
Tsuneya Ikezu
Howard E. Gendelman Editors

Neuroimmune 
Pharmacology
Second Edition

Serge Przedborski · Eliezer Masliah · Marco Cosentino   
Associate Editors 



Neuroimmune Pharmacology



Tsuneya Ikezu • Howard E. Gendelman
Editors

Neuroimmune Pharmacology



Editors
Tsuneya Ikezu
Departments of Pharmacology and  

Experimental Therapeutics and Neurology
Boston University School of Medicine
Boston, MA, USA

Howard E. Gendelman
Department of Pharmacology and Experimental 

Neuroscience
University of Nebraska Medical Center 
Nebraska Medical Center
Omaha, NE, USA

ISBN 978-3-319-44020-0    ISBN 978-3-319-44022-4 (eBook)
DOI 10.1007/978-3-319-44022-4

Library of Congress Control Number: 2016954435

© Springer International Publishing Switzerland 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is 
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction 
on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, 
computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not 
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and 
regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to 
be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express 
or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



v

In the past three decades, enormous strides have been made in our understanding of the 
 relationships between inflammation, immune responses, and degenerative human diseases. 
Neuroinflammation has grown from a tiny beginning to its current status as the largest field of 
brain research. Its growth continues to be rapid so this dominance will continue to expand. The 
field commenced with the obscure identification of activated microglia in the brains of 
Alzheimer’s disease cases. A grant application of ours to the Canadian government to explore 
the ramifications of this finding was turned down with the terse comment: “This hypothesis is 
ridiculous!”

To grasp the dimensions of growth in tis field, and to gain a perspective of future opportuni-
ties, today’s neuroscientists only need to read this volume from cover to cover. The developing 
information has mostly appeared in specialty journals that have dealt only with isolated aspects 
of these tightly related fields. As a result, contemporary scientists have had a difficult time 
finding sources, even in review articles, that provide an integrated picture. This updated vol-
ume, by assembling chapters that demonstrate the relationship between these historically sepa-
rated fields, overcome that difficulty. There are 56 chapters which cover a broad spectrum of 
topics on immunology of the nervous system. Included are diseases that result from immuno-
logical dysfunction, current therapeutic approaches, and prospects for the future. Overall, it 
integrates cutting-edge neuroscience, immunology, pharmacology, neurogenetics, neurogene-
sis, gene therapy, adjuvant therapy, nanomedicine, pharmacogenetics, biomarkers, proteomics, 
and magnetic resonance imaging. It is a rich harvest and readers will gain a perspective that 
has not previously been so readily available. Exposure to such a wealth of ideas is bound to 
inspire readers to undertake new and productive research initiatives.

The modern era of research into neuroinflammation and its relationship to neurodegenera-
tive diseases began in the 1960s with the elaboration by Ralph van Furth of the monocyte 
phagocytic system. He injected labeled monocytes into animals and followed their migration 
and maturation into resident phagocytes in all body tissues. This provided a closure between 
Metchnikoff’s 1882 discovery of mesodermal attack cells in starfish larvae, which he named 
phagocytes, and del Rio Hortega’s 1919 discovery of phagocytic mesodermal cells entering 
the brain, which he named microglia. Hortega’s results had always been questioned, and for 
more than two further decades, the controversy continued as to whether microglia were truly 
phagocytes of mesodermal origin or were merely typical brain cells of epidermal origin. 
Resolving the controversy required development of the techniques of immunohistochemistry 
and monoclonal antibody production. These tools for exploring brain biochemistry at the cel-
lular level opened new vistas for understanding brain functioning and the pathogenesis of 
human disease. Using these tools, our laboratory and that of Joseph Rogers in Sun City at that 
time demonstrated that HLA-DR was strongly expressed on activated microglia. The identifi-
cation of HLA-DR, a well-known leukocyte marker displayed by antigen-presenting cells, on 
these cells vindicated both Hortega and van Furth. The way was paved for many productive 
investigations exploring the properties of microglial cells and their relationship to inflamma-
tion and immune responses. This example of a conjunction between a fundamental concept 
and technical advances to establish its validity has been repeated many times since, as the 
chapters in this volume illustrate.
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For a time, the concept that the brain is immunologically privileged held sway among 
 neuroscientists. This was based on a narrow view that only the invasion of brain by lympho-
cytes could be taken as evidence of an inflammatory response. But immunohistochemistry, 
coupled with newly developed molecular biological techniques, revealed that a spectrum of 
inflammatory mediators, including many known to cause tissue damage, was produced within 
the brain by resident brain cells. These discoveries required entirely new interpretations as to 
the nature of neuroinflammation and its relationship to immune responses. The innate immune 
system, operating at the local level in brain, has clearly proved to be the first line of defense. 
Indeed, the basic discoveries from studying the response of the brain in a variety of neurologi-
cal diseases are causing a reevaluation of a number of peripheral degenerative disorders where 
innate immune responses, which had previously been ignored, have been shown to play a criti-
cal role in their pathogenesis. In other words, those studying the brain are providing immu-
nologists with revolutionary new concepts regarding classical peripheral diseases. The insights 
of this volume need to be interpreted in this broader context.

Major neurologic disorders and details of their pathobiology are presented as individual 
chapters. They involve disorders where innate immune responses predominate, as in 
Alzheimer’s disease, to others such as multiple sclerosis, where adaptive immune responses 
predominate, and others which seem to involve both. We have suggested that diseases involv-
ing self-damage generated by innate immune responses be defined as autotoxic to differentiate 
them from classical autoimmune diseases where self-damage is generated by adaptive immune 
responses. The common theme, however, is the involvement of microglia as the effector cells.

Genetics is well covered. It is a rapidly moving field. The methodology for linking familial 
disease to DNA mutations commenced in the late 1970s through identification of restriction 
fragment-linked polymorphisms. By 1983, when James Gusella and his colleagues demon-
strated a linkage of the G8 fragment to Huntington disease, only about 18 markers were known. 
Now over 1,500,000 single-nucleotide polymorphisms have been localized so that every cen-
timorgan of the human genome can be explored. This advance has been coupled with rapid 
methods for sequencing DNA. The report on genetics must be regarded as the tiny tip of a giant 
iceberg where much below the surface will soon be revealed.

The ultimate objective of neuroscientists studying human disease is to find more effective 
treatments. Part 3 covers the pharmacology of existing drugs, as well as describing approaches 
now in clinical evaluation, and those still at the bench level. Some of these include concepts 
that depart from established therapeutic approaches, giving the reader much food for thought.

There is an important chapter on the new field of biomarkers. Biomarkers have established 
that neurodegenerative disorders such as Alzheimer’s disease commence at least a decade 
before clinical signs develop. A window of opportunity is opened up where early anti- 
inflammatory intervention can arrest disease progression and abort disease development. This 
can be combined with brain imaging to measure objectively the effects of therapeutic agents in 
diseases where progressive brain degeneration occurs.

In summary, this is a volume not to be put on the shelf as a reference text, but to be read 
cover to cover by aspiring neuroscientists.

Vancouver, BC Patrick L. McGeer 
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Neuroscience, immunology, and pharmacology are each of and by themselves broad  disciplines 
that, without argument, impact upon a large component of what we come to know as biomedi-
cal science (Elenkov et al. 2000; Gendelman 2002; Holzer et al. 2015; McGeer and McGeer 
2004). Each, by themselves and even more so when put together, is multidisciplinary and 
require, for the student, both a broad knowledge and deep understanding of molecular and cel-
lular biology, neuroimmunity, the functional blood–brain barrier, neurochemistry, neuroinfec-
tious and neurodegenerative disorders, cancer, and neurodevelopment. For many, it is 
considered a branch of immunology, but that is a start point as the field bridges investigations 
of drug action and development with nervous system biology and disease pathogenesis. To 
those engaged in this field, linking of the disciplines is ever more challenging as when they are 
joined, they come interactive. The bridges between disciplines are what we now call multidis-
ciplinary science and require another level of insight. However, we posit that each need be first 
understood as a single entity. To this end, we forged chapters that cover the structure, function, 
and biology of each of the fields independent of one another. Then step-by-step they are each 
combined one with the other to form the basis of our engagement with the environment, to 
disease and a means to restore homeostasis by protective immune and pharmacologic means. 
Indeed, drugs that include immune modulators can certainly influence organ function, aging, 
and tissue homeostasis and improve clinical outcomes.

Indeed, a special feature of “humankind” among other species is the presence of an 
extraordinary complex immune system that can be used to protect against a plethora of harm-
ful microbial pathogens, including viruses, bacteria, and parasites, as well as abnormal cells 
and proteins (Petranyi 2002; Obermeier et al. 2016). This underlies the complexity of the 
human genome which encodes expansive immune-related genes not found in lower species 
(Hughes 2002). When the immune system is compromised, disease occurs and often does 
with ferocity; a wide range of clinical manifestations ensue that follows as a consequence of 
neurodegenerative, psychiatric, cancer, and infectious diseases, or those elicited by the 
immune system’s attack on itself. The latter is commonly referred to as “destructive” autoim-
munity (Christen and von Herrath 2004). Interestingly enough, the immune system may 
sometimes be an impediment to therapy. Indeed, modulating its function is required for long-
term and successful organ transplantation (Samaniego et al. 2006; Horst et al. 2016). On bal-
ance, modulation of the immune system can affect “neuroprotective” responses for certain 
diseases (Anderson et al. 2014).

Like the immune system, the nervous system contains surveillance functions and also pos-
sesses a number of functional roles that include mentation, movement, reasoning, sensation, 
vision, hearing, learning, breathing, and most behaviors. The nervous system includes defined 
tissue structures such as the brain, spinal cord, and peripheral nerves. On the cellular level, it 
includes networks of nerve cells with a variety of functional activities; complex networks and 
communications; supportive and regulatory cells, called glia; and a protective barrier that pre-
cludes the entry of a variety of macromolecules, cells, and proteins. It also possesses connec-
tions throughout the body that permits it function. Neuroscience is the discipline used to 
explore each of the nervous system regions and cells that include their networks and modes of 
communication in health and disease. As humans, we have ~100 billion neurons that are each 
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functional units contained within the nervous system. Molecular and biochemical studies 
along with cell and animal systems were each used alone and together to explore and define 
neural biology. The task of neurosciences is to better understand the brain’s function in the 
context of ontogeny, organism development, and aberrations during disease. Neuroscience is 
an interdisciplinary field and evolved as such during the past quarter-century. It includes neu-
robiology, neurochemistry, neurophysiology, mathematics, psychology, computer neurosci-
ence, and learning and behavior. It also included the field of immunology (Sehgal and Berger 
2000). In a historical context, the brain, for a long time, was considered an immune-privileged 
organ, meaning that its protective shield or barrier, commonly termed the blood–brain barrier, 
served to protect, defend, and as a consequence exclude ingress of toxins, cells, and pathogens 
(Streilein 1993; Becher et al. 2000). This has undergone a reassessment of purpose (Louveau 
2015). Nonetheless, this is balanced by the fact that resident inflammatory cells do exist inside 
the brain and are capable of producing robust immune responses. In recent years, we have 
come to accept that it is the mononuclear phagocytes (MP; perivascular macrophage and 
microglia) that are disease perpetrators, while the astrocyte serves as “supportive” and “homeo-
static” in nurturing neurons and in protection against the ravages of disease (Gendelman 2002; 
Simard and Nedergaard 2004; Trendelenburg and Dirnagl 2005). The neuron in this neuroim-
mune model is the passive recipient of the battles that rage between the MP and the astrocyte. 
Findings that have emerged over the past half-decade have challenged this model. We now 
know that dependent upon environmental cues and disease, microglia, astrocytes, and other 
neural cell elements including endothelial cells and oligodendrocytes possess immunoregula-
tory functions. We also know that microglia and astrocytes dependent upon the environment 
and stimuli can be supportive, destructive, or both. Even more importantly, neurons can secrete 
immunoregulatory factors and engage directly into cell–cell–environmental cue stimulations. 
To make the system perhaps even more complex, local neuroimmune processes can result in 
the recruitment of T cells and enticement of the adaptive immune response, significantly 
affecting disease outcomes (Olson and Gendelman 2016). All in all, things appear more com-
plex than once thought even in the past decade.

These three disciplines and the complexities inherent in each academic field is perhaps the 
most multidisciplinary, serving to bring scientists and clinicians together with knowledge of 
neurobiology, immunology, pharmacology, biochemistry, cellular and molecular biology, 
virology, genetics, gene therapy, medicinal chemistry, nanomedicine, proteomics, pathology, 
and physiology. Even more than immunology and neuroscience, pharmacology integrates a 
broad knowledge in scientific disciplines, enabling the pharmacologist a unique perspective to 
tackle drug-, hormone-, immune-, and chemical-related pathways as they affect human health 
and behavior. Drug actions and therapeutic developments form the basis of such discoveries, 
but the central understanding of how they act provides vision for further research to improve 
human well-being and health.

This textbook is unique in scope by serving to investigate the intersection of this new dis-
cipline. Neuropharmacologists study drug actions including neurochemical disorders underly-
ing a broad range of diseases such as psychiatric disorders (e.g., schizophrenia and depression) 
and neurodegenerative diseases (e.g., Alzheimer’s and Parkinson’s diseases). Drugs can also 
be used to examine neurophysiological or neurobiochemical changes as they affect brain, 
behavior, movement, and mental status. Immunopharmacology seeks to control the immune 
response in the treatment and prevention of disease. Research does include immunosuppres-
sant agents used in organ transplant as well as developing agents that affect bone marrow 
function and cell differentiation in cancer therapies.

What then defines the field of neuroimmune pharmacology? Is it simply a field that inter-
sects the three disciplines of neuroscience, immunology, and pharmacology in seeking to bet-
ter define the epidemiology, prevention, and treatment of immune disorders of the nervous 
systems (Fig. 1)? Are these disorders limited in their scope in affecting behavior, cognition, 
motor, and sensory symptoms, or do they also involve developmental and degenerative disor-
ders? It is clear that the immune system is linked, in whole or in part, to diseases that develop 
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as a consequence of genetic abnormalities and a broad range of environmental cues (including 
microbial infections and abused drugs) and to toxins. So, where does neuroimmune pharma-
cology find its niche? These can occur, in part, as a consequence of neuropeptides, neurotrans-
mitters, cytokines, chemokines, and abused drugs. Like much in science, we are left with more 
questions than answers. In the end, we seek avenues for translational research and better 
understanding of disease mechanisms. Diseases are together linked to microbial agents, by 
inflammatory processes, by emergence of cancerous cells or tumors, by stress, by environmen-
tal cues, and by genetic disturbances. No matter the cause, harnessing the immune processes 
for pharmacological benefit will, at days end, provide “real” solutions to positively affect some 
of the most significant and feared disorders of our century.

What do we seek to accomplish by editing such a textbook? First, we would be remiss in 
not acknowledging the pivotal discoveries made by others when research fields intersect. 
These include the discovery and characterization of the guanosine triphosphate (GTP) binding 
and prion proteins (Gilman 1995; Rodbell 1995; Prusiner 1998, 2001), neurotransmission and 
memory functions (Carlsson 2001; Greengard 2001; Kandel 2001), and odorant receptors 
(Buck 2000; Axel 2005). We posit that new discoveries can and will be made through the 
intersections of neuroscience, immunology, and pharmacology and as such sought to define it 
for the student. The notion that inflammation contributes in significant manner to neurodegen-
eration and significantly beyond autoimmune diseases is brought front and center and demon-
strated without ambiguity for multiple sclerosis, peripheral neuropathies, Alzheimer’s and 
Parkinson’s disease, and amyotrophic lateral sclerosis as well as for microglial infections of 
the nervous system including NeuroAIDS where microglial activation is central to disease 
processes (Hooten et al. 2015; Appel et al. 1995; Toyka and Gold 2003; McGeer and McGeer 
2004; Ercolini and Miller 2005; Gendelman 2002; Gendelman and Mosley 2015). Perhaps 
most importantly, we have laid the groundwork for how the immune system can be harnessed 
either through its modulation, through altering blood–brain barrier integrity and function, or 
by drug-delivery strategies that target the brain. This second edition will add on to the success 

Fig. 1 This Venn diagram pictorially represents the fields of immunology, pharmacology and neuroscience 
with common elements overlapping into the discipline of neuroimmune pharmacology. The blackened area 
depicts the diseases and research areas covered in this book and integral to the field of study
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of the first edition with additional chapters on emerging topics, including but not limited to 
enteric nervous system, microbiota, innate immunity signaling, exosomes, stress granules, 
microRNA, autism spectrum disorders, traumatic brain injury, biomarkers, macromolecular 
therapeutics, and “omics” pharmacology.

No doubt this textbook is an expansive read for the student and scholar alike. To this end, 
we are humbled by its realization and even more so during this second edition. These words 
lay only the beginnings to what we believe will be a significant future footprint into the inte-
gration between neuroscience, immunology, and pharmacology.

Tsuneya Ikezu
Department of Pharmacology and Experimental  
 Therapeutics and Neurology 
Boston University School of Medicine
Boston, MA, USA

Howard E. Gendelman
Department of Pharmacology and Experimental Neuroscience   
University of Nebraska Medical Center
Nebraska Medical Center
Omaha, NE, USA   
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1H Proton
1H-MRSI Proton magnetic resonance spectroscopic imaging
2D SDS-PAGE Two-dimensional polyacrylamide gel electrophoresis
3’UTR 3’-Untranslated region
3HK 3-Hydroxykynurenine
5-ASA 5-Aminosalicylic acid
5-HIAA 5-Hydroxyindole acetic acid
5-HT 5-Hydroxy tryptophan
5-HT 5-Hydroxytryptamine
6-OHDA 6-Hydroxydopamine
8-OHdG 8-Hydroxy-2’-deoxyguanosine
γc Common γ-chain
AAAD Aromatic l-amino acid decarboxylase
AAV Adeno-associated virus
Ab Antibody
Aβ Amyloid-β
ABD Adamantiades-Behçet’s disease
ABP Actin-binding protein
AC Anterior chamber
ACAID Anterior chamber-associated immune deviation
αCamKII α-Calcium/calmodulin-dependent protein kinase II
ACh Acetylcholine
AChE Acetylcholinesterase
ACTH Adrenocorticotrophic hormone (pro-opiomelanocortin; POMC)
AD Alzheimer’s disease
ADHD Attention deficit hypersensitivity disorder
ADI Acceleration/deceleration injury
ADAM A disintegrin and metalloprotease
ADCC Antibody-dependent cellular cytotoxicity
ADEM Acute disseminated encephalomyelitis
AF Activation factor
Ag Antigens
AGE Advanced glycation end products
AGM Aorta-gonad mesonephros
AHSCT Autologous hematopoietic stem cell transplantation
AICA Anterior inferior cerebellar artery
AID Activation-induced (cytidine) deaminase
AIDP Acute inflammatory demyelinating polyradiculoneuropathy
AIDS Acquired immunodeficiency syndrome
AIF Apoptosis inducing factor
AIR Autoimmune retinopathy
AIRE Autoimmune regulator
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AIS Anterior chamber-associated immune deviation (ACAID)-inducing signal
ALR AIM2-like receptors
ALS Amyotrophic lateral sclerosis
AMAN Acute motor axonal neuropathy
AML Acute myeloid leukemia
AMN Adrenomyeloneuropathy
AMPA α-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid
AMSAN Acute motor-sensory axonal neuropathy
ANG Angiotensin II
ANI Asymptomatic neurocognitive impairment
ANS Autonomic nervous system
AP Area postrema
AP-1 Activating protein-1
APAF 1 Apoptotic peptidase activating factor 1
APC Antigen-presenting cells
aPKC Atypical protein kinase C
aPL Antiphospholipid antibody
APO1 Apoptosis antigen 1 (Fas/CD95)
apoE Apolipoprotein E
APP Amyloid precursor protein
APPs Acute phase proteins
AQP4 Aquaporin-4
ARE AU-rich response element
ARMD Age-related macular degeneration
ART Antiretroviral therapy
ASD Autism spectrum disorders
ASL Arterial spin-labeled
ASTIN Acute stroke therapy by inhibition of neutrophils
AT Adoptive transfer
ATL Adult T cell leukemia
ATON Atacicept in optic neuritis
ATP Adenosine triphosphate
AVE Anterior visceral endoderm
AVG Anti-viral granule
AVP Arginine vasopressin
AV3V Anteroventral third ventricular
AZT 3’-Azidothymidine/zidovudine
BACE Beta-site amyloid precursor protein cleaving enzyme
BBB Blood–brain barrier
BBMEC Bovine brain microvessel endothelial cells
BCR B-cell receptor
BCRP Breast cancer resistance protein
BCSFB Blood-CSF barrier
BD Bipolar disorder
BDNF Brain-derived neurotrophic factor
bFGF Basic fibroblast growth factor (FGF2)
bHLH Basic helix-loop-helix
BHV-1 Bovine herpesvirus-1
BLBP Brain lipid binding protein
BLIMP-1 B lymphocyte-induced maturation protein-1
BLV Bovine leukemia virus
BM Bone marrow
BMDM Bone marrow-derived macrophages
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BMP Bone morphogenetic protein
BMVEC Brain microvascular endothelial cell
BP Biological processes
BrdU Bromodeoxyuridine
BRMs Biological response modifiers
BSE Bovine spongiform encephalopathy
BTLA B and T lymphocyte attenuator
C/EBP CCAAT box/enhancer binding protein
C3d Complement C3 fragment d
C4d Complement C4 fragment d
CA Cornu ammonis
CA II Carbonic anhydrase II
CaMKII Calcium/calmodulin-dependent protein kinase II
CAMs Cell adhesion molecules
CAPS Cryopyrin-associated periodic syndromes
CAR Cancer-associated retinopathy
CARD Caspase recruitment domain
CARD15 NOD2/caspase recruitment domain 15
CB Cannabinoid
CB1 Cannabinoid receptor 1
CB2 Cannabinoid receptor 2
CBA Cytokine bead arrays
CBF Cerebral blood flow
CBF1 C promoter binding factor 1
CBP cAMP-response element binding protein (CREB)-binding protein
CBV Cerebral blood volume
CCI Controlled cortical impact
CCK Cholecystokinin
CCT Central corneal thickness
CD Cluster of differentiation
CD11b Complement component 3 receptor 3 subunit (integrin alpha M; ITGAM)
CD40L CD40 ligand (TNFSF5)
CDP Common DC progenitor
CDR Complementarity-determining region
CDV Canine distemper virus
CEP Carboxyethylpyrrole
CFT 2-β-Carbomethoxy-3β-(4-fluorophenyl) tropane
cGMP Cyclic guanosine 5’-monophosphate
CGRP Calcitonin gene-related peptide
CHAT Choline acetyltransferase
CHN Congenital hypomyelinating neuropathy
Cho Choline
CIDP Chronic inflammatory demyelinating polyradiculoneuropathy
CINC1 Cytokine-induced neutrophil chemoattractant-1
CIS Clinically isolated syndrome
CJD Creutzfeldt-Jakob disease
CLA Cutaneous leukocyte antigen
CLL Chronic lymphocytic leukemia
CLP Common lymphoid progenitor
CMAP Compound motor action potential
CMC Critical micelle concentration
CMP Common myeloid precursor
CMT Charcot-Marie-Tooth (disease)
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CMV Cytomegalovirus
CNG cGMP-gated
CNPase Cyclic nucleotide 3’ phospohydrolase
CNS Central nervous system
CNTF Ciliary neurotrophic factor
CO Cytochrome oxidase
COMT Catechol-O-methyltransferase
Con A Concanavalin A
COP-1 Copolymer-1
COX Cyclooxygenase (prostaglandin-endoperoxide synthase; PTGS)
CP Choroid plexus
CR Complement receptor
CRalBP Cellular retinal binding protein (retinaldehyde binding protein 1; RLBP1)
CRD Carbohydrate-recognition domains
CRE cAMP-responsive element
Cre Creatine
CREB cAMP-response element binding protein
CRH Corticotrophin-releasing hormone
CRID Cytokine release inhibitory drugs
CRP C-reactive protein
CRPM Collapsing response mediator protein
CRVO Central retinal vein occlusion
CSF Cerebrospinal fluid
CSF-1R Colony-stimulating factor receptor
CSPG Chondroitin sulfate proteoglycans
CT Computed tomography
CTA Computed tomographic angiography
CTE Chronic traumatic encephalopathy
cTEC Cortical thymic epithelial cell (TEC)
CTL Cytotoxic T lymphocyte
CTLA-4 Cytotoxic T lymphocyte antigen-4
CTP Circulating T-cell progenitors
CVF Cobra venom factor
CVO Circumventricular organ
Cx Connexin
cyto c Cytochrome c
D1R Type-1 family of dopamine receptors
D9-THC D9-tetrahydrocannabinol
DA Daniel’s strain of Theiler’s virus
DA Dopamine
DAF Decay-accelerating factor
DAG Diacylglycerol
DAMP Danger-associated molecular patterns
DAT Dopamine transporter (solute carrier family 6A3; SLC6A3)
DβH Dopamine-β-hydroxylase
DC Dendritic cells
DCX Doublecortin
ddC Dideoxycytidine
ddI Dideoxyinosine
DG Dentate gyrus
dGTP Deoxyguanosine triphosphate
DHA Docosahexaenoic acid
Dhh Desert hedgehog
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DHP Dihydropyridine
DIGE Difference gel electrophoresis
DIRA Deficiency of IL-1 receptor antagonist
DISC Death-inducing signaling complex
DM Diabetes mellitus
DN Double/dominant negative
DNA Deoxyribonucleic acids
Doc2 Double C2 protein
DOR Delta-opioid receptor
Dox Doxorubicin
Dox Doxycycline
DR Dopamine receptors
DRPLA Dentatorubral-pallidoluysian atrophy
DSI Depolarization induced suppression of inhibition
DSPN Distal sensory peripheral neuropathy
DSS Dejerine-Sottas syndrome
DTH Delayed-type hypersensitivity
DTI Diffusion tensor imaging
DTR Diphtheria toxin receptor
DWI Diffusion weighted imaging
E2F Early-region-2 transcription factor
EAE Experimental allergic/autoimmune encephalomyelitis
EAN Experimental allergic/autoimmune neuritis
EAU Experimental autoimmune uveitis
EBV Epstein-Barr virus
ECT Electroconvulsive therapy
EDSS Expanded disability status scale
EEG Electroencephalography
EGC Embryonic germ cell
EGF Epidermal growth factor
EGFR Epidermal growth factor receptor
EIAV Equine infectious anemia virus
ELAVL4 Embryonic lethal, abnormal vision, Drosophila-like 4
ELP Early lymphoid progenitors
eLTP Early long-term potentiation
ELVIS Extravasation through Leaky Vasculature and subsequent Inflammatory 

 cell-mediated Sequestration
EMG Electromyography
EMP Erythromyeloid progenitors
EndoG Endonuclease G
EOAD Early-onset Alzheimer’s disease
EPI Echo-planar imaging
EPR Enhanced permeability and retention
EPS Extrapyramidal symptoms
EPSC Excitatory postsynaptic currents
EPSP Excitatory postsynaptic potential
ER Endoplasmic reticulum
ERK2 Extracellular signal-regulated kinase 2
ESC Embryonic stem cell
ESCRT Endosomal-sorting complex required for transport
ESI-MS/MS Electrospray ionization-mass spectrometry/mass spectrometry
ET Endothelin
ETP Early T lineage progenitor
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EV Extracellular vesicles
FA Fractional anisotropy
FAD Familial Alzheimer’s disease
fALS Familial amyotrophic lateral sclerosis
FasL Fas ligand (FASLG)
FcgR-1 Fc receptor IgG, high affinity-1
fCJD Familial Creutzfeldt-Jakob disease
FcR Fc receptor
FDA Food and Drug Administration
FDC Follicular dendritic cell
FDG Fluorodeoxyglucose
FDOPA 6-[(18)F]fluoro-l-dopa
FFI Fatal familial insomnia
FGF Fibroblast growth factor
FID Free induction decay
FIRE Febrile infection-related epilepsy syndrome
FIV Feline immunodeficiency virus
FKN Fractalkine (CX3CL1)
fMRI Functional magnetic resonance imaging
Foxp3 Forkhead box P3 transcription factor
FPI Fluid percussion injury
FR Folate receptor
FRC Fibroblastic reticular cell
FRS2 Fibroblast growth factor receptor substrate 2
FS Fisher syndrome
FSH Follicle-stimulating hormone
FTD Frontotemporal dementia
FT-ICR Fourier transformed ion cyclotron resonance mass spectrometry
FTLD Frontotemporal lobar dementia
FUS Fused in sarcoma
Fz/PCP Frizzled/planar cell polarity
GA Glatiramer acetate
GABA Gamma-aminobutyric acid
GAD Glutamate decarboxylase
GalC Galactocerebroside
GALT Gut-associated lymphoid tissue
GAP GTPase activating protein
GAPDH Glyceraldehyde 3 phosphate dehydrogenase
GBM Glioblastoma multiforme
GBS Guillain-Barré syndrome
GC Germinal center
GCDC Germinal center dendritic cell
GCL Ganglion cell layer
GEF Guanine nucleotide exchange factor
GL Granular cell layer
GC-MS Gas chromatography combined with mass spectrometry
G-CSF Granulocyte colony-stimulating factor
Gd Gadolinium
GDF Growth and differentiation factor
GDNF Glial-derived neurotrophic factor
GDP Guanosine diphosphate
GEF GDP-GTP exchange factor
GFAP Glial fibrillary acidic protein
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GFP Green fluorescent protein
GI Gastrointestinal
GKAP Guanylate kinase-associated protein
GLC1A Chromosome 1 open-angle glaucoma gene
Gln Glutamine
GLP-1 Glucagon-like peptide-1
GM-CSF Granulocyte-macrophage colony-stimulating factor
GMP Granulocyte monocyte precursor
GnRH Gonadotropin-releasing hormone
GO Gene ontology
GO Graves’ ophthalmopathy
GPCR G-protein-coupled receptor
GPI Glycosylphosphatidylinositol
GR Glucocorticoid receptor
GRIP Glucocorticoid receptor-interacting protein
GRO-α Growth-related oncogene alpha
GSH Glutathione
GSS Gerstmann-Straussler-Scheinker disease
GSTO1 Glutathione s-transferase omega-1
GT G-protein transducing
GTP Guanosine triphosphate
GUCY Guanylate cyclase
GWAS Meta-genome-wide association study
HAART Highly active antiretroviral therapy
HAD HIV-associated dementia
HAM/TSP HTLV-I associated myelopathy/tropical spastic paraparesis
HAND HIV-associated neurocognitive disorder
HAT Histone acetyltransferase
HAV Hepatitis A virus
HBsAg Hepatitis B surface antigen
HCV Hepatitis C virus
HCMV Human cytomegalovirus
HD Huntington’s disease
HDAC Histone deacetylase
HDLS Hereditary diffuse leukoencephalopathy with spheroids
HES Hairy and enhancer of split homolog
HEV High endothelial venule
HFS High frequency stimulation
Hh Hedgehog
HHH Hypervolemic-hemodilution and hypertensive
HHV-6 Human herpes virus-6
HIV-1 Human immunodeficiency virus type 1
HIVE Human immunodeficiency virus encephalitis
HLA Human leukocyte antigen
HLH Helix-loop-helix
HMG-CoA 3-Hydroxy-3-methylglutaryl coenzyme A
HNE 4-Hydroxy-2-nonenal
hnRNP-A1 Heterogeneous nuclear ribonuclear protein-A1
HPA Hypothalamic-pituitary-adrenal
HPMA N-(2-Hydroxypropyl) methacrylamide
HRP Horseradish peroxidase
HSC Hematopoietic stem cell
HSC70 Heat shock cognate protein 70
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Hsp Heat shock protein
HSV Herpes simplex virus
HSVE Herpes simplex virus-mediated encephalitis
HT Huntington’s disease
HTLV Human T-cell lymphotropic virus type
HTRA2 High temperature requirement serine protease 2
Htt Huntingtin
HUVEC Human umbilical vein endothelial cells
HveA Herpesvirus entry mediator A
I-1 Regulatory protein inhibitor-1
IBS Inflammatory bowel syndrome
ICAM Intracellular adhesion molecule
ICAT Isotope-coded affinity tags
ICE IL-1β-converting enzyme
ICGA Indocyanine green angiography
ICH Intracerebral hemorrhage
iCJD Iatrogenic Creutzfeldt-Jakob disease
ICOS Inducible co-stimulatory molecule
ICV Intra-cerebro-ventricular
Id Inhibitor of differentiation
IDE Insulin degrading enzyme
IDO Indoleamine 2,3-dioxygenase
IE Immediate early
IF Intermediate filament
IFN Interferon
Ig Immunoglobulin
IGF Insulin-like growth factor
IgG Immunoglobulin G
IGIV Immunoglobulin intravenous therapy
Ihh Indian hedgehog
IIDD Idiopathic inflammatory demyelinating disease
IkB Inhibitory kappa B
IKK IkB kinase
IL Interleukin
IL1RA IL-1 receptor antagonist
ILBD Incidental Lewy body disease
ILK Integrin-linked kinase
ILM Inner limiting membrane
ILV Intraluminal vesicles
IM Intramuscular
IMAC Immobilized metal affinity chromatography
IMPDH Inosine monophosphate dehydrogenase
iNKR Inhibitory natural killer cell receptor
INL Inner nuclear layer
INO Internuclear ophthalmoplegia
iNOS Inducible nitric oxide synthase (NOS2A)
IOP Intraocular pressure
IP Interferon-inducible protein
IPC Intermediate progenitor cells
InsP3R Inositol 1,4,5-triphosphate receptor
IPL Inner plexiform layer
IRAK IL-1 receptor-associated protein kinase
IRBP Interphotoreceptor retinoid-binding protein

Abbreviations



xxvii

IRF Interferon regulatory factor
ISCOM Immunostimulating complexes
ISH In situ hybridization
IT15 Interesting transcript 15
ITAM Immunoreceptor tyrosine-based activation motif
ITGAM Integrin, alpha M
ITR Inverted terminal repeat
IVDU Intravenous drug use
IVIg Intravenous immunoglobulin
JAK Janus kinase
JEV Japanese encephalitis virus
JNK c-Jun N-terminal kinase
KLH Keyhole limpet hemocyanin
KO Knockout
KOR Kappa opioid peptide receptor
KYN Kynurenine
KYNA Kynurenic acid
LAK Lymphokine-activated killer (cell)
L-AP4 l-2-Amino-4-phosphonobutyric acid
LAT Latency-associated transcript
LAMP Lysosome-associated membrane protein
LB Lewy bodies
LC Locus coeruleus
LCA Leukocyte common antigen
LC-FTICR MS Liquid chromatography Fourier transform ion cyclotron resonance mass
LC-MS Liquid chromatography combined with mass spectrometry
LC-UV-SPE-NMR Liquid chromatography, UV detection, solid phase extraction, and 

nuclear magnetic resonance
LD Linkage disequilibrium
LDL Low density lipoprotein
LFA-1 Leukocyte function-associated antigen-1 (integrin beta 2; ITGB2)
LGN Lateral geniculate nucleus
LH Luteinizing hormone
LIF Leukemia inhibitory factor
Lingo-1 Leucine-rich repeat and Ig domain containing Nogo receptor-interacting 

protein-1
LMN Lower motor neuron
LOAD Late-onset Alzheimer’s disease
LOS Lipooligosaccharide
LPA Lysophosphatidic acid
LPBN Lateral parabrachial nucleus of the pons
LPS Lipopolysaccharide
LRP-1 Lipoprotein receptor-related protein-1
LRR Leucine-rich repeat
LRRK2 Leucine-rich repeat kinase 2
LT Lymphotoxins
LTD Long-term depression
LTNP Long-term nonprogressors
LTP Long-term potentiation
LTR Long-terminal repeat
LT-bR Lymphotoxin beta receptor
MCAO Middle cerebral arterial occlusion
MCI Mild cognitive impairment
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MG Myasthenia gravis
MHV Mouse hepatitis virus
mI Myoinositol
MIF Migration inhibitory factor
Mint1 Munc-18 interacting protein 1
MIP Macrophage inflammatory protein
MJO Machado-Joseph disease
MME Membrane metalloendopeptidase (neprilysin)
MMP Matrix metalloproteinase
MMSE Mini-Mental State Examination
MNGC Multinucleated giant cell
MnPO Median preoptic nucleus
Mn-SOD Manganese superoxide dismutase
MOAT Multispecific organic anion transporter
MOBP Myelin-associated/oligodendrocyte basic protein
MOG Myelin oligodendrocyte glycoprotein
MOI Multiplicity of infection
MOR mu opioid receptor
MOSP Myelin/oligodendrocyte-specific protein
MP Mononuclear phagocytes
MPA Mycophenolic acid
MPL Monophosphoryl lipid A
MPO Myeloperoxidase
MPO Medial preoptic area
MAC Membrane attack complex
MPP Multipotent progenitors
MPP+ 1-Methyl-4-phenylpyridinium
MAdCAM-1 Mucosal addressin cell adhesion molecule-1
MAG Myelin-associated glycoprotein
MAML Mammalian mastermind-like
MAO Monoamino-oxidase
MAP Microtubule-associated protein
MAPK Mitogen-activated protein kinases
Mash1 Mammalian achaete-scute homologue 1
MBGI Myelin-based growth inhibitor
MBP Myelin basic protein
MC Mast cell
MC-1R Melanocortin-1 receptor
MCMD Minor cognitive motor disorder
MCP Membrane cofactor protein (CD46)
MCP-1 Monocyte chemoattractant protein-1 (CCL2)
M-CSF Macrophage colony-stimulating factor (CSF1)
MD Major depression
MDA Malondialdehyde
MDD Major depressive disorder
MDM Monocyte-derived macrophages
MDP Muramyl-dipeptide
MDP Monocytes and dendritic cell progenitor
MDR Multidrug resistant
MDSC Myeloid-derived suppressor cells
ME Median eminence
MEG Magnetoencephalography
MEPP Miniature end-plate potential
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MFS Miller Fisher syndrome
MHC Major histocompatibility complex
MHC-II Class II major histocompatibility complex
MHPG Methoxy-hydroxy-phenylethanolamine
MLR Mixed lymphocyte reaction
MLV Murine leukemia virus
MND Mild neurocognitive disorder
MP Mononuclear phagocyte
MPMV Mason-Pfizer monkey virus
MPTP 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
MR Mineralocorticoid receptors
MRA Magnetic resonance angiography
MRI Magnetic resonance imaging
MRP Multidrug resistance protein
MRS Magnetic resonance spectroscopy
MRSI Magnetic resonance spectroscopic imaging
MS Multiple sclerosis
MSA Multisystem atrophy
MSCs Myelinating Schwann cells
MSH Melanocyte-stimulating hormone
MSN Medium spiny neuron
mSOD1 Mutant Cu2+/Zn2+ superoxide dismutase 1
MSRV Multiple sclerosis retrovirus
MT Magnetization transfer
Mtb Mycobacterium tuberculosis
MTI Magnetization transfer imaging
mTEC Medullary thymic epithelial cell
mTOR Mammalian target of rapamycin
MTR Magnetization transfer ratio
MUC1 Mucin type 1 glycoprotein
MuLV Murine leukemia virus
Munc-18 Mammalian homologue of unc-18
MV Microvesicles
MVB Multivesicular bodies
MVE Murray Valley encephalitis virus
MW Molecular weight
MZ Marginal zone
NAA N-Acetyl-aspartate
NAC N-Acetyl cysteine
NADPH Nicotinamide adenine dinucleotide phosphate
NB Nucleotide-binding domain
NCAM Neural cell adhesion molecule
NCC Neural crest cell
NE Norepinephrine
NEP Neutral endopeptidase metalloendopeptidase
NET Norepinephrine transporter
NeuN Neuronal nuclei
NF Neurofilament
NF-kB Nuclear factor-k-B
NFAT Nuclear factor of activated T lymphocytes
NFL Nerve fiber layer
NFT Neurofibrillary tangles
Ng-CAM Neuronal-glial cell adhesion molecule (L1/NILE)
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NGF Nerve growth factor
NgR Nogo-66 receptor
NICD Notch intracellular domain
NK Natural killer (cells)
NKT Natural killer T (cells)
NLR Nod-like receptors
NMDA N-methyl-d-aspartate
NMDAR N-methyl-d-aspartate receptors
NMJ Neuromuscular junction
NMO Neuromyelitis optica
NMR Nuclear magnetic resonance
NMSCs Nonmyelinating Schwann cells
nNOS Neuronal nitric oxide synthase
NNRTIs Nonnucleoside analogue reverse transcriptase inhibitors
NO Nitric oxide
NOD Nucleotide oligomerization domain
NOD Non-obese diabetic mice
NOS Nitric oxide synthase
NOT Nucleus of the optic tract
NP Nanoparticle
NPC Neural progenitor cell
NPY Neuropeptide Y
NPZ-8 Neuropsychological Z score for 8 tests
NR Nuclear receptor
NRG Neuregulin
NRL Nuclear receptor ligand
NRTI Nucleoside analogue reverse transcriptase inhibitors
NSAID Nonsteroidal anti-inflammatory drug
NSC Neural stem cell
NSE Neuron specific enolase
NSF N-ethylmaleimide sensitive factor
NT 3-Nitrotyrosine
NTF Neurotrophin
NVU Neurovascular unit
OB Olfactory bulb
OCB Oligoclonal band
OCD Obsessive compulsive disorder
ODN Oligonucleotides
OE Olfactory epithelium
OHT Ocular hypertension
OL Oligodendrocyte
OLM Outer limiting membrane
OMgp Oligodendrocyte-myelin glycoprotein
OMP Olfactory marker protein
ONH Optic nerve head
ONL Outer nuclear layer
OP Oligodendrocyte progenitors
OPC Oligodendrocyte progenitor cell
OPCA Olivopontocerebellar atrophy
OPL Outer plexiform layer
ORF Open reading frame
ORN Olfactory response neuron
OSP Oligodendrocyte-specific protein
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OVA Ovalbumin
OVLT Organum vasculosum of the lamina terminalis
P0 Myelin protein zero
p75NTR p75 neurotrophin receptor (nerve growth factor receptor; NGFR)
PACAP Pituitary adenylate cyclase-activating polypeptide
PACT Protein activator of the interferon-induced protein kinase
PAF Platelet-activating factor
PAG Periaqueductal gray
PAMP Pathogen-associated molecular pattern
PANDAS Pediatric autoimmune neuropsychiatric disorders associated with Streptococcus
PANSS Positive and negative syndrome scale
PARP Poly(ADP-ribose) polymerase
PASAT Paced Auditory Serial Addition Test
PBBS Peripheral benzodiazepine binding sites
PBL Peripheral blood lymphocyte
PBMC Peripheral blood mononuclear cell
PBR Peripheral benzodiazepine receptor
PCP Phencyclidine
PCR Polymerase chain reaction
PD Parkinson’s disease
pDC Plasmacytoid dendritic cells
PD1 Program death-1
PDE Phosphodiesterase
PDGF Platelet-derived growth factor
PDTC Pyrrolidine dithiocarbamate
PE Plasma exchange
Pe Periventricular
PEG Polyethylene glycol
PEI Polyethyleneimine
PENK Proenkephalin
PERG Pattern electroretinogram
PET Positron emission tomography
PFS Periodic fever syndromes
PG Prostaglandin
Pgp P-glycoprotein
PHF Paired helical filament
PI Phosphatidylinositol
PI3K Phosphatidylinositol-3-kinase
PICA Posterior inferior cerebellar artery
PICK1 Protein interacting with C kinase 1
PKA cAMP-dependent protein kinase
PKG Protein kinase G
PLGA Poly(d,l-lactide-co-glycolide)
PLOSL Polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy
PLP Proteolipid protein
PMCA Plasma membrane bound Ca2+-ATPase
PMD Pelizaeus-Merzbacher disease
PML Progressive multifocal leukoencephalopathy
PMN Polymorphonuclear (leukocyte)
PMP22 Peripheral myelin protein 22
PNS Peripheral nervous system
POAG Primary open-angle glaucoma
polyQ Polyglutamine
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POMC Pro-opiomelanocortin
POU3F2 POU class 3 homeobox 2
PP Protein phosphatase
PPAR Peroxisome proliferator activated receptor
PPF Paired-pulse facilitation
PPG Poly(propylene glycol)
PP-MS Primary progressive multiple sclerosis
PR Photoreceptor
PrPc Cellular prion protein
PrPres Protease resistance prion
PrPsc Disease-associated prion protein
PRR Pattern recognition receptor
PS Presenilin (PSEN)
PSA-NCAM Poly-sialylated form of the neural cell adhesion molecule
PSCs Perisynaptic Schwann cells
PSD Postsynaptic density
PSP Progressive supranuclear palsy
PSW Periodic sharp wave
Ptc Patched, a hedgehog receptor
PTM Post-translational modifications
PTP Post-tetanic potentiation
PTSD Post-traumatic stress disorder
PTZ Pentylenetetrazol
PVL Periventricular leukomalacia
PVM Perivascular macrophages
PVN Paraventricular nucleus
PYD Pyrin domain
PYY Peptide YY
RA Rheumatoid arthritis
Rag Recombination-activating gene
RAGE Receptor for advanced glycation end product
RANTES Regulated upon activation normal T-cell expressed and secreted (CCL5)
RAS Renin-angiotensin system
Rb Retinoblastoma
RBP RNA-binding proteins
REM Rapid eye movement
RER Rough endoplasmic reticulum
RF Radiofrequency
RFLPs Restriction fragment length polymorphisms
RGC Retinal ganglion cell
RISC RNA-induced silencing complex
RIG1 Retinoic acid-inducible gene 1
RIM Rab3-interacting molecule
RIP Receptor-interacting protein
RMS Rostral migratory stream
RNAi RNA interference
RNI Reactive nitrogen intermediates
RNP Ribonucleoprotein
RNS Reactive nitrogen species
ROCK Rho kinase
ROHHAD Rapid-onset obesity, hypoventilation, hypothalamic dysfunction, and auto-

nomic dysregulation
ROI Reactive oxygen intermediate
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RORγ Retinoic-acid-receptor-related orphan receptor-γ
ROS Reactive oxygen species
RP Relapsing polychondritis
RPE Retinal pigment epithelial (cells)
RRM RNA recognition motifs
RRMS Relapsing and remitting multiple sclerosis
RSV Rous sarcoma virus
RTK Receptor tyrosine kinase
rt-PA Recombinant tissue plasminogen activator
RT-PCR Reverse transcription polymerase chain reaction
RyR Ryanodine receptor
sALS Sporadic amyotrophic lateral sclerosis
SAP Synapse-associated protein
SAPAP SAP-associated protein (discs, large homolog-associated protein-1; DLGAP1)
SAPK Stress-activated protein kinase (JNK, MAPK8)
sAPP Secreted β-amyloid precursor protein
SBMA Spinobulbar muscular atrophy
SCs Schwann cells
SC Superior colliculus
SCA-3 Spinocerebellar ataxia-3
scFv Single-chain Fv antibodies
SCI Spinal cord injury
SCID Severe combined immunodeficiency
sCJD Sporadic Creutzfeldt-Jakob disease
SCPs Schwann cell precursor
sCrry Soluble complement receptor-related protein y
SDF-1 Stromal cell-derived factor 1 (CXCL12)
SEC Sinus endothelial cell
SELDI-TOF Surface enhanced laser desorption ionization time-of-flight
SER Smooth endoplasmic reticulum
SERCA Sarco(endo)plasmic reticulum Ca2+-ATPase
SERT Serotonin transporter
sFI Sporadic fatal insomnia
SFO Subfornical organ
SG Stress granule
SGLPG Sulfated glucuronyl lactosaminyl paragloboside
SGZ Subgranular zone
Shh Sonic hedgehog
sIg Surface immunoglobulin
sIL-2R Soluble IL-2 receptor
SITA Swedish interactive thresholding algorithm
SIV Simian immunodeficiency virus
SIVE Simian immunodeficiency virus encephalitis
SLE Systemic lupus erythematosus
SMA Spinal muscular atrophy
SMAC Second mitochondrial-derived activator of caspase
SMase Sphingomyelinase
SMN Survival motor neuron gene
SN Substantia nigra
SNAP Sensory nerve action potential
SNAP-25 Synaptosome-associated protein of 25,000 daltons
SNARE NSF attachment receptor
SNpc Substantia nigra pars compacta
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STAT Signal transducers and activators of transcription
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TRE Tax responsive element
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Abstract

Neuroinflammatory processes play a significant role in health and disease of the nervous 
system. These regulate development, maintenance and sustenance of brain cells and their 
connections. Linked to aging, epidemiologic, animal, human, and therapeutic studies all 
support the presence of a neuroinflammatory cascade in disease. This is highlighted by the 
neurotoxic potential of microglia. In steady state, microglia serve to protect the nervous 
system by acting as debris scavengers, killers of microbial pathogens, and regulators of 
innate and adaptive immune responses. In neurodegenerative diseases, activated microglia 
affect neuronal injury and death through production of glutamate, pro-inflammatory fac-
tors, reactive oxygen species, quinolinic acid amongst others and by mobilization of adap-
tive immune responses and cell chemotaxis leading to transendothelial migration of 
immunocytes across the blood-brain barrier and perpetuation of neural damage. As disease 
progresses, inflammatory secretions engage neighboring glial cells, including astrocytes 
and endothelial cells, resulting in a vicious cycle of autocrine and paracrine amplification of 
inflammation perpetuating tissue injury. Such pathogenic processes contribute to neurode-
generation. Research from others and our own laboratories seek to harness such inflamma-
tory processes with the singular goal of developing therapeutic interventions that positively 
affect the tempo and progression of human disease.
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Neuroinflammatory processes play a significant role in health 
and disease of the nervous system. These regulate develop-
ment, maintenance and sustenance of brain cells and their 
connections. Linked to aging, epidemiologic, animal, human, 
and therapeutic studies all support the presence of a neuroin-

flammatory cascade in disease. This is highlighted by the 
neurotoxic potential of microglia. In steady state, microglia 
serve to protect the nervous system by acting as debris scav-
engers, killers of microbial pathogens, and regulators of 
innate and adaptive immune responses. In neurodegenerative 
diseases, activated microglia affect neuronal injury and death 
through production of glutamate, pro-inflammatory factors, 
reactive oxygen species, quinolinic acid amongst others and 
by mobilization of adaptive immune responses and cell che-
motaxis leading to transendothelial migration of immuno-
cytes across the blood-brain barrier and perpetuation of neural 
damage. As disease progresses, inflammatory secretions 
engage neighboring glial cells, including astrocytes and 
endothelial cells, resulting in a vicious cycle of autocrine and 
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paracrine amplification of inflammation perpetuating tissue 
injury. Such pathogenic processes contribute to neurodegen-
eration. Research from others and our own laboratories seek 
to harness such inflammatory processes with the singular goal 
of developing therapeutic interventions that positively affect 
the tempo and progression of human disease.

As the life expectancy of the human population continues 
to increase, the possibility of developing neuroinflammatory 
and neurodegenerative diseases have increased considerably 
during the past 50 years. Of the neurodegenerative disorders 
Alzheimer’s disease continued to be the leading cause of 
dementia in the aging population. Traditionally, neuro 
degenerative disorders have been define as conditions where 
there is selective loss of neurons within specific region of the 
brain accompanied by astrogliosis. However, in the past 20 
years, we have learned that the pathological process leading 
to the dysfunction of selected circuitries in the brain initiates 
with damage to the synapses rather than with the loss of neu-
rons. In fact, neuronal loss is a late event that is probably 
preceded by damage to axons and dendrites followed by 
shrinkage of the neuronal cell body and abnormal accumula-
tion of filamentous proteins.

Therefore, the revised concept of neurodegeneration sug-
gest that neuronal injury initiates at the synaptic junction and 
propagates throughout selected circuitries leading to neuronal 
dysfunction which resolves in the classical clinical symptoms 
characteristic to each of the neurodegenerative disorders 
(Hashimoto and Masliah 2003). So for example in Alzheimer’s 
disease early damage to the synapses between the entorhinal 
cortex and the molecular layer of the dentate gyrus (perforant 
pathway) resolves in the short term memory deficits character-
istic of this dementing disorder. Later on disconnection of the 
cortico-cortico fibers in the frontal, parietal, and temporal cor-
tex resolved in more severe memory deficits, and alterations in 
executive functions and abstraction. Degeneration of connec-
tions between the nucleus basalis of Meynert and the neocor-
tex resolves in attention and memory deficits that usually 
associated with loss of cholinergic neurons. Other circuitries 
and neuronal populations are also affected in Alzheimer’s dis-
ease illustrating the complexity of these disorders and the fact 

that the concept of single population is affected is limited. 
That is the case with several other disorders including 
Parkinson’s disease where degeneration is not limited to the 
dopaminergic system, but also involves the limbic system, the 
raphe nucleus, the insula, and other systems.

In response to the injury neurons produce adhesions mole-
cules and trophic factors that recruit astroglial and microglial 
cells to participate in the process of repair of the damage. In 
addition the microvasculature and other glial systems might 
also participate in the process. Thus, neurodegeneration is 
accompanied by astrogliosis, microgliosis, and  microvascular 
remodeling. While astroglial cells initially produce trophic fac-
tors and cytokines that aid in the tissue repair, eventually these 
factors could amplify the inflammatory response, increase vas-
cular permeability and result in microglial activation, which in 
turn might lead to the production of more proinflammatory 
cytokines and chemokines. A critical balance between the 
repair and proinflammatory factors often determines the future 
rate and progression of the degenerative process.

The understanding of the mechanisms of neurodegenera-
tion and inflammatory response in these neurological condi-
tions has seen a tremendous progress in the past 10 years. It is 
now recognized that probably small soluble misfolded pro-
tein aggregates denominated oligomers are responsible for 
the injury. So for example in Alzheimer’s disease Aβ protein 
oligomers might damage the synapses in neocortical regions 
and the limbic system while in Parkinson’s disease α-synuclein 
oligomers may damage the axons in the striatum, brainstem 
and cortical regions. While significant progress has been 
made in understanding the fundamental mechanisms for the 
neuronal injury, less is known about the reasons for the selec-
tive neuronal vulnerability characteristic to these neurologi-
cal conditions and the role of the innate immune system in 
this process.
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Abstract

The blood-brain barriers (BBBs) are mainly located at the levels of the vasculature, choroid 
plexus, and the circumventricular organs and play multiple roles in neuroimmunology. The 
ability of the BBBs to separate the blood and its contents from the central nervous system 
(CNS) is largely responsible for the CNS being an immune-privileged region. However, the 
BBB then revises this separation in a regulated way by a variety of mechanisms, including 
the ability to transport cytokines, regulate the entry of immune cells into the brain, and to 
itself secrete into the blood and into the CNS immunoactive substances. The BBB thereby 
participates in a number of neuroimmune axes that allow communication between the CNS 
and the peripheral immune cells. Failure of the highly regulated activities of the BBBs can 
be both a cause and consequence of immune diseases.
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2.1  Introduction

The roles played by the blood-brain barrier (BBB) in neuro-
immunology are diverse and ever expanding. Conceptually, 
the BBB is those processes that restrict, control, or otherwise 
influence the exchange of substances between the peripheral 
circulation and the brain interstitial fluid and cerebrospinal 
fluid (CSF). More concretely, there are multiple BBBs: the 
barrier formed by monolayers of endothelial cells (the vas-
cular BBB), the barrier formed by ependymal/epithelial cells 
(the blood-CSF barrier) and a barrier formed by tanycytes 
interposed between the circumventricular organs and the 

adjacent brain tissue. It is the restrictive properties of the 
BBB that limit and control the trafficking of immune cells 
and prevent the unrestricted leakage of immune active 
substances from the blood into the brain that renders the cen-
tral nervous system (CNS) an immune-privileged area. But 
the BBB also transports immunoactive substances between 
the blood and CNS, responds to immunoactive substances 
secreted into the blood or CNS fluids, and secretes sub-
stances into those compartments. These last three processes 
of transport, responsiveness, and secretion allow the BBB to 
be in constant cross talk with other cells in both the CNS and 
periphery in a formation referred to as the neurovascular unit 
(NVU). The BBB both responds to and influences the CNS 
and peripheral microenvironment and does so through 
reacting to immunoactive substances, including cytokines, 
chemokines, prostaglandins, and nitric oxide. Several conse-
quences arise from this cross talk, including that under phys-
iological conditions the metabolic needs of the brain are met 
by the BBB. The BBB helps to keep the CNS informed of 
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peripheral events including immune events and is central to 
the formation and functioning of  neuroimmune axes. When 
any of these physiological consequences are violated, dis-
ease can arise; and the BBB can be a target, a cause, or a 
conduit to treatment of those diseases.

2.1.1  Structures and Functions of the BBB

Evidence for an interface between the circulation and the 
CNS dates back to the end of the nineteenth century 
(Bradbury 1979). The best known of those early studies were 
done by a young Paul Erlich who found that some dyes did 
not stain the brain after their peripheral injection. Erlich con-
cluded erroneously that the lack of staining was because 
these dyes did not bind to brain tissue. Several decades later, 
Goldmann, a student of Erlich’s, found that these dyes could 
stain the brain when injected intravenously. Thus, these stud-
ies were reinterpreted as evidence in favor of some sort of 
barrier between the CNS and blood.

The location and nature of that barrier was controversial 
through much of the twentieth century. Elegant studies by 
Davson and colleagues identified the barrier at the vascular 
level. However, alternative opinions were held until Reese 
and coworkers conducted classic studies with the electron 
microscope in the late 1960s (Brightman and Reese 1969; 
Reese and Karnovsky 1967). Previous work had shown no 
difference between vascular beds of peripheral tissues and 
the CNS when studied grossly or at the light microscope 
level. However, Reese and coworkers found numerous dif-
ferences at the ultrastructural level. These included a much- 
reduced rate of pinocytosis and an absence of intracellular 
fenestrations. Currently, the most widely discussed finding is 
the presence of tight junctions between adjacent endothelial 
cells. The tight junctions, low rate of pinocytosis, and low 
number of intracellular fenestrations effectively eliminate 
intercellular gaps and pores. This, in turn, essentially elimi-
nates the production of a plasma-derived ultrafiltrate and 
hence the leakage of serum proteins into the brain.

From this single change, the lack of a production of an 
ultrafiltrate, evolves a large number of consequences for CNS 
function. Obviously, it is the basis of the restriction of protein 
access, which first defined the BBB in late nineteenth century. 
The need for an efficient lymphatic system is eliminated, but 
the lack of a classic lymphatic system means that the CNS 
needs other methods to rid itself of the free water and wastes 
produced by metabolism and the secretions of the choroid 
plexus. Without production of an ultrafiltrate, the CNS depends 
on other methods to extract nourishment from the blood. The 
BBB addresses this need with a large number of selective 
transporters for substances from electrolytes to regulatory 
proteins (Davson and Segal 1996b, c). Because the CNS is 
not equipped to handle an ultrafiltrate, the reintroduction of a 

leaky BBB, as with hypertensive crisis, can result in increased 
intracranial pressure and encephalopathy (Al-Sarraf and 
Phillip 2003; Johansson 1989; Mayhan and Heistad 1985).

2.1.2  The Various BBBs

The BBB is not a single barrier but several barriers, which 
are in parallel. This contrasts with the testis-blood barrier, 
which consists of several barriers in series (Holash et al. 
1993; Neaves 1977). The most studied of these barriers are 
the vascular barrier and the choroid plexus. Often, the terms 
BBB and blood-cerebrospinal (CSF) fluid barrier are used to 
refer specifically to the vascular barrier and the barrier 
formed at the choroid plexus, respectively. The least studied 
barriers are the barriers formed by tanycytes at the circum-
ventricular organs (CVO) and other specialized neural barri-
ers, such as the blood-retinal barrier (Neuwelt et al. 2008).

2.1.2.1  Vascular BBB
The vascular BBB occurs because of the modifications, 
noted by Reese and co-workers, in the endothelial cells 
that comprise the capillary bed and line the venules and 
arterioles of the CNS (upper panel Fig. 2.1). It is likely 
that these three regions are highly specialized. For exam-
ple, immune cells primarily cross at the venules, and most 
of the classic transporters are located at the capillaries 
(Engelhardt and Wolburg 2004). No CNS cell is more than 
about 40 μm from a capillary. This means that a substance 
that can cross the vascular BBB can immediately access 
the entire CNS. Substances that cross the vascular BBB 
can be either flow-dependent or not dependent on flow 
rate. A flow-dependent substance is one in which the BBB 
extracts from the blood nearly the maximal amount possi-
ble (Kety 1987). The only way to increase the amount of a 
flow-dependent substance entering the brain is to increase 
the flow rate to the brain. Glucose is an example of a flow-
dependent substance (Rapoport et al. 1981). A brain region 
that is particularly active has its increased demand for glu-
cose met by an increase in regional blood flow. In contrast, 
transport of a cytokine such as tumor necrosis factor-alpha 
(TNF-α) is not flow dependent. Only a small percent of the 
TNF-α in blood is extracted by the brain via the saturable 
transporter for TNF-α located at the BBB (Gutierrez et al. 
1993). Alterations of blood flow within physiological lim-
its do not alter the uptake of TNF-α from blood by brain. 
However, extreme changes in the rate of blood flow or 
capillary tortuosity can result in rheological changes, such 
as the loss of laminar flow. Such alterations likely occur in 
stroke, AIDS, and Alzheimer’s disease (de la Torre and 
Mussivand 1993; Nelson et al. 1999). This may result in 
impaired permeation of flow-dependent and non- flow 
dependent substances.

W.A. Banks



7

The vascular BBB has regional variations in terms of 
function and susceptibilities to disease. Huber et al. noted 
that some regions of the brain suffer larger and earlier dis-
ruptions to their barriers during diabetes mellitus than others 
(Huber 2008; Huber et al. 2006). Many peptides and regula-
tory substances have unique regional variations in their 
transport rates across the BBB (Banks et al. 1996; Banks and 
Kastin 1998). It is assumed that these reflect on brain func-
tion. For example, the brain region with the highest rate of 
transport of leptin is the region of the arcuate nucleus, an 
area important in leptin-mediated control of feeding (Banks 
et al. 1996; Schwartz et al. 2000).

2.1.2.2  Choroid Plexus
The choroid plexus are bags composed of monolayers of epi-
thelial cells that project into the ventricles and contain a cap-
illary plexus (Johanson 1988). The capillaries do not have 
barrier function and so produce an ultrafiltrate that fills the 

bag. The epithelial cells have tight junctions and so prevent 
the ultrafiltrate from entering the ventricular space. Unlike 
the capillaries, the epithelial cells of the choroid plexus have 
a high rate of vesicular turnover that is responsible for the 
production of the CSF. However, the CSF is not an ultrafil-
trate but a secreted substance. The choroid plexus also has 
many selective transport systems, some of which are specific 
to it or are enriched in comparison to the vascular BBB. In 
some cases, the choroid plexus seems not to be a system 
complementary to the vascular BBB, but one that is contrary 
to it. For example, efflux of amyloid beta peptide by the vas-
cular BBB is impaired with aging but is increased with aging 
at the choroid plexus (Pascale et al. 2011). Thus, the choroid 
plexus should not be thought of as a secondary barrier but as 
an independent system with its own unique characteristics.

2.1.2.3  Barriers at Circumventricular Organs
The CNS of mammals contains seven regions of the brain 
where the vasculature does not fully participate in a BBB 
(Gross et al. 1987). These regions have at least one side that 
faces a ventricle and so are termed circumventricular organs 
(CVOs). Together, they comprise about 0.5 % of the brain by 
weight. Their capillaries allow the production of an ultrafil-
trate and so their cells are in more intimate contact with the 
circulation. They are known to play vital roles as sensing 
organs for critical peripheral events; for example, they act as 
emetic centers and are important in blood pressure modula-
tion (Johnson and Deckwerth 1993; Ferguson 1991). They 
can relay their signals to the rest of the brain by neurons that 
project from them to distant brain regions or project to them 
from other brain regions. However, the mixing of their inter-
stitial fluids with that of adjacent brain tissue or CSF has 
been shown to be limited in most studies (Peruzzo et al. 
2000; Plotkin et al. 1996; Rethelyi 1984). Diffusion through 
brain tissue is poor, and this alone would tend to produce a 

Fig. 2.1 The vascular blood-brain barrier: the upper panel illustrates 
the brain endothelial cell. This is the functional and anatomical site of 
both barrier function and of saturable and non-saturable mechanisms of 
passage. The major modifications allowing both barrier function and 
selective penetration of substances are indicated. The middle panel 
illustrates other cell types and structures important in BBB function. 
Pericytes are embedded in a basement membrane and astrocytes form a 
structure over the capillary bed above the pericytes and basement mem-
brane. Both cell types are in paracellular communication with the brain 
endothelial cells. The lower panel illustrates the neurovascular unit, a 
concept that emphasizes integration of peripheral, BBB, and central 
interactions

2 The Blood-Brain Barriers
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limit to mixing within a few hundred microns of the CVO 
(Cserr and Berman 1978; de Lange et al. 1995). However, 
the major factor preventing leakage of substances from the 
CVO into the adjacent CSF and brain tissue is a physical bar-
rier to diffusion. The epithelial cells that line the ventricles 
form tight junctions when they are next to CVOs, thus limit-
ing CVO-to-CSF diffusion. A functional barrier formed by 
bands of tanycytes also exists for the diffusion of substances 
from the CVO to the adjacent brain region (Peruzzo et al. 
2000; Plotkin et al. 1996; Rethelyi 1984). These tanycytes 
themselves can project to the cells and vessels within the 
CVO and can respond dynamically to relay information to 
adjacent regions of the brain that have BBBs (Langlet et al. 
2013). A recent review by Rodriguez (Rodriguez et al. 2010) 
has explored the various aspects of the CVO barriers.

2.1.2.4  Other Specialized Neural Barriers
These barriers include the blood-retinal barrier, blood-spinal 
cord barrier, and blood-nerve barriers (for a full listing, see 
Neuwelt et al. (2008)). These barriers generally include tight 
junctions participating in a vascular barrier but exhibit vary-
ing degrees of leakiness. They can also vary markedly in 
transporter activity from the vascular BBB during both 
health and in response to disease (Pan et al. 2008a; Pan and 
Kastin 2003; Prockop et al. 1996).

2.1.3  Concept of the Neurovascular Unit 
and Comparison to Peripheral Vascular 
Beds

The endothelial cell is the anatomical location of the barrier 
aspect of the vascular BBB and of its various saturable trans-
porters (Fig. 2.1). Capillary beds from peripheral tissues 
have numerous intracellular and intercellular pores and fen-
estrations and high rates of pinocytosis that account for their 
leakiness. The brain endothelial cell engages in compara-
tively little macropinocytosis, has few intracellular pores or 
fenestrations, and intercellular pores or gaps are eliminated 
because of tight junctions.

However, the brain endothelial cell does not function in 
isolation. The abluminal (brain side) of the capillary is 
encased in a basement membrane 40–80 nm thick. This mem-
brane does not act as a barrier to molecules but may restrict 
viral-sized particles (Muldoon et al. 1999). It also holds peri-
cytes in close approximation to the endothelial cell (Balabanov 
and Dore-Duffy 1998). The pericyte is a pluripotent cell and 
a modulator of BBB function (Dore-Duffy et al. 2000; Deli 
et al. 2005; Dore-Duffy 2008). It, like astroctyes and microg-
lia, secretes cytokines and other immune active substances 
both constitutively and when induced (Kovac et al. 2011). In 
the rat hippocampus, astrocytes project endfeet that surround 
the capillary in what looks at the ultrastructural level like a 

complete covering, albeit without intercellular tight junctions 
(Mathiisen et al. 2010). Astrocytes and pericytes both secrete 
substances that induce tight junction formation in endothelial 
cells (Deli et al. 2005; Daneman et al. 2010). All the major 
cell types of the NVU (pericytes, astrocytes, microglia, and 
endothelial cells) secrete a variety of substances, including 
cytokines, into their local environment (Fabry et al. 1993; 
Nath et al. 1999; Banks 2014). Pericytes and astrocytes play 
interrelated but distinct roles in BBB function. For example, 
pericytes are the primary protectors of the blood-retinal and 
blood-brain barriers during glycemic stress (Romeo et al. 
2002; Nakaoke et al. 2007).

It is clear that immune cell trafficking occurs across the 
normal BBB (Greenwood et al. 2011). One study found that 
about one in 5000 intravenously injected lymphocytes resided 
in the brain at any given time and that uptake was affected by 
strain and immune activation (Banks et al. 2012). The microg-
lia may be at equilibrium with circulating macrophages/
monocytes, although whether monocytes cross the BBB of 
the adult healthy animal to become microglia seems to still be 
unresolved (Williams and Hickey 1995). Other immune cells 
also enter and exit the CNS at unknown rates and frequencies 
as influenced by yet to be determined factors. Clearly, secre-
tions of prostaglandins, nitric oxide, and cytokines from each 
of these cells are important for intercellular communication 
and can influence endothelial cell permeability (Chao et al. 
1994; Nath et al. 1999; Shafer and Murphy 1997).

The concept of the neurovascular unit (NVU) emphasizes 
the interactive role that cells and events within the CNS and 
in the circulation play on BBB permeability as well as the 
consequences of the permeability itself. The NVU includes 
other factors long known to influence the penetration of sub-
stances across the BBB, such as degradation, sequestration, 
and serum protein binding. The encompassing concept of the 
NVU is particularly useful when considering the next sec-
tion, the mechanisms of transport across the BBB.

2.2  Mechanisms of Transport 
Across the BBB

Substances can enter or exit the CNS by a variety of mecha-
nisms. Some of these mechanisms are operational in both the 
blood-to-brain (influx) and the brain-to-blood (efflux) direc-
tions; whereas, others are unidirectional.

2.2.1  Blood to CNS

Saturable and nonsaturable modes predominate influx. 
Within each of these categories are a diverse number of 
mechanisms. These different mechanisms tend to favor 
certain groups or types of substances.

W.A. Banks
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2.2.1.1  Nonsaturable Passage
A hallmark of nonsaturable passage is that the percent of 
material crossing into the CNS is not affected by the amount 
of material available for transport. The two main mecha-
nisms of nonsaturable passage are transmembrane or trans-
cellular diffusion and the extracellular pathways. The 
former is much better studied and its principles are widely 
applied by industry for the development of CNS drugs; the 
latter has received much less attention.

Transcellular Diffusion
The most studied nonsaturable mechanism by which small 
molecules cross the BBB is by transmembrane or transcellu-
lar diffusion (Rapoport 1976). The major determinant of pas-
sage is the degree to which the substance is lipid soluble. A 
substance that is too lipid soluble will be unable to repartition 
into the brain’s interstitial fluid and so will become trapped in 
the cell membranes of the BBB. A ratio of about 10:1 in favor 
of lipid versus aqueous solubility is near ideal for maximal 
passage across the BBB. The second most important determi-
nant is molecular weight with passage being favored for 
smaller molecules. Other physicochemical determinants, 
such as charge, can occasionally become dominant for spe-
cific compounds. Work by Lipinksi and colleagues in Caco-2 
cells, an immortalized cell line derived from a gastrointestinal 
cancer, clearly shows that smaller, less charged, more lipid 
soluble drugs are favored in transmembrane diffusion 
(Lipinski et al. 1997). Many exogenous substances, including 
many drugs with CNS activity, enter the brain predominantly 
by way of transmembrane diffusion. Morphine and ethanol 
are prime examples of common substances that cross the 
BBB by this mechanism (Oldendorf 1974).

Although higher molecular weight (MW) is an impedance 
to transmembrane diffusion at the BBB, there seems to be no 
absolute molecular weight cut-off. A previous study which 
had thought to define such an absolute limit had discovered, 
in retrospect, early evidence for an efflux system (Levin 
1980). The largest substance to date noted to have a measur-
able uptake by brain by transcellular diffusion is cytokine-
induced neutrophil chemoattractant-1 (CINC1), with a MW 
of about 7.8 kDa (Pan and Kastin 2001a). A surprisingly large 
number of small, lipid soluble compounds cross the BBB at a 
rate considerably greater or lesser than that predicted by their 
physicochemical characteristics (Oldendorf 1971, 1974). 
Binding to serum proteins and efflux systems are major fac-
tors decreasing influx, and the presence of a saturable blood-
to-brain transporter is a major factor increasing influx.

Extracellular Pathways
Albumin derived from serum is present in small amounts in 
the CSF, showing that the BBB is not absolute. The amount of 
protein in CSF, however, is very small, being about 0.5 %, or 
1/200th, of that in plasma. The CSF is not an ultrafiltrate but a 

secreted fluid. This means that the relative and absolute con-
centrations of proteins, electrolytes, minerals, and other sub-
stances can differ tremendously to that of plasma. The 
extracelluar pathways are another avenue by which substances 
can enter the CNS (Balin et al. 1986; Broadwell 1993). These 
represent what have sometimes been termed “functional 
leaks” at discreet areas of the brain, including the large vessels 
of the pial surface and subarachnoid space, the circumven-
tricular organs, the nasal epithelium, the sensory ganglia of 
spinal and cranial nerves, and some deep brain regions, such 
as the nucleus tractus solitarius (Broadwell and Banks 1993).

The amount of a substance that enters the brain by the 
extracellular pathways is small. However, this route may be 
therapeutically relevant for compounds which have favor-
able peripheral pharmacokinetics, such as a long serum half- 
life and a small volume of distribution (Banks 2004). 
Antibodies, erythropoietin, and enzymes can access the brain 
by way of the extracellular pathways (Banks et al. 2004a, 
2005a, 2007; Kozlowski et al. 1992; Grubb et al. 2008), and 
this may underlie their therapeutic benefits when given in 
high doses (Grubb et al. 2008; Alafaci et al. 2000; Ehrenreich 
et al. 2002; Erbyraktar et al. 2003; Morgan et al. 2000; Janus 
et al. 2000; Hock et al. 2003; Farr et al. 2003).

2.2.1.2  Receptor-Mediated and Saturable 
Transports

Saturable processes represent a diverse group of mecha-
nisms. Included in this group are diapedesis and adsorptive 
endocytosis/transcytosis that share characteristics with the 
saturable systems.

Active Transport Versus Facilitated Diffusion
Saturable transporters (Yeagle 1987) can be divided into those 
which require energy (active transport) and those which do not 
(facilitated diffusion). Both are dependent on a protein which 
acts as the transporter, may have co-factors, and be modulated 
by physiologic and disease processes. Energy requiring sys-
tems can be unidirectional; that is, they may have only an influx 
or efflux component. Non-energy requiring saturable transport 
(facilitated diffusion) is bidirectional; that is, it transports sub-
stances in both directions with net flux being from the side of 
higher concentration to the side of lower concentration.

Most of the classic saturable transporters at the BBB are 
facilitated diffusion systems (Kaur et al. 1992). For example, 
GLUT-1, the transporter for glucose, is a facilitated diffusion 
transporter. If the level of glucose is artificially raised above 
that of serum (or if radioactive glucose is introduced into the 
CNS, but not the serum), efflux of glucose can be shown.

Transcytotic Versus Transmembrane Transport
Saturable transporters can also be categorized based on 
whether they use pores/channels or vesicles to transport their 
ligands across the BBB. In the pore system, the molecule 
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crosses from one side of the cell membrane to the other by 
passing through a cavity in the transporter protein. The sub-
stance is thus transported either into or out of the cytoplasm 
of the BBB cell; a second set of transporters on the opposing 
cell membrane completes the transfer across the BBB or the 
substance can rely on transmembrane diffusion. With vesicu-
lar transport, the transported substance adheres to a binding 
site, usually a glycoprotein. Invagination then produces a 
vesicle that is then routed to the opposite membrane, and the 
contents of the vesicle are released from the cell surface. A 
specificity of transport distinguishes these vesicles from the 
macropinocytosis whose reduction is a defining characteris-
tic of the BBB (Reese and Karnovsky 1967).

Most small molecules, such as glucose, electrolytes, and 
amino acids, use pores or channels. Pore systems may be 
either active or facilitated diffusion systems. Vesicular trans-
porters, on the other hand, are energy requiring and so are 
characterized by unidirectional transport. The best described 
of these vesicular dependent systems is receptor-mediated 
transcytosis and is characterized by clathrin- and 
transglutaminase- dependence (Davies et al. 1980). However, 
non-clathrin dependent vesicles, such as podocytes, are also 
likely active at the BBB.

It is reasonable to assume that very large molecules would 
be required to use vesicles rather than pores and channels to 
cross, but the molecular weight at which vesicles would be 
requisite is not known. It has been proposed that interleukin- 2 
(IL-2) is transported (Drach et al. 1996) by p-glycoprotein 
(P-gp). As P-gp is a pore system (Begley 2004), IL-2 would 
be the largest substance currently known to be transported by 
a pore system. Peptides much smaller than IL-2 are known to 
cross by vesicular dependent pathways (Shimura et al. 1991; 
Terasaki et al. 1992). It is clear, then, that the size of the ligand 
alone does not dictate the need for vesicular transport.

Diapedesis of Immune Cells
A major shift in thinking about the relation of immune cells 
to the CNS and BBB has occurred over the last few decades. 
The CNS was once viewed as separate from the immune sys-
tem and sterile in terms of immune cell occupancy except 
under conditions of brain infection. As reviewed above, it is 
now clear that immune cells patrol the normal CNS, although 
many important questions remain. For example, a major type 
of brain cell, the microglia, is known to be derived from 
peripheral macrophages, although the extent to which the 
pools of peripheral macrophages and microglia mix in the 
normal postnatal condition is unknown.

Adsorptive Endo- and Trans-cytosis
Adsorptive endocytosis occurs when a glycoprotein on the 
brain’s endothelial surface binds another glycoprotein in 
ligand like fashion (Broadwell et al. 1988; Broadwell 1989). 
This second glycoprotein (the ligand) may be free or attached 

to the surface of a virus or immune cell (Mellman et al. 
1986). The binding can initiate endocytosis with the subse-
quent vesicle having several potential fates (Banks and 
Broadwell 1994). In some cases, the vesicle is routed to lyso-
somes, the glycoprotein destroyed, and the vesicle rerouted 
to the endothelial cell surface for discharge of contents. In 
other cases, the vesicle can be routed to the Golgi complex 
and endoplasmic reticulum. In other cases still, the vesicle 
can be discharged at the endothelial cell surface opposite to 
that of uptake. In this case, the vesicle has crossed the width 
of the endothelial cell, and hence crossed the BBB, in a tran-
scytotic event. What determines the fate of these vesicles is 
largely unknown, but at least some vesicles can engage in 
more than one fate (Broadwell 1993). It may be that binding 
of a large amount of glycoprotein to the endothelial cell can 
overwhelm the lysosomal pathway and result in the vesicles 
being routed to the trancytotic or Golgi complex pathways.

Several principles of adsorptive endocytosis and trans-
cytosis (also termed adsorptive-mediated transcytosis) are 
clear. Many of the glycoprotein ligands are toxic, and endo-
cytosis may represent a mechanism to rejuvenate or repair 
the membrane (Raub and Audus 1990; Vorbrodt 1994; 
Westergren and Johansson 1993). Viruses and other patho-
gens that can infect or cross the BBB have often co-opted 
adsorptive endocytosis/transcytosis mechanisms (Marsh 
1984; Chou and Dix 1989; Schweighardt and Atwood 2001). 
These processes may also be related to diapedesis as many of 
the events of immune cell passage across the BBB resemble 
these endocytic mechanisms. For example, both LFA-1 (leu-
kocyte function-associated antigen-1) and ICAM (intercel-
lular adhesion molecule), important to immune cell passage 
across the BBB, are glycoproteins. Although adsorptive 
endocytosis is in some sense saturable because of a finite 
amount of any single glycoprotein on a cell surface, it is not 
easy to demonstrate classical saturable kinetics for this pro-
cess. In fact, excess glycoprotein can sometimes further 
stimulate endocytosis and so lead to a paradoxical increase, 
rather than decrease, in the rate of passage across the BBB 
(Banks et al. 1997). Glycoprotein distribution on brain endo-
thelial cells is polarized; that is, a glycoprotein may be 
enriched on either the luminal or abluminal membranes 
(Vorbrodt 1994; Zambenedetti et al. 1996). The tight junc-
tions act as a “fence” to keep the glycoproteins confined to 
their respective sides of the endothelial cell (Deli et al. 2005). 
This means that the movement of a glycoprotein molecule 
(or a virus whose coat displays that glycoprotein) can be uni-
directional as its transcytosis can only be initiated from the 
side of the brain endothelial cell that contains the ligand’s 
complementary glycoprotein (Villegas and Broadwell 1993; 
Broadwell 1989). The possession and distribution of glyco-
proteins similarly dictate which viruses can invade the brain; 
neurovirulent viruses that invade the brain as free virus (as 
opposed to entering in Trojan horse fashion inside an infected 
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immune cell) can do so because they possess a glycoprotein 
ligand capable of binding to the BBB.

Other molecules besides glycoproteins can also induce 
adsorptive endocytosis/transcytosis type mechanisms. A clas-
sic example is polycationic molecules such as the poly- l- 
lysines and the protamines. Protamines are peptides of about 
30 amino acids that contain an abundance of arginine mole-
cules. They can induce adsorptive transcytosis so vigorously 
as to result in BBB disruption (Vorbrodt et al. 1995; Hardebo 
and Kahrstrom 1985). One of the proofs that viruses co-opt 
adsorptive trancytosis like mechanisms is that they, like prot-
amine, bind to heparins and heparans; indeed, protamine sul-
fate blocks viruses such as HIV-1 from binding to the BBB 
(Banks et al. 2004c; Ramos-Kuri et al. 1996; Bobardt et al. 
2004). Many of the highly charged penetrating peptides, such 
as those derived from Tat, and many of the antibodies that 
target receptor-mediated transporters likely are taken up by 
adsorptive endocytosis/transcytosis related mechanisms 
(Niewoehner et al. 2014; Weissmann 1976; Herve et al. 2008).

2.2.2  CNS to Blood

Traditionally, passage in the brain-to-blood direction (efflux) 
has been neglected. However, efflux often accounts for the 
inability of otherwise effective drugs to accumulate in the 
CNS. Pharmacogenomic studies have suggested that the 
individual variation in efflux mechanisms may explain why 
some individuals are less sensitive to the CNS effects of 
drugs or more sensitive to their toxicities (Loscher and 
Potschka 2002). Efflux mechanisms are important to the 
homeostasis of the CNS, ridding the brain of toxins (Taylor 
2002). The rate of efflux can be, in addition to synthesis and 
degradation, an important determinant of the level of a sub-
stance produced within the CNS (Chen et al. 1997; Chen and 
Reichlin 1998; Maness et al. 1998).

2.2.2.1  Nonsaturable
Efflux, like influx, has both saturable and non-saturable 
mechanisms of entry. Transmembrane diffusion occurs for 
both influx and efflux. Other mechanisms, such as bulk flow, 
are unique for efflux.

Transmembrane Diffusion
Many of the principles that govern influx by transmembrane 
diffusion are also important in efflux. The dramatic role that 
efflux by transmembrane diffusion can play can be illus-
trated by comparing the fate of small, lipid soluble mole-
cules to that of a protein after intrathecal administration. 
Intrathecal application of small, lipid soluble molecules, 
such as anesthetics, can have a local effect on spinal cord 
function but have little or no effect on the brain (Bernards 
1999). These substances readily cross the brain endothelial 

cell by transmembrane diffusion and do this as easily in the 
brain-to- blood direction as in the blood-to-brain direction. 
Therefore, they are cleared from the CSF before they are 
able to reach the brain (McQuay et al. 1989). In contrast, 
proteins such as leptin and lysosomal enzymes are too large 
and water soluble to undergo significant transmembrane dif-
fusion (McCarthy et al. 2002; LeBel et al. 1999). Leptin, 
tetanus antitoxin, and the lysosomal enzyme idursulfase can 
reach the brain after intrathecal administration in amounts 
sufficient to produce CNS effects (Calias et al. 2012; 
McCarthy et al. 2002; Kabura et al. 2006; LeBel et al. 1999).

Efflux by transmembrane diffusion can also contribute to 
the poor diffusion of substances within brain parenchyma. 
Diffusion within the interstitial space of the brain is depen-
dent on Brownian motion and the production of metabolic 
free water as driving forces and so is very slow (Cserr 1984; 
Cserr and Berman 1978). However, efflux by non-saturable 
(and saturable) mechanisms can further reduce the distance a 
substance will ultimately diffuse. For example, the less lipid 
soluble drug atenolol can diffuse about three times further 
into brain tissue than can the more lipid soluble drug acet-
aminophen (de Lange et al. 1993).

Bulk Flow and the Glymphatic System
Bulk flow refers to the reabsorption of CSF into the blood, 
which occurs at the level of the arachnoid villi (Davson and 
Segal 1996a) and cribriform plate (Widner et al. 1987; 
Yamada et al. 1991). Any substance dissolved in CSF will 
enter the blood by this mechanism (Pollay and Davson 1963; 
Jones and Robinson 1982). The glymphatic system provides 
an important mechanism for the mixing of the CSF and brain 
interstitial fluid, with aquaporin-dependent fluid production 
at the astrocytes providing the circulant and arteriole pulsa-
tions providing the directionality (Iliff et al. 2012). Thus, the 
glymphatics are important not only for bulk flow, but also for 
the extracellular pathways, and possibly for the movement of 
CSF from the spinal cord into the cranium.

The characteristics of this system result in several sur-
prising but important phenomena. For example, CSF 
drained at the cribriform plate, which is likely the dominant 
route for CSF drainage at normal CSF pressures (Boulton 
et al. 1999), can enter into the cervical lymphatic system. 
This can provide a direct route from the CNS to the cervical 
lymphatics (Oehmichen et al. 1979), as has been illustrated 
for gp120, the glycoprotein of the human immunodeficiency 
virus, HIV-1 (Cashion et al. 1999). This route to the lym-
phatics may explain why substances injected into the brain 
can  produce a different immune response than when the 
substance is injected peripherally (Knopf et al. 1995; Cserr 
and Knopf 1992). Another example is that in some cases, 
the levels of a substance in blood achieved after injection 
into the CSF can be sustained longer and at higher levels 
than after an intravenous bolus (Maness et al. 1998; Chen 
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et al. 1997; Chen and Reichlin 1998) This is because the 
central injection acts similarly to an intravenous infusion, 
slowly delivering drug to the blood. Impairment in glym-
phatic circulation can result in decreased bulk flow and so 
may contribute to increased levels of protein and toxins in 
the CSF (Iliff et al. 2013).

2.2.2.2  Saturable Transport
The last decade has seen a huge increase in the interest of 
efflux by saturable mechanisms. Just as efflux by transmem-
brane diffusion can limit diffusion of a substance within the 
CNS, so can the presence of a saturable efflux transporter 
(Blasberg 1977). Much of this interest centers on the multi- 
drug efflux transport systems (Begley 2004), most notably 
p-glycoprotein (P-gp). However, other efflux transporters 
for peptides, proteins, endogenous substances, and drugs 
are known to play important roles in physiology and disease 
(Martins et al. 1997; Taylor 2002; Drion et al. 1996; Mealey 
et al. 2001). For example, peptide transport system-1 is a 
major regulator of brain levels of methionine enkephalin, an 
endogenous opiate which suppresses voluntary ethanol 
drinking (Plotkin et al. 1998). Depression and recovery of 
peptide transport systems-1 with ethanol drinking may 
relate to alcohol withdrawal seizures (Banks and Kastin 
1989, 1994). IL-2 is currently the only cytokine known to be 
transported by a saturable efflux system (Banks et al. 
2004b); some have postulated this transporter may be P-gp. 
Poor accumulation of protease inhibitors, antibiotics, AZT, 
anti- cancer drugs, and many other substances occurs 
because of efflux systems (Glynn and Yazdanian 1998; King 
et al. 2001; Lee et al. 1998; Loscher and Potschka 2002; 
Masereeuw et al. 1994; Spector and Lorenzo 1974). P-gp 
plays a major role in the efflux of intrathecally administered 
opiate analgesics (Thompson et al. 2000). Brain-to-blood 
transport of a corticotropin-releasing hormone is sufficient 
to influence spleenic levels of beta-endorphin (Martins et al. 
1997). Impaired efflux of amyloid ß peptide, the peptide 
believed to cause Alzheimer’s disease, develops with aging 
in mice which overexpress amyloid precursor protein, thus 
promoting further accumulation within brain of amyloid ß 
protein (Ghersi-Egea et al. 1996; Banks et al. 2003; Deane 
et al. 2004). Evidence suggests that impaired transport 
develops in humans as well and so may be a major mecha-
nism for induction of Alzheimer’s disease (Tanzi et al. 2004; 
Shibata et al. 2000).

2.3  Neuroimmune Interactions

The above discussion of BBB fundamentals is tailored 
towards understanding the role of the BBB in neuroimmune 
interactions. Below are specific examples of how the BBB is 
involved in neuroimmune interactions.

2.3.1  Binding Sites at the BBB: Receptors 
and Transporters

An important distinction for understanding the function of 
the BBB is that of receptors vs transporters. The term 
“receptor” has undergone a transformation of its usage since 
its introduction in the late nineteenth century when it was 
first used to denote some physiological function. Eventually, 
the term receptor was used to denote a physical binding site 
through which a drug or hormone could exert its effects on 
a cell. In the 1980s, a distinction was made between “recep-
tor” and “binding site”, the former being coupled to intra-
cellular machinery that translated its binding into a cellular 
effect. Binding sites on the brain endothelial cell can repre-
sent transporters, but they can also represent traditional 
receptors, that is, binding sites coupled to intracellular 
machinery. For example, brain endothelial cells have both 
insulin receptors and transporters. As a result, insulin is 
transported across the BBB to exert effects inside the CNS, 
but insulin also alters a number of functions of the brain 
endothelial cell. As examples of the latter, insulin alters the 
BBB transport of zidovudine (AZT (Ayre et al. 1989), tryp-
tophan (Cangiano et al. 1983), and leptin (Kastin and 
Akerstrom 2001) and alters brain endothelial cell alkaline 
phosphatase activity (Catalan et al. 1988). BBB studies 
have assumed that a binding site represents transporter 
function and are so designed as to not consider whether 
receptors as well as transporters may exist at the 
BBB. However, a great deal of indirect evidence and some 
direct evidence indicates that the vascular BBB and the cho-
roid plexus probably possess a large variety of receptors that 
can alter BBB functions. Besides insulin, substances which 
bind to and alter the function of brain endothelial cells 
include mu opiate receptor ligands (Baba et al. 1988; Vidal 
et al. 1998; Chang et al. 2001), cytokines (Ban et al. 1991; 
Cunningham et al. 1992; van Dam et al. 1996; Vidal et al. 
1998; Moser et al. 2004; Khan et al. 2003), leptin (Kastin 
et al. 2000; Bjorbaek et al. 1998; Hsuchou et al. 2013a), ace-
tylcholine (Grammas and Caspers 1991), adrenergics 
(Walsh et al. 1987; Kalaria and Harik 1989), glutamate 
(Koenig et al. 1992; Krizbai et al. 1998), and chemokines 
(Sanders et al. 1998).

2.3.2  Permeability to Cytokines and Related 
Substances

The BBB is known to transport several cytokines in the 
blood-to-brain direction. For example, the BBB transports 
the IL-1s, IL-6, and TNF-α by three separate transport sys-
tems. Additionally, nerve growth factor, brain derived neu-
rotrophic factor, interferons, neurotrophins, eotaxin, 
fibroblast factor 19, and leukemia inhibitory factor (Poduslo 
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and Curran 1996; Erickson et al. 2014; Hsuchou et al. 
2013b; Pan et al. 1997b, 1998a, b) are also transported 
across the BBB. In some cases, the same gene which gives 
rise to a cytokine’s receptor also produces the cytokine’s 
transporter; whereas in other cases, the receptor and trans-
porter are different proteins (Pan and Kastin 2002; Banks 
et al. 2002). Recently, a BBB transporter for pituitary ade-
nylate cyclase activating polypeptide (PACAP) was found 
to be the same protein which acts as a neuronal receptor for 
enterostatin, but not for PACAP, and acts as a lipid trans-
porter in the liver (Martinez et al. 2003; Park et al. 2004; 
Dogrukol-Ak et al. 2009). In general, BBB transporters 
occur throughout the CNS, including the spinal cord, 
although the transport rate across the BBB can vary greatly 
among CNS regions (McLay et al. 1997; Pan et al. 1997b, 
1998b; Banks et al. 1994). Enough cytokine is transported 
into the brain to affect CNS function. For example, IL-1 
alpha crosses the BBB at the posterior division of the sep-
tum where it mediates cognitive impairments (Banks et al. 
2001). Similarly, serum TNF-α crosses the BBB to induce 
CNS release of TNF-α, which in turn can induce apoptosis 
in the substantia nigra (Qin et al. 2007).

The cytokine transporters are not static but respond to 
physiological and pathological events. The transport rates of 
IL-1 and TNF-α each show diurnal variations (Pan et al. 
2002; Banks et al. 1998b). The transport rate of TNF-α is 
altered in animals with experimental allergic encephalomy-
elitis (EAE), spinal cord injury, or blunt trauma to the brain 
(Pan et al. 1996, 1997a, 2003b; Pan and Kastin 2001b; Pearse 
et al. 2003).

2.3.3  Permeability to Other Neuroimmune 
Substances

Other substances with neuroimmune actions are handled by 
the BBB in a variety of ways. Monoamines are largely 
excluded by the BBB (Hardebo and Owman 1990; Kalaria 
et al. 1987), and opiates and opiate peptides as a rule enter 
the brain by transmembrane diffusion but are transported by 
saturable systems in the brain-to-blood direction (King et al. 
2001; Banks and Kastin 1990; Elferink and Zadina 2001). 
Pituitary adenylate cyclase activating peptide, a member of 
the VIP/secretin/PACAP family, has immune functions 
(Arimura 1992). Transport of its two major forms across the 
BBB is complex, involving both brain-to-blood and blood- 
to- brain components (Banks et al. 1993). Its blood-to-brain 
transport is altered with CNS injury (Somogyvari- Vigh et al. 
2000). Some of the other immune active substances whose 
passage across the BBB has been investigated are melano-
cyte stimulating hormone (Martins et al. 1996; Wilson et al. 
1984), corticotrophin releasing hormone (Martins et al. 
1996), and enkephalins (Banks et al. 1986; Elferink and 

Zadina 2001).

2.3.4  Permeability to Immune Cells

As discussed above, immune cells cross the BBB by the 
highly regulated process of diapedesis. The mechanism by 
which immune cells cross the BBB has also been greatly 
clarified by recent work. Two major assumptions about how 
immune cells would enter the CNS has not withstood inves-
tigation. The first assumption was that immune cells would 
enter the CNS by leaking across a disrupted BBB. However, 
disruptions to the BBB are usually mediated by increased 
vesicular activity in the endothelial cells (Vorbrodt et al. 
1995; Lossinsky et al. 1983; Mayhan and Heistad 1985). 
These vesicles of 100 nm or so could not accommodate the 
passage of an immune cell 10,000 nm in diameter. Even in 
diseases where there is both increased immune cell traffick-
ing into the CNS and a disrupted BBB, there is often a mis-
match between the site of immune cell entry and BBB 
disruption (Engelhardt and Wolburg 2004).

The second major assumption is that immune cells would 
cross between opposing endothelial cells taking the “paracel-
lular route.” However, evidence suggests that many immune 
cells favor a transcellular route and that cells can cross both 
the vascular BBB and the choroid plexus (Kivisakk et al. 2003; 
Wolburg et al. 2005). In brief, immune cells tunnel through 
venular endothelial cells leaving the intercellular tight junc-
tions intact (Engelhardt 2008; Wolburg et al. 2005). This tun-
neling process is complex and is initiated when LFA-1 on an 
immune cell binds to ICAM on the brain endothelial cell. 
Other paracellular messengers, which likely include cyto-
kines, are then released (Male 1995; Persidsky et al. 1997). 
Protrusions and invaginations of the endothelial cell and pro-
trusions of the immune cell occur, with the immune cell pos-
sibly using the tight junction as an initial anchoring site 
(Lossinsky et al. 1991). Other ligands which have been postu-
lated to play a role in this transcytotic process include PECAM, 
VE-cadherin, members of the JAM family and CD99 
(Engelhardt and Wolburg 2004). Some plasma inevitably 
accompanies the passage of the immune cells, which can give 
the appearance of a disrupted BBB (Greenwood et al. 1995; 
Avison et al. 2004; Persidsky et al. 2000).

The immune processes that induce an immune cell to 
cross the BBB are complex. Quan has shown that injection 
of interleukin-1 into brain tissue induces immune cell traf-
ficking, but that such induction can be blocked by injection 
of lipopolysaccharide (LPS) into the periphery (Ching et al. 
2005, 2006; Quan et al. 1994). Although trafficking is a 
product of a complex interaction between the immune cell 
and the BBB, the degree to which trafficking occurs can 
reside primarily with the immune cell or the BBB and genet-
ics or immune events can shift that dominance (Banks et al. 
2012). Such events may underlie euflammation, the phenom-
enon by which subclinical activation of the innate immune 
system renders it increasingly resistant to such activation by 
increasingly stronger stimuli (Tarr et al. 2014).

2 The Blood-Brain Barriers
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