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Preface

A remarkable number of novel bioinformatics methods and techniques have become avail-
able in recent years, enabling us to more rapidly identify new molecular and cellular
therapeutic targets. It is safe to say that bioinformatics has now taken its place as an essential
tool in the process of rational drug discovery.

The first (2005), second (2012), and now third editions of Bioinformatics and Drug
Discovery offer many examples that illustrate the dramatic improvement in our ability to
understand the requirements for manipulating proteins and genes toward desired therapeu-
tic and clinical effects.

This is partly due to our growing ability to modulate protein and gene functions, which
has been facilitated by the emergence of novel technologies and their seamless digital
integration. To address the rapidly changing landscape of bioinformatics methods and
technologies, this edition has been updated to include four major topics: (1) Translational
Bioinformatics in Drug Discovery; (2) Informatics in Drug Discovery; (3) Clinical Research
Informatics in Drug Discovery; and (4) Clinical Informatics in Drug discovery. The topics
covered range from new technologies in target identification, genomic analysis, cheminfor-
matics and chemical mixture informatics, protein analysis, text mining and network or
pathway analyses, as well as drug repurposing.

It is virtually impossible for an individual investigator to be familiar with all these
techniques, so we have adopted a slightly different chapter format than other titles published
by Methods in Molecular Biology. Each chapter introduces the theory and application of the
technology, followed by practical procedures derived from these technologies and software.
Meanwhile, the pipeline of methodologies and the biologic analysis that they perform has
grown over time.

Bioinformatics and Drug Discovery is intended for those interested in the different
aspects of drug design, including academicians (biologists, informaticists, chemists, and
biochemists), clinicians, and scientists at pharmaceutical companies. This edition’s chapters
have been written by well-established investigators who regularly employ the methods they
discuss. The editors hope this book will provide readers with insight into key topics,
accompanied by reliable step-by-step directions for reproducing the techniques described.

Albuquerque, NM, USA Richard S. Larson
Tudor I. Oprea
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Chapter 1

Miniaturized Checkerboard Assays to Measure Antibiotic
Interactions

Melike Cokol-Cakmak and Murat Cokol

Abstract

Drugs may have synergistic or antagonistic interactions when combined. Checkerboard assays, where two
drugs are combined in many doses, allow sensitive measurement of drug interactions. Here, we describe a
protocol to measure the pairwise interactions among three antibiotics, in duplicate, in 5 days, using only
two 96-well microplates and standard laboratory equipment.

Key words Drug interactions, Checkerboard assay, Drug synergy

1 Introduction

Drug combinations may exhibit surprisingly high or low effect on a
phenotype given the effects of constituent drugs, corresponding to
synergistic or antagonistic drug interactions, respectively
[1–4]. Experimental measurement of a drug interaction involves
the preparation of combinations of constituent drugs in various
concentrations [5]. A commonly used experimental setup for pair-
wise drug interaction measurement is the checkerboard assay,
where two drugs are combined in a 2D matrix where the dose of
each drug is linearly increased in one axis [6]. In such a setting,
synergistic drug pairs will be more efficacious in many of the
combinations, while high growth will be observed in antagonistic
pairs.

Although in use for many decades, the preparation of a check-
erboard assay is difficult, due to experimental variation of single-
drug effects. In addition, checkerboard assays are often conducted
in an 8 � 8 matrix of concentration combinations, resulting in
significant cost in time and resources [6]. Here, we describe a
simple and reproducible protocol to determine the pairwise antibi-
otic interactions using miniaturized checkerboard assays.

Richard S. Larson and Tudor I. Oprea (eds.), Bioinformatics and Drug Discovery, Methods in Molecular Biology, vol. 1939,
https://doi.org/10.1007/978-1-4939-9089-4_1, © Springer Science+Business Media, LLC, part of Springer Nature 2019
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2 Materials

2.1 Preparation

of Bacterial Culture

1. Aliquots of Escherichia coli in 25% glycerol (see Note 1).

2. LB Broth Powder.

3. 15 ml breathable cell culture tube.

4. Pipette pump.

5. 5 ml cell culture serological pipette.

6. Manual pipette.

7. 200 μl tips.
8. Incubator.

9. Tube rotator.

10. 1.5 ml semi-micro cuvette.

11. Spectrophotometer.

2.2 Dose-Response

and Checkerboard

Assays

1. Drugs X, Y, and Z (see Note 2).

2. DMSO.

3. 1.5 ml Eppendorf microcentrifuge tubes.

4. Manual pipette.

5. 20 μl and 1000 μl tips.
6. Vortex mixer.

7. 96-well plates.

8. Reagent reservoir.

9. Breathable sealing film.

10. Microplate reader.

3 Methods

Carry out all protocols at room temperature. Thaw new aliquots of
bacteria and drugs each day. Prior to experiments, prepare LB
Broth with adding 25 g of powder to 1 l distillated water, autoclave
it at 121 �C for 15 min, and store the autoclaved media at room
temperature. Dissolve drugs X, Y, and Z in DMSO at a concentra-
tion of 2 mM, and freeze aliquots in 1.5 ml Eppendorf tubes at
�20 �C.

3.1 Day 1: Start

Bacterial Culture

1. Take one aliquot of Escherichia coli from �80 �C.

2. Add 100 μl of bacterial culture in 5 ml of growth media in a
culture tube.

3. Leave to grow overnight on a tube rotator in a 37 �C incubator.

4 Melike Cokol-Cakmak and Murat Cokol



3.2 Day 2: Serial

Dilution Dose

Response

1. Take one aliquot of drugs X, Y, and Z from�20 �C, leave them
in room temperature for 10 min, and prepare for serial dilution
of these drugs.

2. Prepare LB-10% sol by mixing LB media and solvent (DMSO)
in a 9:1 ratio.

3. Prepare LB-10% drug X by mixing LB media and drug X in a
9:1 ratio.

4. Vortex and add 20 μl of the 1:10 diluted solvent (LB-10% sol)
to 10 wells in a 96-well plate.

5. Vortex and add 20 μl of the 1:10 diluted drug X (LB-10% drug
X) into the first well.

6. Take 20 μl of content from first well and add to second well.
Dilute the drug concentration serially in each well by adding
20 μl of content to its bottom adjacent well until ninth well (see
Fig. 1a).

7. Discard the last 20 μl of content from ninth well (Last well of
the column is used as a no drug control).

8. Repeat steps 3–7 for the drugs Y and Z (see Note 3).

9. Measure the OD600 of the 1:10 dilution of the culture started
in Day 1.

10. Dilute the cells in growth media to an OD of 0.01 (seeNote 4).

11. Add 80 μl cells on drug serial dilutions prepared in step 8. The
final drug concentration in each well is shown in Fig. 1a.

12. Seal plate to avoid evaporation.

13. Leave plate for 12 h at 37 �C in a shaker with 150 rpm.

14. Start new bacterial culture to use in Day 3 (repeat Subheading
3.1).

3.3 Day 3: Linear

Dilution Dose

Response

1. Measure OD600 absorbance for serial dilution dose-response
plate from Day 2 (see Fig. 1b).

2. Normalize growth by dividing growth in each well with the
growth in no drug control. For each drug, choose 1� as the
dose which is twice the minimum concentration that results in
no growth.

3. For each drug, prepare LB-10% drug by mixing LB media and
drug in a 9:1 ratio, where drug’s concentration is 50� of what
is chosen at step 2. Similarly, prepare LB-10% sol by mixing LB
media and solvent (DMSO) in a 9:1 ratio.

4. Prepare linearly increasing doses of drugs X, Y, and Z in ten
concentrations, by mixing LB-10% drug and LB-10% sol in
volumes shown in Fig. 2a (see Note 3).

5. Measure the OD600 of the 1:10 dilution of the culture started
in Day 2.

Miniaturized Checkerboard Assays to Measure Antibiotic Interactions 5



6. Dilute the cells in growth media to an OD of 0.01 (seeNote 4).

7. Add 80 μl cells on drug linear dilutions prepared in step 4.
The final drug concentration in each well is shown in Fig. 2a
as ratios of 1�.

8. Seal plate to avoid evaporation.

9. Leave plate for 12 h at 37 �C in a shaker with 150 rpm.

10. Start new bacterial culture to use in Day 4 (repeat
Subheading 3.1).

Fig. 1 Serial dilution dose-response experiment. (a) Preparation of serial dilution dose response for one drug
and corresponding final concentrations of the drug. (b) Normalized growth in serial dilution of drugs X, Y, and
Z. Each rectangle here represents a well of 96-well plate. Concentrations of each drug chosen for the next
experiment are shown in orange

Fig. 2 Linear dilution dose-response experiment. (a) Preparation of linear dilution dose response for each drug
and corresponding final concentrations of the drug. (b) Normalized growth in linear dilution of drugs X, Y, and
Z. Each rectangle here represents a well of 96-well plate. Concentrations of each drug chosen for the next
experiment are shown in orange

6 Melike Cokol-Cakmak and Murat Cokol



3.4 Day 4:

Checkerboard Assay

Experiment

1. Measure OD600 absorbance for linear dilution dose-response
plate from Day 3 (see Fig. 2b).

2. For each drug, choose the concentration that resulted in 80%
growth inhibition (IC80) as 1� (see Note 5).

3. For drug X, label four tubes as LB-drugX0, LB-drugX1,
LB-drugX2, and LB-drugX3, and add 189 μl of LB media to
these tubes.

4. In each tube, add 0, 7, 14, or 21 μl of 100� drug X, and add
21, 14, 7, or 0 μl of solvent (DMSO), as shown in Fig. 3a.

5. Repeat steps 3 and 4 for the drugs Y and Z (see Note 6).

6. Preparation of a 4x4 checkerboard assay for drug X þ drug Y is
shown in Fig. 3a.

Fig. 3 Miniaturized checkerboard assay. (a) Preparation of drug mixes and placement of each drug in 96-well
plate for 4 � 4 checkerboard. Each rectangle here represents a well of 96-well plate. Drug X and drug Y pairs
are used as an example for preparation. (b) Interpretation of drug pairs results in 4� 4 checkerboard assay as
additive, synergistic, or antagonistic

Miniaturized Checkerboard Assays to Measure Antibiotic Interactions 7



7. Add 10 μl of LB-drugX0, LB-drugX1, LB-drugX2, and
LB-drugX3 in each well on first, second, third, and fourth
rows, respectively.

8. Add 10 μl of LB-drugY0, LB-drugY1, LB-drugY2, and
LB-drugY3 in each well on first, second, third, and fourth
columns, respectively.

9. Repeat the steps 6–8 for X þ Z and Y þ Z, in duplicate, which
corresponds to one 96-well plate (4� 4� 6¼ 96) (seeNote 3).

10. Measure the OD600 of the 1:10 dilution of the culture started
in Day 3.

11. Dilute the cells in growth media to an OD of 0.01 (seeNote 4).

12. Add 80 μl cells on 4 � 4 checkerboards assay.

13. Seal plate to avoid evaporation.

14. Leave plate for 12 h at 37 �C on a shaker with 150 rpm.

3.5 Day 5:

Checkerboard Assay

Result

1. Measure OD600 absorbance for checkerboard assay experiment
plate from Day 4.

2. Example results for additive, synergistic, or antagonistic drug
pairs are shown in Fig. 3b.

3. For each experiment, count the number of wells where there is
no growth. This count will be high for synergistic drug pairs,
medium in additive drug pairs, and low in antagonistic drug
pairs. Compare results from replicates.

4. For further exploration on how to score checkerboard assays,
the reader is suggested to consult refs. 2, 4, 6–8.

We have previously used this miniaturized checkerboard assay
protocol in two antibiotic interaction screens, where all pairwise
interaction scores for 24 compounds (276 pairs) were determined
in replicate. For these screens, we developed a scoring method
based on Loewe additivity model, where negative, zero, or positive
values correspond to synergy, additivity, or antagonism. MATLAB
functions that use 4 � 4 growth metrics and compute a drug
interaction score are shared as the supplementary material of ref.
8, as well as all the raw growth measurements recorded in this
screen.

In this screen, we have found that the pairwise interactions
among fusidic acid, oxacillin, and amikacin cover all possible three
drug interaction types: Fusidic acid and oxacillin are synergistic;
fusidic acid and amikacin are additive; and oxacillin and amikacin
are antagonistic. We suggest that the reader use these three drugs
for trying this protocol, in order to observe the full extent of the
drug interaction phenotypes. The reader may use the simple scor-
ing method described in the protocol’s Day 5 step 3 or the more
involved synergy metric described in ref. 8. With materials that can

8 Melike Cokol-Cakmak and Murat Cokol



be found in an undergraduate laboratory class, our protocol
describes an efficient and reproducible method to measure antibi-
otic interactions.

4 Notes

1. While antibiotic interaction in E. coli is the example here, any
species can be substituted here, with their respective growth
media and growth conditions supplanted.

2. Any small molecule that inhibits growth and corresponding
solvent can be used.

3. In our protocol, there is 2% solvent in all microplate growth
experiments, ensuring the effects we observe are not due to the
solvent.

4. Since the cell density influences the inhibitory concentration of
a drug, it is important that cells used are at an OD ¼ 0.01.

5. In our experience, we have found IC80 is the most informative
top concentration in a miniaturized checkerboard assay.

6. Although we need 160 μl for each concentration (10 μl� 4 per
interaction assay � 4 interaction assays), we prepare 210 μl
because of ease of calculation and pipetting.
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Chapter 2

High-Throughput Screening for Drug Combinations
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Crystal McKnight, Sam Michael, Tim Mierzwa, Craig Thomas,
Kelli Wilson, and Rajarshi Guha

Abstract

The identification of drug combinations as alternatives to single-agent therapeutics has traditionally been a
slow, largely manual process. In the last 10 years, high-throughput screening platforms have been devel-
oped that enable routine screening of thousands of drug pairs in an in vitro setting. In this chapter, we
describe the workflow involved in screening a single agent versus a library of mechanistically annotated,
investigation, and approved drugs using a full dose-response matrix scheme using viability as the readout.
We provide details of the automation required to run the screen and the informatics required to process data
from screening robot and subsequent analysis and visualization of the datasets.

Key words Drug combination screening, Acoustic dispensing, Automation, Compound manage-
ment, Synergy

1 Introduction

High-throughput screening for compounds that affect cell viability
has been utilized as a method for discovery of novel treatments for
various human diseases. For patients with cancer and certain infec-
tious diseases, combinations of drugs are given to achieve maximal
clinical benefit. An additional benefit of a clinically synergistic drug
combination is that both drugs may be synergistic at a low dose,
which can reduce off target toxicities. For infectious diseases such as
HIV, drug combinations are critical to prevent infectious agents
from acquiring mutations to evade the action of a single drug. The
search for novel synergistic drug pairs requires the development of a
systematic, large-scale screening platform. CombinatoRX, a bio-
tech company acquired in 2014 by Horizon Discovery, was the first
to publish a series of papers utilizing drug combination screening to
explore synergistic drug responses in various disease models such as
cancer and drug-resistant bacteria [1–3]. A recent study spear-
headed by AstraZeneca and NCI-DREAM utilized a
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crowdsourcing approach to predict synergistic drug combinations
for treatment of B-cell lymphoma [4].

The development of a methodology for large-scale testing of
drug combinations in vitro was advanced by the incorporation of
acoustic dispensing technology, which allows for the flexibility of an
anywhere-to-anywhere compound transfer. Given that drug com-
bination screening requires two or more compounds present in a
single well, contact-based transfer methods would be costly in time
and resources to reduce the possibility of contamination between
transfer steps. Using a noncontact dispenser greatly reduces the
amount of sample and consumables used as well as the complexity
that would be involved if traditional contact-based pipetting had
been applied.

Here we report the methods and workflow specifically for drug
combination screening that has been implemented and optimized
at the National Institutes of Health’s National Center for Advanc-
ing Translational Sciences (NCATS). This drug combination
screening platform has been applied to multiple areas of drug
discovery including cancer, malaria, Ebola, and various other dis-
ease models [5–8] and as of 2016 has tested over 200,000 discrete
drug combinations. This automated screening platform has
required the use of in-house software development as well as inte-
gration of various instrumentations in order to achieve an almost
fully automated workflow. We typically refer to this as Matrix
screening, due to the layout of the drug combinations in a grid
format on the final plate. The workflow presented here was utilized
for screening of the Ewing’s sarcoma cell line and has been
published [8].

2 Materials

The DMSO stock solutions are stored at �20 �C, but all other
operations occur at room temperature.

2.1 Consumables 1. Dimethyl sulfoxide (DMSO): 100% DMSO, ACS grade.

2. 1.4 mLMatrix 2D barcode tube (sample tube): Thermo Scien-
tific, #3711.

3. 96-well Society for Biomolecular Screening (SBS) footprint
rack that holds sample tubes (compound source rack).

4. SepraSeal cap (cap): Thermo Scientific, # 4463.

5. 96-well polypropylene compound plate (intermediate plate):
VWR, #82006-704.

6. 384-well polypropylene compound plate (mother plate): Grei-
ner, #784201.

7. SBS footprint reservoir (DMSO reservoir).
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8. 384-well cyclic olefin copolymer (COC) plate (acoustic source
plate): Greiner, #788876.

9. P25 JANUS tips (P25 tips): Perkin-Elmer, #6000689.

10. Biomek FX P30XL tips (P30XL tips): Beckman Coulter,
#A22288.

11. Biomek FX P30 tips (P30 tips): Axygen, FX-1536-30FP-R-S.

12. DMSO-resistant adhesive foil seal (foil seal): 4titude,
4Ti-0512.

13. Deionized water.

14. 70% ethanol.

15. White 1536, tissue culture treated, high base plates (assay
plate): Aurora, EWB04100A.

16. T175 tissue culture flasks.

17. TC71, Ewing’s sarcoma cancer cell line, DSMZ repository
#ACC 516.

18. RPMI-1640 cell culture media, Thermo Fisher Scientific
#11875093.

19. Fetal Bovine Serum, GE Healthcare Life Sciences,
#SH30071.03.

20. Penicillin-streptomycin, Thermo Fisher Scientific #15140122.

21. 0.25% Trypsin-EDTA, Thermo Fisher Scientific #25200056.

22. CellTiter-Glo® One Solution (CellTiter-Glo): Promega
G7573.

2.2 Equipment

and Instrumentation

1. Benchtop vortex mixer.

2. Sonicating water bath.

3. Automated compound store (ACS): Brooks Automation, A3+.

4. Automated decapper: Univo, #DC480.

5. TubeAuditor: automated volume measurement device from
Brooks Automation.

6. JANUS liquid handler (JANUS): Perkin-Elmer.

7. Handheld barcode scanner.

8. Matrix WellMate bulk liquid dispenser (WellMate), Thermo
Scientific.

9. Handheld 8-channel pipettor.

10. Biomek FX liquid handler (FX), Beckman Coulter.

11. Benchtop centrifuge.

12. Handheld pipettor.

13. Rubber roller.
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14. ATS-100 acoustic dispenser (ATS-100), EDC Biosystems,
Gen4+.

15. Multidrop Combi dispenser (Multidrop), Thermo Fisher Sci-
entific, 5840300.

16. Multidrop Combi dispensing cassette (cassette), Thermo
Fisher Scientific #24073290.

17. Metal, foam gasketed lid (compound plate lid).

18. Clear assay lid.

19. Stainless steel, rubber gasketed assay lid (assay lid).

20. ViewLux reader (ViewLux): Perkin-Elmer.

21. Polystyrene Universal Microplate Lid (plastic lid), Corning
#3098.

22. Automated acoustic plate reformatter (HRB): HighRes Bioso-
lutions, ACell.

2.3 Software

Components

1. Microsoft Excel or equivalent spreadsheet program.

2. Matrix Script Plate Generator (MSPG).

3. R 3.3.1 and the ncgcmatrix package.

3 Methods

3.1 Preparation

of Stock Compound

Solution

1. Prepare compound stock solutions by weighing compound
into sample tube to make 800 μL of 10 mM DMSO solution.

2. Cap and vortex the sample tube for 10 s at 3200 rpm. Visually
inspect that the compound has completely dissolved; sonicate
the sample tube for up to 10 s in a sonicating water bath to
assist in dissolution, if necessary.

3. Register the sample tube barcode to sample ID association in
the database, and load the sample tube to the ACS.

3.2 Compound

Source Rack Plate Map

Creation

1. Based on prior IC50 determination of the compounds of inter-
est, prepare a Matrix screening request form following the
template format as shown in Figs. 1a and 2.

2. Identify a list of available sample tubes from the chemical
inventory system, and input the list of sample tube barcodes
to the ACS to cherry-pick the compounds needed to prepare
the acoustic source plate.

3. Remove the compound source racks from the ACS, and allow
the samples to thaw at room temperature. Briefly centrifuge the
compound source racks for 30 s at 234 � g (see Note 1).
Export the cherry-pick plate map from the ACS database to
Microsoft Excel, and save (Fig. 1b). This file is called the
compound source rack plate map.
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Fig. 1 An overview of the process to prepare an acoustic source plate and related files

Fig. 2 An example of the matrix screening request form in Microsoft Excel format with the required information
filled in. Each drug combination should be listed by row. Drug A should be listed with the name, starting
concentration in the assay in nanomolar (nM), dilution factor of the drug in the screen, and internal compound
ID. Drug B in the combination should be listed next with the same information. The researcher should also
specify the size of the matrix block as well as information regarding the number of replicates needed and
assay types used

High-Throughput Screening for Drug Combinations 15



3.3 Preparation of All

Files Needed

for Creation

of the Acoustic Source

Plate

The MSPG application will create the appropriate files needed for
each critical instrument used in creation of the acoustic source
plate. MSPG will take the submitted requestor form and create
the JANUS worklist file to prepare the mother plates which is
then transferred to acoustic source plates. It will also generate
transfer script files that are used on the ATS-100 for acoustic
dispensing, a worklist file used to schedule the movement of plates
on the HRB, and a plate map of the assay plate which is used for
data analysis (see Note 2).

1. Open the MSPG application, and click on Matrix Order which
will open the “Import Compound Combinations Wizard”
(Figs. 1c and 3).

2. Click Next to begin the Wizard. On the second window, select
the “Browse” button, and select the Matrix screening request
form (Fig. 2) containing all the drug combinations you wish to
process. After selecting the file, a preview of the combinations
will appear in the window as seen in Fig. 4. Click “Next” to
advance to the next screen.

3. Use the drop-down menu to select the Excel worksheet tab
that contains the compound pairs. For each Compound A and

Fig. 3 Select the “Matrix Order” menu item to initiate the wizard that will walk you through the use of the tool,
which will open the import compound combination wizards
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Compound B pair, use the drop-down menus to map the
appropriate columns in the spreadsheet to the appropriate
column headers named “Agent Column,” “Concentration
Column,” and “Dilution Factor Column.”. Click “Next”
(Fig. 5). Verify that the columns in the Review window have
been mapped properly, and click Finish (Fig. 6). The software
has now recorded the requested drug combinations to
be made.

4. In the next window, input the assay parameters in the Source
Plate Settings window (Fig. 7a). Copy the Compound source

Fig. 5 Data fields from the matrix request form are associated with the variable fields in the MSPG

Fig. 4 Browse to and select the request form to display a preview of the desired matrix combinations
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