now consider Fig. 1.1b where 
a log transform of AKT on day 8 has been applied. Because the data is symmetric 
(i.e., it is not skewed), the mean and the median are almost the same (in this exam-
ple they are the same to four decimal places).

Variability is most commonly measured by the range and the standard deviation 
(SD). The range is the difference between the largest and smallest values, but 
instead it is common to report the minimum and maximum values for a particular 
variable. The SD is a one-number summary that describes how far the data tend to 
deviate from the mean. In the AKT example in Fig. 1.1a, the range is 0.03–2.11 and 
the SD is 0.51. The standard error is a related measure of variability and will be 
described later when confidence intervals are discussed.

Another measure of spread of the data is the interquartile range (IQR). Recall 
that the median is the middle data point, or the 50th percentile. Using the same 
approach of sorting the data, we can identify the 25th and the 75th percentiles of 
the data. The IQR is defined as the 75th percentile minus the 25th percentile. For 
expression of AKT at day 8, the 25th and 75th percentiles are 0.20 and 0.53, result-
ing in an IQR of 0.53 − 0.20 = 0.33. As is the case with the range, it is common 
practice to report the 25th and 75th percentiles rather than their difference.

At least as important as the summary statistics used to quantify the center and spread 
of continuous variables are data displays that show the overall distribution. There are 
various ways to display the distribution of a variable, one of which (a density plot) 
is shown in Fig.  1.1. Other common plots are boxplots, histograms and, dotplots. 
Figure 1.2 demonstrates each of these plots for the distribution of age in the AML 
clinical trial example.

The boxplot (for age, shown in Fig. 1.2a), also known as a box and whisker 
plot, emphasize quartiles of the distribution and its skewness. The lower and upper 
limits that define the box are the 25th and 75th percentiles. The line crossing the 
middle of the box indicates the location of the median (i.e., the 50th percentile). 
As noted above, the IQR is the distance between the 25th and 75th percentile. In 
Fig. 1.2, the 25th, 50th, and 75th percentiles are 69, 74, and 78, and the IQR is 
78 − 69 = 9. The upper whisker is the line drawn from the box out to the smallest 
data point within 1.5 times the IQR from the 75th percentile. In the age distribution 
in Fig.  1.2a, the 75th percentile is 78 and 1.5 times the IQR is 9 × 1.5 = 13.5. 
Hence, the whisker could be drawn as far as 78 + 13.5 = 91.5. However, the largest 
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observed age in the study is 85 so the whisker stops at 85. The lower whisker is 
defined in an analogous way and here, the 25th percentile minus 1.5 times the IQR 
is 69 − 13.5 = 55.5, and so the whisker is drawn to 56, the largest observed value 

Fig. 1.2  Graphical displays of age for 158 high-risk AML patients treated with tipifarnib. (a) Boxplot. 
(b) Histogram. (c) Dotplot
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above 55.5. There are, however, two outliers: age values of 34 and 46. These are 
indicated using individual points in the plot. That is, any points that fall outside 
the allowed limits for the whiskers are plotted using individual points. To interpret 
a boxplot, we look at the location of the median in relation to the upper and lower 
quartiles and the length of the whiskers. These comparisons provide information 
about the relative symmetry vs. skewness of the data, and also provide a range 
where the bulk of the data lie: we know the middle 50% of the data lies within 
the extent of the box, and that the remaining 50% are above and below the box. 
The whiskers and outliers provide information about the tails of the distribution. 
A boxplot with one whisker that is significantly longer than the other implies 
skewness.

A histogram is another popular data display tool for continuous variables. It bins 
the data into a number of categories and then plots the number of observations in 
each bin vs. each category. This is not the same as a bar chart which is more gen-
eral. The y-axis of a histogram provides either the frequency or proportion of 
observations in a bin. (The same is not true of a bar chart.) In Fig. 1.2b, age is plot-
ted in bins with widths of 5 years. Like the boxplot, this figure provides information 
about the skewness, range, and center of the data. For age, we see that there is evi-
dence of left-skewness (due to the left tail) and there are two outliers with values 
below 50 years. Note that the size of the bins can alter the interpretation of histo-
grams. Most statistical software packages have a default algorithm for determining 
the width and number of bins. However, this varies across packages and altering the 
bin width can lead to different inference.

The dotplot is a very simple tool to see all of the raw data of a variable. It is most 
useful in situations where the sample size is relatively small, and there is interest in 
looking at a particular continuous variable across subgroups. Figure 1.2c shows the 
dotplot for age. As in Fig. 1.2a, b, two outliers are notable and some left-skewness 
is seen. Notice also that the data are “jittered” horizontally, facilitating visualization 
of overlapping data points. Failure to add noise to the plot makes it is impossible to 
tell how many data points are represented by a single symbol. In our example of 
age, although there are 158 patients in the study, there are only 28 unique values of 
age so that jittering the points is imperative to displaying all the data in a figure 
such as Fig. 1.2c.

1.5.2 � Categorical Variables

Categorical variables are summarized using tabulations of counts and proportions 
or percentages. In the case of a binary variable, such as gender, the proportion of 
male individuals provides all the information necessary to summarize its distribu-
tion. For categorical variables with three or more categories, proportions and counts 
per category are used. Table 1.1 shows a tabulation of counts and percentage of 
AML patients in each of three response categories.
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1.5.3 � Time-to-Event Variables

Recall that time-to-event variables are characterized by censoring when some of 
the individuals under study do not experience the event of interest by the end of 
the study, or are lost to follow-up before the event has occurred. As a result, 
means, SDs, and other summary statistics appropriate for continuous variables 
are not valid. However, the median applies in situations where a large fraction of 
the individuals have incurred the event. Other time-to-event summary statistics 
used include the estimated survival fraction at a given time point. For example, 
in the AML example, the median survival among patients who did not respond to 
treatment was only 3.6 months, while the median survival among patients who 
had a CR was 14.4 months. The estimated fraction of patients alive at 12 months 
are 13% and 66% in nonresponders and responders, respectively.

Note that the fraction surviving and median survival are not calculated using the 
methods described in previous sections for continuous or categorical variables. 
Censoring needs to be accounted for and the most common approach for estimating 
these summary statistics is by using the product-limit estimator, also known as the 
Kaplan–Meier estimator. Without providing great detail, the fraction of patients with-
out the event is estimated at each time point, accounting for how many patients are 
still at risk of experiencing the event at that time point (called the risk set). Patients 
are removed from the risk set when they have had an event or are censored. This 
approach is very commonly accepted and explained in greater detail in [5, 6].

Figure 1.3 demonstrates overall survival in our AML study, where patients are 
defined by three categories (1) complete remission (CR), (2) partial remission and 
hematologic improvement (PR/HI), and (3) nonresponse (NR). The display is called 
a Kaplan–Meier plot because the Kaplan–Meier estimates of overall survival are 
shown. Notice that the curve for each group is a step-function relating time, t, to the 
fraction of individuals alive at time t, denoted S(t). Each step represents a time at 
which one or more patients has had the event of interest, and so the curve steps 
down, indicating a lower survival fraction at that point. On the survival curves, in 
addition to the steps indicating when events occurred, there are tick marks indicating 
the times at which patients who do not experience the event are censored. This pro-
vides information as to what time the patient left the risk set, and is important for 
understanding the censoring patterns and the number of patients still under study at 
any given time.

Table 1.1  Distribution of 
response in the tipifarnib AML 
study

N %

Complete remission 22 13.9
Partial remission/hematologic 

improvement
15 9.4

Nonresponse a 121 76.6
Total 158 100
a Includes stable disease, progressive disease, 
and not evaluable for response
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The survival curve always begins at S(t) = 1 for t = 0, indicating everyone under 
study is at risk of the event at time 0. The median survival for a group can be found 
by drawing a horizontal line at S(t) = 0.5 and evaluating the time where it intersects 
the survival curve. In Fig. 1.3, the horizontal line at 0.5 intersects the curves at 3.6, 
12.5, and 14.4 months for the CR, PR/HI, and NR groups, respectively. Other esti-
mates, such as the 12-month survival, can be found be drawing vertical lines up 
from a particular time of interest. Twelve-month survival estimates for these three 
groups are 66, 51, and 13% for the CR, PR/HI, and NR groups, respectively.

1.5.4 � Confidence Intervals

Confidence intervals provide information about a likely range of values for a given 
parameter of interest, such as a mean expression level or a true response rate. 
Confidence intervals are created for many parameters of interest and provide a 
measure of the estimated parameter’s precision. We most often see 95% confidence 
intervals, but 90 and 99% confidence intervals are also fairly common. A 95% 
confidence interval is an interval which we are 95% certain contains the true value 
of the parameter. For example, the mean of log AKT at day 8 is −1.1 and the range 
of log AKT at day 8 is −3.6 to 0.8. The estimated 95% confidence interval for log 
AKT at day 8 is (−1.5, −0.7). This means that we are 95% confident that the true 
mean of log AKT at day 8 lies somewhere between −1.5 and −0.7. Note that the 

Fig. 1.3  Kaplan–Meier curve of overall survival for patient experiencing CR (black solid line), 
partial remission/hematologic improvement (gray solid line), and nonresponse (light gray solid 
line). Median survival is indicated by dotted black lines. Vertical tick marks on survival curves 
show censoring times
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95% confidence interval provides inference about the mean: it does not provide 
information about a likely range of values that we might observe for individuals in 
the population. This can be noted by looking at the 95% confidence interval in 
Fig. 1.1b, which is shown as a small horizontal black line at a height of 0.1. The 
confidence interval is relatively narrow compared to the range of the data.

The width of the confidence interval depends on three things (1) the variability 
of the data in the sample (i.e., patient heterogeneity with regard to the variable of 
interest), (2) the level of confidence desired (e.g., 95%), and (3) the sample size. 
The variability of the data in the sample will depend on the patient population you 
choose. For example, the variability in PSA (prostate-specific antigen) values in a 
sample of healthy male volunteers will be much smaller than the variability of PSA 
in a sample of men with relapsed prostate cancer. We expect that men without 
prostate cancer will all have PSA values in the range of 0–4 ng/ml, while men with 
refractory prostate cancer will have PSA values ranging anywhere from 4 ng/ml 
into the tens of thousands. This latter group will have much greater variability 
which will affect our confidence in a mean estimate. As noted previously, the level 
of confidence chosen is most often 95%, but in some cases, a 90 or 99% confidence 
level is justified when we are satisfied with less confidence while gaining a nar-
rower range, or require greater confidence at the expense of a wider interval.

The width of the confidence interval also depends directly on the sample size: 
as the sample size increases, the width of the confidence interval decreases. This is 
intuitive: the more information we collect, the more certainty we have in our esti-
mate. For formulas for construction of confidence intervals, see [1, 5, 6].

1.5.5 � Confidence Intervals for Means and Differences in Means

In the previous section, the 95% confidence interval for mean day 8 log AKT was 
presented and is also shown in Fig. 1.1b. In addition to the mean value at day 8, we 
may also be interested in the mean of the difference between log AKT at day 0 and 
day 8. By calculating a confidence interval for this difference, we obtain both a 
range of reasonable values for the difference as well as evidence to support or refute 
the hypothesis that the difference differs from zero. A common use of the confi-
dence interval is to test whether a difference in means is equal to zero: if 0 is not 
within the 95% confidence interval we conclude that the difference differs mean-
ingfully from 0. This is an example of the duality between confidence intervals and 
hypothesis testing (hypothesis testing is described in Sect. 1.6 of this chapter).

Using the difference in log AKT between days 0 and 8 as an example, we construct 
a 95% confidence interval by taking the difference between the day 0 and the day 8 
log AKT values resulting in a single calculated difference per patient. The data for this 
is shown in Fig.  1.1c, where a density plot is shown in addition to the observed 
differences along the bottom of the figure. The estimated mean difference is −0.11 and 
the 95% confidence interval for the mean difference is (−0.68, 0.46), indicated by the 
horizontal black line at a height of 0.10. This implies that we are 95% confident that 
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the true average difference lies somewhere between −0.68 and 0.46. The vertical gray 
line indicates a difference of 0 and is the location at which there is no difference 
between the day 0 and day 8 values. Notice that the 95% confidence interval overlaps 
this vertical line suggesting that the mean difference between the day 0 and day 8 log 
AKT values does not differ from 0.

1.5.6 � Confidence Intervals for Proportions and Comparisons  
of Proportions

The interpretation of confidence intervals remains generally the same, regardless of 
the parameter of interest. In the case of proportions, we use a different method for 
estimating the confidence interval, but nonetheless it has the same meaning. In the 
AML tipifarnib example, 22 of 158 patients, or 14%, had a CR. The report of this 
statistic will be better understood by providing a 95% confidence interval which will 
convey, in addition to our observed remission rate, a range of likely true remission 
rates if this treatment approach were applied in general to the high-risk AML popu-
lation (consistent with those patients in our trial). As described above, the confi-
dence interval width depends on the sample size and our level of confidence. It also 
depends on the variability of remissions in the population but, in the case of propor-
tions, the variability is determined by the true remission proportion. For example, if 
the true proportion is near 1 (or 0) most of the subjects will (or will not) experience 
a remission, and therefore the variability in remissions is low. Conversely, variability 
in the event is highest for true proportions near 0.5. The 95% confidence interval for 
the true CR rate to tipifarnib in AML patients is (0.09, 0.20).

The confidence interval for the true CR rate is somewhat asymmetric. We may have 
expected the observed remission rate of 0.14 to lie in the middle of the interval, but 
this is not the case, and the asymmetry is not due to rounding. As estimates of propor-
tions get close to 0 or 1, the corresponding confidence intervals become increasingly 
asymmetric. For example, only three patients experienced a partial remission, yielding 
an observed partial remission rate of 0.02 with a 95% confidence interval of (0.004, 
0.05). Here, the distance between the estimated remission rate and the interval’s upper 
bound is roughly twice the distance from the estimated rate to the lower bound.

The second thing to notice about the 95% confidence interval for the CR rate to 
tipifarnib is its fairly narrow width of 0.11 (0.11 = 0.20 − 0.09). As mentioned 
above, the width of the interval depends on the sample size. If our sample size had 
been only 50, an observed CR rate of 0.14 would have a 95% confidence interval 
of (0.06, 0.27), for a width of 0.21. And, if we had a much larger sample size of 
400, the width would be only 0.07.

Often confidence intervals for proportions are created using approximate 
approaches. These approximations work very well under two conditions (1) the 
sample size is reasonably large, and (2) the proportion is not close to 0 or 1. It is 
difficult to provide rules determining reasonably large and not close to 0 or 1 
because they depend on each other. For example, a proportion of 0.90 is not very 
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close to 1 if the sample size is 1,000 but it would be considered close to 1 if the 
sample size were only 20. But, in general, almost all statistical software packages 
can generate exact confidence intervals, so reliance on approximations is not neces-
sary, although it is still very commonly seen.

There are other parameters that we use to compare proportions in different sub-
populations. For example, odds ratios or relative risks are often used for quantifying 
the risk or benefit associated with an exposure or treatment. Of the AML patients 
treated with tipifarnib who had at least three cycles of treatment 41.2% (14/34) had 
a CR, compared to only 6.5% (8/124) among patients who did not complete three 
or more cycles. We can use an odds ratio to represent this difference in CR by 
cycles. Specifically, the odds ratio for CR in this example is 10.15: the odds of 
experiencing a CR for patients who are able to complete three cycles of treatment 
is ten times that of the odds for patients who had fewer than three cycles. We cal-
culate this by taking the odds of a CR in patients with three or more cycles 
(41.2/58.8% = 0.700) and dividing it by the odds of CR in patients with fewer than 
three cycles (6.5/93.5% = 0.069). The 95% confidence interval for the odds ratio is 
then used to determine if there is an association between the exposure (i.e., three or 
more cycles) and the outcome (CR). In this case, the 95% confidence interval for 
the odds ratio for CR in patients with and without at least three cycles of tipifarnib 
is (3.4, 31.2). Recall that an odds ratio of 1 indicates no association between CR 
and three or more cycles of treatment. Because this confidence interval does not 
contain one, we can conclude that there appears to be a significant association 
between receiving three or more cycles of tipifarnib and CR. However, note that 
this is a rather simplistic analysis where we have not adjusted for additional con-
founders that may play a role in a patient’s ability to receive three or more cycles. 
It is likely that patients least able to tolerate treatment also have other factors making 
them less likely to respond to treatment.

1.5.7 � Confidence Intervals for Time-to-Event Parameters

The interpretation of the confidence interval for time-to-event parameters, such as 
median survival or 12-month survival, is the same as for other types of parameters. 
Recall that the estimated median survival for AML patients who had a CR to tipi-
franib was 14.4 months and the median survival in patients who were nonre-
sponders was 3.6 months. The associated 95% confidence intervals for median 
survival (in months) are (9.7, Inf) and (2.9, 5.2), where “Inf ” represents a bound of 
infinity. This is not uncommon: in cases where there are relatively few patients on 
study when the median survival is achieved and the survival does not drop dramati-
cally below 0.5 by the end of the study, the upper limit of the 95% confidence 
interval may be infinite. To interpret this, we would state that we are 95% confident 
that the true median survival in AML patients who achieved a CR is greater than 
9.7 months. Similarly, we are 95% confident that the true median survival in non-
responders lies somewhere between 2.9 and 5.2 months.
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1.6 � Hypothesis Testing

1.6.1 � From Research Question to Statistical Hypothesis

In the Lancet study, 10 of 75 (13%) poor-risk AML subjects with an unfavorable cyto-
genic profile achieved a CR. A natural question to ask is how this rate compares to CR 
rates in the same patient population receiving standard treatment. Is the tipifarnib rate 
better? Worse? Different? Because subjects in the Lancet study received only tipi-
farnib, there is no internal comparative arm. However, investigators frequently use 
published or historical rates in comparable patient populations to compare treatments 
in single-arm studies. For example, Leith et al. [4] conducted a study of elderly AML 
patients in which they investigated the association between patient cytogenics and 
response. They report a 21% CR rate among elderly poor-risk AML patients in 
response to standard chemotherapy (standard-dose cytosine arabinoside and daunomy-
cin + rhG-CSF). For illustrative purposes, we use the CR rate reported by Leith et al. 
[4] as the historical CR rate with which to compare the tipifarnib rate.

To quantify the relationship between the tipifarnib and chemotherapy CR rates, we 
use hypothesis testing, a statistical approach that allows us to draw conclusions from 
sample data and infer to the entire population. Hypothesis testing begins with a state-
ment of “no effect,” appropriately called the null hypothesis (H

0
). For the current 

example, our null hypothesis states that the tipifarnib CR rate is equal to the historical 
chemotherapy rate. Specifically, we write H

0
: p

tipifarnib
 = 0.21, where p

tipifarnib
 is the true CR 

rate among elderly poor-risk tipifarnib-treated AML patients with unfavorable cytogen-
ics. A second statement, called the alternative hypothesis (H

1
 or sometimes H

A
), sum-

marizes the research question of interest and is phrased in contrast to H
0
. Here, a 

reasonable alternative hypothesis states the tipifarnib rate is different from the historical 
chemotherapy rate and is written as H

1
: p

tipifarnib
 ¹ 0.21. The latter hypothesis is called a 

two-sided alternative and captures in a single statement two one-sided alternatives, 
specifically (1) the tipifarnib rate is better than the chemotherapy rate (p

tipifarnib
 > 0.21) 

and (2) the tipifarnib rate is worse than the chemotherapy rate (p
tipifarnib

 < 0.21). A two-
sided alternative is appropriate when there is no reason to assume a priori that the effect 
of the new treatment will be better or worse than that of the standard treatment.

1.6.2 � Evaluating Evidence Through p-values

A 13% CR rate is smaller than the 21% published chemotherapy rate, but this 
difference may be a chance occurrence, that is, an observation not attributable to 
tipifarnib treatment. Is there sufficient evidence in the data to allow us to rule out 
random variation as an explanation for the observed tipifarnib rate? Stated another 
way, if the true CR rate among this subgroup of elderly poor-risk tipifarnib-treated 
AML patients is the same as the historical chemotherapy rate of 21%, how unusual 
is an observation of 10 CRs in 75 subjects?
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To answer this question, we need an understanding of the distribution of the 
frequency of observed CRs under conditions specific to this study. These study-
specific conditions refer to the composition of the study population (elderly poor-
risk tipifarnib-treated AML patients with unfavorable karyotype); the sample size 
of 75 subjects; and the null-hypothesized tipifarnib CR rate of 21%. Under these 
conditions, how many CRs in 75 subjects should we expect to observe? How 
variable is the number of CRs in 75 subjects? Addressing these questions requires 
repeating the study many times under identical conditions and observing the 
number of CRs for each repetition. A more practical approach is to conduct a 
computer-based simulation in which a virtual “coin,” with probability of a head 
equal to 0.21, is tossed 75 times and the number of heads observed. Tossing a coin 
and recording heads or tails is like observing a patient from our study population 
following treatment with tipifarnib and deciding if the subject has or has not expe-
rienced a CR. Using a computer, the simulation can be repeated thousands of times 
in a matter of seconds, rapidly providing information pertaining to variability 
needed to address our hypothesis.

Figure 1.4a shows a bar chart of the number of CRs observed in 100 repetitions 
of our simulated study. From this graph we note that 10 CRs were recorded in four 
of the 100 repetitions, or 4% of the simulations. If we could conduct our simulation 
an infinite number of times, the bars would “smooth out” and we would observe a 
bar chart like the one shown in Fig. 1.4b. Figure 1.4b shows the exact sampling 
distribution of the number of CRs in 75 subjects, where the true CR rate is 21%. 
Here the bar heights are probabilities, where the probability of an outcome is 
loosely defined as the long-term proportion of simulations in which that outcome 
is observed. The probability of 10 CRs in 75 subjects is 0.031.

To summarize how unusual an observation is, statisticians generally sum the 
probabilities of all outcomes at least as extreme as the one observed, where the 
“extremeness” of an event is measured by how probable it is relative to the observed 
outcome. In this case, nine or fewer CRs are extreme events since each is less probable 
than the observed outcome of 10 CRs in 75 subjects. For the same reason, 22 or more 
CRs are considered extreme. The bars corresponding to extreme events are shaded 
dark gray in Fig. 1.4b, and each bar’s height (probability) is no greater than the 
height of the bar corresponding to the observed outcome of 10. Therefore, the prob-
ability of observing 10 CRs in 75 subjects, or any observation at least as extreme, 
is found by summing the heights of the dark gray bars in Fig. 1.4b and is equal to

probability of observed event probability of events at least asextreme as, and to the left”of the observed eve“ nt

Pr(10 CRs) Pr(9 CRs) Pr(8 CRs) Pr(1 CR) Pr(0 CRs)

Pr(22 CRs) Pr(23 CRs) Pr(74

+ + + + +

+ ++ +

 


probability of events at least as extreme as and to the right”of the observed ev“ ent

CRs) Pr(75 CRs) 0.12.+ =

This probability is an example of a p-value. A p-value is always calculated assuming 
that the null hypothesis is true – in this case that the true tipifarnib CR rate is 21% – and 
represents the probability that the observed result or one more extreme is a random 
event. If a p-value is small – usually less than 0.05 – we eliminate random chance as 
an explanation for the observed results and reject the null hypothesis. A finding for 
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which the p-value is smaller than 0.05 is said to be statistically significant or simply 
significant. A p-value greater than or equal to 0.05 indicates that, under the null 
hypothesis, the observed result is not so unlikely – the event could occur by chance 5% 
of the time or more – and we fail to reject the null hypothesis. Such findings are called 
nonsignificant. For our example, the p-value is 0.12, which is greater than 0.05. We 
therefore fail to reject the null hypothesis and conclude that the data provide 
insufficient evidence to claim that the true CR rate for elderly poor-risk tipifarnib-treated 
AML patients with unfavorable karyotype differs meaningfully from 21%.
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Fig. 1.4  (a) Bar chart of the frequency of the number of CRs in 75 subjects for 100 simulations 
assuming the true CR rate is 21%. (b) Exact sampling distribution of the number of CRs in 75 
subjects, assuming the true CR rate is 21%. Each bar’s height is the probability of observing the 
number of CRs indicated on the horizontal axis. (c) Normal approximation to the exact sampling 
distribution of the number of CRs in 75 subjects, assuming the true CR rate is 21%
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On a final note, statisticians often compute p-values using an approximation to 
the exact sampling distribution of a statistic. This alleviates the need to construct 
exact sampling distributions that change as conditions vary from one problem to the 
next. This is similar to the approximation discussed in Sect. 1.4.2 for confidence 
intervals and is shown in Fig. 1.4c, the normal approximation density curve.

1.6.3 � Types of Errors

With each decision one can make concerning the null hypothesis – reject or fail to 
reject – there is a corresponding potential error or mistake. If the null hypothesis is 
rejected when in fact it is true, this is called a type I error. On the other hand, failing 
to reject the null hypothesis when in fact it is false is called a type II error. The 
probability of a type I error is represented by the Greek letter alpha (a) and the 
probability of a type II error is represented by the Greek letter beta (b).

The layout in Table 1.2 displays the interpretations of type I and type II errors 
in the context of the hypothesis test of the tipifarnib CR rate. In this example, a type 
I error occurs if we conclude that the tipifarnib CR rate differs from the historical 
chemotherapy rate when it really is not different; a type II error occurs if we con-
clude that the tipifarnib rate is the same as the chemotherapy rate when it really is 
different. In drug discovery, we are typically more concerned with type I errors 
since rejecting the null hypothesis in error means a nonefficacious drug may 
advance to larger, more expensive (e.g., randomized) trials and, more importantly, 
patients will receive a drug that offers no additional clinical benefit. Phase II trials 
are often designed with a = b = 0.10 and phase III trials with a £ 0.05 and b £ 0.20.

1.7 � Common One- and Two-Sample Tests

1.7.1 � Comparing Proportions

The hypothesis test highlighted in Sect. 1.6 is called a one-sample test of a proportion. 
This test is appropriate when interest surrounds relating a true but unknown pro-
portion to a reference value. The test accounts for sampling variability inherent in 

Table 1.2  Type I and type II errors in the context of the hypothesis test of the tipifarnib CR rate

Truth

Decision Tipifarnib CR rate

Tipifarnib CR rate
Same as chemotherapy 
CR rate

Different from 
chemotherapy CR rate

Same as chemotherapy CR rate No error (1 − a) Type II error (b )
Different from chemotherapy CR rate Type I error (a) No error (1 − b )
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estimating the unknown proportion but treats the reference value as a constant. 
For our example, the historical chemotherapy rate was actually constructed from an 
observation of 11 CRs in 52 subjects. Treating the 21% reference rate as “truth” 
ignores the fact that it was estimated from sample data, and therefore subject to 
sampling variability.

An alternative test that accounts for the sampling variability in both the estimated 
tipifarnib and chemotherapy CR rates is a two-sample test of proportions 
whichis most commonly seen in randomized studies. Here the null hypothesis is 
H

0
:p

tipifarnib
 = p

chemotherapy
, where p

tipifarnib
 is defined in Sect. 1.5.1, and p

chemotherapy
 is the 

true but unknown CR rate for elderly poor-risk chemotherapy-treated AML 
patients. The corresponding two-sided alternative is H

0
: p

tipifarnib
 ¹ p

chemotherapy
. The test 

is conducted based on binary data from the two sets of patients under comparison. 
In this example, we construct the test based on a comparison of 10 CRs in 75 
subjects with 11 CRs in 52 subjects. The p-value for this test is 0.17. This is slightly 
larger than the p-value for the corresponding one-sample test because the two-
sample test incorporates the uncertainty associated with estimating the chemotherapy 
CR rate in addition to the tipifarnib rate. The interpretation of the two-sample test 
is also slightly different. Our conclusion for the one-sample test was the true tipi-
farnib CR rate did not differ significantly from 21%. Here we conclude that the true 
tipifarnib CR rate does not differ significantly from the true chemotherapy CR rate, 
whatever that rate may be.

1.7.2 � Comparing Means

Comparisons between groups of continuous data are commonly constructed based 
on the relative locations of the data distributions’ centers, and the most common 
measure of central tendency is the mean. For example, to compare baseline levels 
of ERK phosphorylation (p-ERK) between responders and nonresponders, appro-
priate null and alternative hypotheses are H

0
: m

resp
 = m

nonresp
 and H

1
: m

resp
 ¹ m

nonresp
, 

where m
resp

 is the true but unknown average baseline level of p-ERK among 
responders, and m

nonresp
 is the true but unknown average baseline level of p-ERK 

among nonresponders. Here responders are defined as subjects achieving either 
a complete or partial remission, or a hematologic improvement. Both the null 
and alternative hypotheses can be expressed equivalently based on a difference 
in means – that is, H

0
: m

resp
 − m

nonresp
 = 0 vs. H

1
: m

resp
 − m

nonresp
 ¹ 0 – and the test is 

carried out in a manner similar to that described in Sect. 1.5.2. Specifically, the 
test is based on estimates of the average baseline p-ERK levels among the eight 
responders and 21 nonresponders for whom biologic correlative data are available. 
The mean (SD) p-ERK levels for responders and nonresponders are 0.55 (0.75) 
and 0.36 (0.27), respectively. Additionally, it is important to understand 
characteristics of the distribution of the difference in sample means. Under 
assumptions that p-ERK baseline levels are normally distributed and independently 
sampled from both groups, and that the variance of p-ERK levels is unknown, the 
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shape of the distribution of the difference in sample means is unimodal and 
symmetric – much like a normal distribution. However, the distribution of the 
difference has “heavier” tails than a normal distribution, which is to say that 
extreme differences are more likely to occur than would be the case had the distri-
bution been normal.

The distribution of the difference in sample means under the stated assumptions 
is known as the t-distribution, and the corresponding hypothesis test is called a two 
sample t-test. (A one-sample t-test also exists and is appropriate when testing a true 
but unknown mean against a reference value.) In conducting any hypothesis testing, 
it is important to first evaluate how well underlying assumptions are satisfied. 
When assumptions are violated, the resulting inference is potentially compromised. 
As illustrated in Fig.  1.1a, day 8 p-ERK levels are positively skewed. Baseline 
p-ERK levels similarly violate the normality assumption (figure not shown). The 
mean and SD for baseline p-ERK levels provide additional evidence that approxi-
mate normality is not satisfied. A normally distributed variable has the property that 
68% of its values fall within 1 SD of the mean, 95% within 2 SDs, and 99% within 
3. Notice that for responders, 1 SD to the left of the mean (0.55 − 0.75), and for 
nonresponders 2 SDs to the left of the mean (0.36 − 2 × 0.27), results in implausible 
values – p-ERK expression levels cannot be negative.

What can be done? As illustrated in Fig. 1.1b, a logarithmic transformation 
of day 8 p-ERK levels alleviates the distribution’s skewness resulting in a more 
symmetric, approximately normal shape. A logarithmic transformation of base-
line p-ERK levels induces the same approximate normality (figure not shown). 
We therefore conduct a two-sample t-test on the log-transformed baseline 
p-ERK values. The null and alternative hypotheses are similarly stated, but m

resp
 

and m
nonresp

 now represent the true but unknown average log baseline p-ERK lev-
els among responders and nonresponders, respectively. The p-value associated 
with this test is 0.72 leading to the conclusion that average log baseline p-ERK 
levels do not differ significantly between responders and nonresponders. Using 
properties of logarithms,1 an equivalent conclusion is the average baseline 
p-ERK expression ratio comparing responders to nonresponders is not signifi-
cantly different from 1.

When transformation fails to induce normality, a test based on the ranked data 
is an alternative to the two-sample t-test. If a variable’s distribution for one group 
is centered at a larger value relative to a second group, data sampled from the first 
group will likely have larger ranks than data sampled from the second group. This 
is the idea behind the Wilcoxon rank-sum test, an example of a nonparametric test. 
A nonparametric test is one that makes no assumption about the form of the sample 
data’s distribution. The Wilcoxon rank-sum test is the nonparametric equivalent to 
the two-sample t-test. If we use the Wilcoxon rank-sum test to assess the associa-
tion between baseline p-ERK level and response status, the p-value is 0.65, and our 

1 Since log(A) − log(B) = log(A/B), then the equation log(A) − log(B) = 0 is equivalent to log(A/B) = 0. 
Exponentiation of both sides of the latter leads to the equivalent expression, A/B = 1.
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conclusion is the same – baseline p-ERK levels do not differ significantly between 
responders and nonresponders.

1.7.3 � The Chi-Square Test

Tipifarnib is a FTase inhibitor so an important component of the Lancet study was 
the assessment of FTase inhibition. In addition to exploring FTase inhibition in 
AML isolates, Lancet study investigators examined inhibition in buccal (cheek) 
mucosa samples to determine if inhibition could be detected in normal tissue. 
The investigators report FTase inhibition failure in AML isolates from 14 of 57 
(25%) subject samples but in only four of 49 (4%) normal tissue samples. In their 
discussion, the authors postulate that this difference potentially indicates a patient 
subpopulation with FTase posttranslational modification or possibly an alteration 
in drug accumulation, and may identify a patient cohort unlikely to benefit from 
tipifarnib.

Table 1.3a shows a two-by-two table of the observed distribution of FTase inhi-
bition status (yes or no) by sample type (AML isolate or normal tissue from buccal 
mucosa). This table is an example of a contingency table and is used to display the 
joint distribution of categorical variables. Usually, interest surrounds understanding 
the association (if any) between the row and column variables. Consistent with 
hypothesis testing strategies already presented, we construct a test of association 
under a null condition; we assume sample type and FTase inhibition status are 
independent in the sense that a sample’s origin – AML isolate or normal tissue – 
does not influence FTase inhibition.

Table 1.3  Observed (A) and expected (B) frequencies 
of FTase inhibition status (yes or no) by sample type 
(AML isolate or buccal mucosa)

Sample type

Farnesyltransferase 
inhibition status

TotalYes No

A: Observed
AML isolate 43 14 57
Buccal mucosa 45 4 49
Total 88 18 106
B: Expected
AML isolate 47.3 9.7 57
Buccal mucosa 40.7 8.3 49
Total 88 18 106

Expected frequencies are derived based on probability 
laws that assume independence between row and col-
umn variables
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Using laws of probability, we derive a table of the frequencies we would expect 
to see if the variables under consideration really were independent.2 Table  1.3b 
shows the expected cell frequencies under an assumption of independence between 
sample type and FTase inhibition status. We test the variables’ independence based 
on how far the observed table deviates from that expected under independence. 
Such a test is called a chi-square test. Its name derives from the property that the 
statistic used to measure the discrepancy between the observed and expected tables 
has a distribution that can be approximated by a chi-square distribution, provided 
the sample size is large. The chi-square test based on Table 1.3a, b has a p-value of 
0.025, indicating FTase inhibition status differs significantly by sample type.3

A chi-square test for a two-by-two contingency table is equivalent to the two-
sample test of proportions discussed in Sect. 1.6.1. However, chi-square tests apply 
more generally to tests of association between categorical variables with any 
number of levels. For example, we may be interested in knowing if response 
differs meaningfully across levels of Eastern Cooperative Oncology Group (ECOG) 
performance status (PS). We define response status (response or nonresponse) as in 
Sect. 1.6.2 – responders achieved complete or partial remission, or a hematologic 
improvement, while nonresponders had progression, stable disease, or were 
inevaluable. ECOG PS has three levels (0, 1, and 2) based on patient eligibility 
requirements. Table  1.4a shows the two-by-three contingency table for the joint 
distribution of response status and ECOG PS. The expected frequencies under 
independence are displayed in Table 1.4b. The corresponding chi-square test has a 

2 For independent events, A and B, Pr(A and B) = Pr(A) × Pr(B). For example, if we assume FTase 
inhibition and sample type are independent, then from Table 1.3a the probability a sample comprises 
AML isolates and exhibits FTase inhibition is (57/106) × (88/106) » 0.446. Therefore, out of 106 total 
samples, we expect 0.446 ´ 106 » 47.3 to be AML isolates exhibiting FTase inhibition – assuming 
independence. The remaining cells in Table 1.3b are derived in a similar manner.
3 In this example, we assume FTase inhibition levels in AML isolates and buccal samples from the 
same patient are uncorrelated.

Table 1.4  Observed (A) and expected (B) frequencies of response 
status (response vs. nonresponse) by ECOG PS (0, 1, or 2)

Response status

ECOG performance status

Total0 1 2

A: Observed
Response 12 23   2   37
Nonresponse 25 68 11 104
Total 37 91 13 141
B: Expected
Response   9.7 23.9   3.4   37
Nonresponse 27.3 67.1   9.6 104
Total 37 91 13 141

Expected frequencies are derived based on probability laws that 
assume independence between row and column variables



251  Basic Biostatistics for the Clinical Trialist

p-value of 0.46, and we conclude there is no significant association between 
response status and ECOG PS.

1.7.4 � Fisher’s Exact Test

The approximate chi-square distribution of the statistic measuring the discrepancy 
between the observed and expected frequencies is based on large-sample asymp-
totic. When sample sizes are small, an alternative test of independence is Fisher’s 
exact test. The test of independence between sample type and FTase inhibition 
status has a p-value of 0.037 based on Fisher’s exact test. For response status and 
ECOG PS, Fisher’s exact test yields a p-value of 0.53. Both examples result in 
equivalent inference compared to their corresponding chi-square tests discussed in 
Sect.  1.7.3. Had the tests conflicted, the more conservative finding (i.e., the one 
least in support of rejecting independence) would be reported or some would argue 
to report the finding of the exact test.

1.7.5 � Testing Paired Data

The hypothesis tests discussed thus far rely on an assumption that the data are 
independently sampled. Examples of data that violate this assumption are as follows: 
measures sampled from the same subject over time, for example, serum cytokine 
concentrations measured at baseline, week 1, week 4, and week 8 of a study; 
cluster-correlated measures, for example, standardized test scores of school-aged 
children from classrooms sampled from selected elementary schools in a state; and 
repeated measures, for example, visual acuity measures from the left and right eyes 
of the same subject.

In the Lancet study, p-ERK levels were measured at baseline and at day 8. Is 
there a meaningful change in p-ERK levels from baseline? Although it may seem 
natural to assess the significance of the change in p-ERK using a two-sample t-test, 
the baseline and day 8 measures from the same subject do not represent indepen-
dently sampled values. One remedy to this violation is to construct differences from 
the paired observations, resulting in a collection of independent measures of 
change. We construct the difference, d, from log-transformed p-ERK values, with 
each subject contributing a single value d = log(p-ERK

day 8
) − log(p-ERK

baseline
). If 

the differences are meaningfully different from zero, we conclude change from 
baseline to day 8 in log p-ERK levels is significant. The corresponding null and 
alternative hypotheses are H

0
: D = 0 vs. H

1
: D ¹ 0, where D is the true mean differ-

ence in day 8 and baseline log p-ERK values. A test of the null hypothesis is 
accomplished using the one-sample t-test described in Sect. 1.7.2. Here, the p-value 
is 0.10, and we conclude there is not a significant change in log p-ERK from base-
line to day 8. As described in Sect. 1.7.2, the conclusion of no significant difference 
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in log p-ERK levels is equivalent to a conclusion that the ratio of day 8 to baseline 
p-ERK levels does not differ significantly from 1.

1.7.6 � Comparing Survival Times

In Sect. 1.4.3, we described survival endpoints as the predominant clinical outcome 
in cancer trials. The most common test to compare survival experiences between 
groups is the log-rank test. We consider a two-group comparison here, but the test 
easily extends to multiple groups. Consider two groups with corresponding survival 
functions S

1
(t) and S

2
(t). The log-rank test tests the null hypothesis H

0
: S

1
(t) = S

2
(t) 

for all times, t, vs. the alternative H
1
: S

1
(t) ¹ S

2
(t) for at least one time, t. The test is 

constructed from differences in the observed and expected number of deaths at each 
failure (death) time, under the null hypothesis that survival is the same in each 
group. The resulting test statistic has an approximate chi-square distribution.

Figure  1.5 shows Kaplan–Meier estimates of overall survival for subjects 
younger than 75 years and subjects 75 years or more. The log-rank test yields a 
highly significant result with a p-value of 0.000022. (Most publications print very 
small p-values as being less than some threshold, typically p < 0.001, as indicated 
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