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Preface

In 2004 we edited Volume 161 on the Pharmacology and Therapeutics of Asthma
and COPD as part of this prestigious series. Over the last decade there have been

substantial increases in our understanding of the mechanisms underlying asthma

and COPD, as well as in the treatment of these important diseases. We have brought

together internationally recognized authorities to review the most important new

information on the advances in our understanding of the pathogenesis and treatment

of these diseases, including the substantial advances in the topical delivery of

inhaled medicines. It is hoped that this book will be invaluable for research

scientists and clinicians involved in research into asthma and COPD, and that this

volume will be a major reference resource for chest physicians and those involved

in the development of novel pharmaceutical entities for these diseases.

Each chapter is extensively referenced, generously illustrated with clear

diagrams and photographs, and represents a state-of-the-art review of this important

area of respiratory medicine.

London, UK C.P. Page

December 2016 P.J. Barnes
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Abstract

Asthma and COPD remain two diseases of the respiratory tract with unmet

medical needs. This review considers the current state of play with respect to

what is known about the underlying pathogenesis of these two chronic inflam-

matory diseases of the lung. The review highlights why they are different

conditions requiring different approaches to treatment and provides a backdrop

for the subsequent chapters in this volume discussing recent advances in the

pharmacology and treatment of asthma and COPD.
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1 Pathology of COPD

The major pathological features of COPD are obstructive bronchiolitis, emphysema

and, in many cases, mucus hypersecretion (chronic bronchitis) (Fig. 1), but the

relative contributions of each of these pathologies to COPD vary between patients

(Hogg and Timens 2009). Even in early or mild COPD, there is evidence of airflow

obstruction and a significant loss (disappearance) of small airways (McDonough

et al. 2011). A novel CT imaging technique for quantifying small airway disease

shows that this small airways loss is an early feature of disease and might account

for the initial progression of airway obstruction in COPD (Galban et al. 2012).

Structural changes in small pulmonary arterioles are also common in patients with

COPD, with increased intimal thickening and vascular smooth muscle proliferation,

perhaps resulting from inflammation in these vessels, as well as hypoxic

Fig. 1 Pathogenesis of COPD. Cigarette smoke (and other irritants) activate macrophages in the

respiratory tract that release chemotactic factors that attract inflammatory cells from the circula-

tion and fibrogenic factors such as transforming growth factor-β (TGF-β) and connective tissue

growth factor (CTGF) which stimulate fibrosis in peripheral airways. Various cells release

proteases in the airways, including matrix metalloproteinases (MMPs) that break down connective

tissue in the lung parenchyma, resulting in emphysema, and stimulate mucus hypersecretion

(chronic bronchitis). T cells play an important role in the persistence of inflammation

2 C. Page et al.



vasoconstriction (Peinado et al. 2008). However, pulmonary hypertension is usually

not marked in COPD, except for a small group of patients with disproportionate

pulmonary hypertension who can develop right heart failure (Seeger et al. 2013).

2 Chronic Inflammation

COPD is associated with chronic inflammation that predominantly affects periph-

eral airways and lung parenchyma, although large airways also show inflammatory

changes (Barnes 2014). The degree of inflammation increases – with increased

numbers of neutrophils, macrophages and lymphocytes in the lungs – as the disease

progresses (Hogg and Timens 2009). Chronic inhalation of irritants, including

cigarette smoke, biomass fuel smoke and air pollutants, activates pattern recogni-

tion receptors, such as Toll-like receptors (TLRs), resulting in an innate immune

response, which leads to increased numbers of neutrophils and macrophages in the

lungs as well as activation of airway epithelial cells and mucus secretion (Brusselle

et al. 2011). Activation of adaptive immunity occurs later in the course of the

disease and leads to increased numbers of T lymphocytes and B lymphocytes in the

lungs. These cells might be organized into lymphoid follicles, which involves an

increase in the number and activation of dendritic cells. During this adaptive

immune response there is also an increase in the number of CD8+ cytotoxic T

(Tc1) and CD4+ T helper (Th)1 cells in lung tissue (Barnes 2008a). The number of

CD4+ Th17 cells is also increased in the lungs and might further amplify neutro-

philic inflammation (McAleer and Kolls 2014). Some patients with COPD have

increased eosinophils in their airways and sputum and share some features of

asthma, such as reversibility of the airway obstruction and a greater response to

corticosteroids compared with patients with typical COPD (Barrecheguren

et al. 2015). This has led to the description “Overlap Syndrome” to describe such

patients, which has recently been reviewed elsewhere (Postma and Rabe 2015).

The levels of many different inflammatory mediators are increased in the lungs

of patients with COPD, including lipid and peptide mediators, as well as a network

of cytokines and chemokines that maintain inflammation and recruit circulating

cells into the lungs (Barnes 2008b). Many of these proinflammatory mediators are

regulated through the activation of the pro inflammatory transcription factor,

nuclear factor-kB (NF-kB), and mitogen-activated protein kinases (MAPK), partic-

ularly p38 MAPK (Di Stefano et al. 2002; Renda et al. 2008). In addition, several

proteases that degrade elastin fibres are secreted from airway resident neutrophils,

macrophages and epithelial cells in patients with COPD. In larger airways, elastase

from neutrophils might be an important stimulator of mucus hypersecretion,

whereas matrix metalloproteinases (MMP9 and MMP12) in the lung parenchyma

might be more important in the elastolysis that is observed in those patients having

emphysema.

Even cigarette smokers with normal lung function have increased airway inflam-

mation, suggesting this might be the normal response of the respiratory mucosa to

inhaled irritants. However, this inflammation seems to be amplified in COPD
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patients, particularly during acute exacerbations. The amplified inflammatory

response in COPDmight be explained by reduced expression of the nuclear enzyme

histone deacetylase 2 (HDAC2, encoded by HDAC2) in macrophages and epithelial

cells found in the lungs of those with COPD, resulting in activation of multiple

inflammatory genes (Ito et al. 2005). The lung inflammation in COPD patients

persists even after smoking cessation, suggesting that it is maintained by some

autonomous mechanism that is not yet understood.

The lower respiratory tract of patients with COPD is often colonized with

bacteria, such as Haemophilus influenzae and Streptococcus pneumoniae. This
chronic bacterial colonization has been linked to a defect in the uptake (phagocyto-

sis) of bacteria by macrophages (Taylor et al. 2010; Donnelly and Barnes 2012),

and, particularly with H. influenzae, might be a factor driving chronic airway and

systemic inflammatory responses in these patients (Fig. 2) (Singh et al. 2014). This

defect in phagocytosis might also apply to defective uptake of apoptotic inflamma-

tory cells (efferocytosis) and so might contribute to the impairment in resolution of

lung inflammation observed in patients with COPD (Donnelly and Barnes 2012;

Mukaro and Hodge 2011). Autoimmune mechanisms might also have a role in the

persistence of bacterial infections in the lungs of such patients as there is evidence

for the presence of autoantibodies, such as endothelial cell antibodies and

antibodies against carbonyl modified proteins, in the lungs of those with COPD,

at least in patients with severe disease (Kirkham et al. 2011). Finally, the peripheral

lung inflammation might also ‘spill over’ into the systemic circulation and contrib-

ute to the systemic inflammation in COPD that is associated with various

Fig. 2 Defective phagocytosis in COPD. Normally, macrophages phagocytose bacteria in the

lung periphery and respiratory tract to maintain lung sterility. These macrophages also phagocy-

tose apoptotic cells (efferocytosis) resulting in resolution of inflammation. In chronic obstructive

pulmonary disease (COPD), macrophages are defective at phagocytosing bacteria, which results in

chronic bacterial colonization of the lower airways. In addition, these macrophages have an

impaired ability to carry out uptake (efferocytosis) of apoptotic cells, which results in failure to

resolve inflammation
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comorbidities, such as cardiovascular disease and metabolic diseases (Barnes

2010). However, not all patients with COPD have evidence of systemic inflamma-

tion (Agusti et al. 2012) and comorbidities might be part of multimorbidity with

similar mechanisms, such as accelerated ageing, affecting several organs at the

same time.

3 Accelerated Ageing

COPD is largely a disease of the elderly and there is increasing evidence that

emphysema is caused by accelerated ageing of the lung parenchyma due to defec-

tive endogenous anti-ageing mechanisms, such as those that involve sirtuins (Ito

and Barnes 2009), with the activation of pathways leading to telomere shortening

and cellular senescence (Fig. 3) (Mercado et al. 2015; Mitani et al. 2015). Cellular

senescence and decreased sirtuin-1 have also been found in circulating endothelial

progenitor cells of COPD patients, which are less effective at vascular repair than

cells from age-matched normal individuals, which predisposes these individuals to

cardiovascular disease and other comorbidities (Paschalaki et al. 2013). Indeed,

stem cell senescence might be a common mechanism in COPD and its

comorbidities, with consequent failure to repair tissue damage (Barnes 2015).

Autophagy is a process whereby cells keep their cytoplasm clean by removing

damaged organelles and proteins which is impaired with ageing (Madeo

et al. 2015). There is increasing evidence that autophagy is defective in COPD,

so that the accumulation of damaged proteins and organelles, such as mitochondria,

result in accelerated cellular senescence and death (Mizumura et al. 2012).

Fig. 3 Accelerated ageing

and inflammation in COPD.

Oxidative stress drives

accelerated ageing though

activation of

phosphoinositide-3-kinase

(PI3K) and reduction in

sirtuin-1 which leads to

cellular senescence and the

release of inflammatory

proteins (SASP), which

further increase oxidative

stress
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4 Oxidative Stress

Increased oxidative stress is a key driving mechanism in the pathophysiology of

COPD and accounts for many of the features of the disease (Kirkham and Barnes

2013). Oxidative stress is increased in patients with COPD from cigarette smoke

exposure, but also endogenously from the activation of inflammatory cells, partic-

ularly neutrophils and macrophages. Reactive oxygen species (ROS) contribute to

the pathophysiology of COPD in several ways (Fig. 4). For instance, ROS activate

NF-kB and p38 MAPK, resulting in increased expression of inflammatory genes

and proteases. ROS also inhibit endogenous antiproteases, such as α1-antitrypsin,
resulting in increased elastolysis. Oxidative stress also leads to DNA damage,

which is normally repaired by the efficient DNA repair machinery, but there

might be a failure to repair double-stranded DNA breaks in COPD patients,

which might also lead to increased risk of developing lung cancer (Caramori

et al. 2011). ROS induce carbonylation of proteins, which, particularly in severe

COPD, might lead to the generation of circulating autoantibodies that might

perpetuate inflammation and lung injury (Kirkham et al. 2011). ROS also activate

transforming growth factor β (TGF-β), leading to fibrosis. In addition, oxidative

stress reduces corticosteroid responsiveness through a reduction in HD2 activity

Fig. 4 Increased oxidative stress in COPD. Oxidative stress might be increased in chronic

obstructive pulmonary disease (COPD) by a reduction in the expression of transcription factor

NRF2, NADPH oxidases (NOX), myeloperoxidase (MPO) and superoxide dismutase (SOD) and

other antioxidants, which might be triggered by inflammatory stimuli. Oxidative stress is a key

mechanism that drives the development and progression of COPD through activation of the

proinflammatory transcription factor nuclear factor-kB (NF-kB), p38 mitogen-activated protein

kinase (MAPK), generation of autoantibodies to carbonylated proteins, reduced expression of

sirtuin-1 (SIRT1), DNA damage, reduced histone deacetylase 2 (HDAC2) expression, reduced

activity of antiproteases and increased release of transforming growth factor (TGF)-β

6 C. Page et al.
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