Emerging Drugs and Targets for Parkinson's Disease

RSC Drug Discovery Series

Editor-in-Chief:

Professor David Thurston, King's College, London, UK

Series Editors:

Dr David Fox, Vulpine Science and Learning, UK Professor Ana Martinez, Medicinal Chemistry Institute-CSIC, Madrid, Spain Professor David Rotella, Montclair State University, USA

Advisor to the Board: Professor Robin Ganellin, University College London, UK

Titles in the Series:

- 1: Metabolism, Pharmacokinetics and Toxicity of Functional Groups
- 2: Emerging Drugs and Targets for Alzheimer's Disease; Volume 1
- 3: Emerging Drugs and Targets for Alzheimer's Disease; Volume 2
- 4: Accounts in Drug Discovery
- 5: New Frontiers in Chemical Biology
- 6: Animal Models for Neurodegenerative Disease
- 7: Neurodegeneration
- 8: G Protein-Coupled Receptors
- 9: Pharmaceutical Process Development
- 10: Extracellular and Intracellular Signaling
- 11: New Synthetic Technologies in Medicinal Chemistry
- 12: New Horizons in Predictive Toxicology
- 13: Drug Design Strategies: Quantitative Approaches
- 14: Neglected Diseases and Drug Discovery
- 15: Biomedical Imaging
- 16: Pharmaceutical Salts and Cocrystals
- 17: Polyamine Drug Discovery
- 18: Proteinases as Drug Targets
- 19: Kinase Drug Discovery

- 20: Drug Design Strategies: Computational Techniques and Applications
- 21: Designing Multi-Target Drugs
- 22: Nanostructured Biomaterials for Overcoming Biological Barriers
- 23: Physico-Chemical and Computational Approaches to Drug Discovery
- 24: Biomarkers for Traumatic Brain Injury
- 25: Drug Discovery from Natural Products
- 26: Anti-Inflammatory Drug Discovery
- 27: New Therapeutic Strategies for Type 2 Diabetes: Small Molecules
- 28: Drug Discovery for Psychiatric Disorders
- 29: Organic Chemistry of Drug Degradation
- 30: Computational Approaches to Nuclear Receptors
- 31: Traditional Chinese Medicine
- 32: Successful Strategies for the Discovery of Antiviral Drugs
- 33: Comprehensive Biomarker Discovery and Validation for Clinical Application
- 34: Emerging Drugs and Targets for Parkinson's Disease

How to obtain future titles on publication:

A standing order plan is available for this series. A standing order will bring delivery of each new volume immediately on publication.

For further information please contact:

Book Sales Department, Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge, CB4 0WF, UK Telephone: +44 (0)1223 420066, Fax: +44 (0)1223 420247, Email: booksales@rsc.org Visit our website at www.rsc.org/books

Emerging Drugs and Targets for Parkinson's Disease

Edited by

Ana Martinez and Carmen Gil

Instituto de Química Médica-CSIC, Madrid, Spain Email: amartinez@iqm.csic.es, cgil@iqm.csic.es

RSC Publishing

RSC Drug Discovery Series No. 34

ISBN: 978-1-84973-617-6 ISSN: 2041-3203

A catalogue record for this book is available from the British Library

© The Royal Society of Chemistry 2013

All rights reserved

Apart from fair dealing for the purposes of research for non-commercial purposes or for private study, criticism or review, as permitted under the Copyright, Designs and Patents Act 1988 and the Copyright and Related Rights Regulations 2003, this publication may not be reproduced, stored or transmitted, in any form or by any means, without the prior permission in writing of The Royal Society of Chemistry or the copyright owner, or in the case of reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of the licences issued by the appropriate Reproduction Rights Organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to The Royal Society of Chemistry at the address printed on this page.

The RSC is not responsible for individual opinions expressed in this work.

Published by The Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge CB4 0WF, UK

Registered Charity Number 207890

For further information see our web site at www.rsc.org

Preface

"Now this is not the end. It is not even the beginning of the end. But it is, perhaps, the end of the beginning."

Sir Winston Churchill

Despite the great goals achieved in our era, such as reaching the moon or finding the Higgs particle among others, human health remains fragile and our current therapeutic arsenal is completely insufficient to cure many severe diseases. Drug discovery today is fueled by the urgent need to find effective drugs for many unmet pathologies.

Parkinson's disease, the second most common neurodegenerative disorder, is one of the above mentioned pathologies. Following the death of dopaminegenerating cells in the *substantia nigra*, it is characterized by progressive loss of muscle control, which leads to trembling of the limbs and head while at rest, stiffness, slowness, and impaired balance. As symptoms worsen, it may become difficult to walk, talk and complete simple tasks. The first descriptions of Parkinson's disease date back as far as 5000 BC. Around that time, an ancient Indian civilization called the disorder 'Kampavata' and treated it with the seeds of a plant containing therapeutic levels of what is today known as levodopa. The disease is named after the British doctor James Parkinson, who published its first detailed description in *An Essay on the Shaking Palsy* in 1817.

Although more than 5 million people worldwide are affected by Parkinson's disease, currently there is no treatment to cure this mid-brain neurodegenerative pathology. Several therapies are available to delay the onset of motor symptoms, and to ameliorate motor symptoms, thereby extending the patient's quality of life.

Recent research advances in molecular biology and technology have provided multiple credible hypotheses around which therapeutic agents can be developed. This book collects some of the most outstanding examples of new

© The Royal Society of Chemistry 2013

RSC Drug Discovery Series No. 34

Emerging Drugs and Targets for Parkinson's Disease

Edited by Ana Martinez and Carmen Gil

Published by the Royal Society of Chemistry, www.rsc.org

drugs currently under pharmaceutical development or new targets in the validation process that will reach the Parkinson's drugs market over the next few years as disease-modifying drugs. These new drugs will be able to provide effective treatment for motor and non-motor symptoms.

We wish to thank all of the contributors to the chapters in this book, firstly for their faith in the project, and we would like also to express our great appreciation to all of them for delivering clear, comprehensive reviews that will inform and enlighten readers on the state-of-the-art in their respective fields of research. We would also like to thank our families and students for their patience when we were immersed in editing, and the staff at the RSC, especially Gwen Jones and Cara Sutton, for their support in bringing the book to completion. It is very much hoped that this book will provide a useful resource to scientists, both in industry and academia, who are looking to find a solution for the many patients worldwide waiting for effective drugs.

> Ana Martinez Carmen Gil Instituto de Química Médica-CSIC Madrid, Spain

Contents

Introduction

Chapter 1	Par	kinson's	s Disease: Symptoms, Unmet Needs and	
	New	Thera	peutic Targets	3
	Mói	nica M.	Kurtis and Pablo Martinez-Martín	
	1.1	Intro	luction	3
	1.2	Moto	r Signs and Symptoms	4
		1.2.1	Bradykinesia	4
		1.2.2	Rigidity	7
		1.2.3	Rest Tremor	7
		1.2.4	Gait Disturbances	7
		1.2.5	Motor Fluctuations and Dyskinesias	8
		1.2.6	Dystonia	8
	1.3		Motor Symptoms	9
		1.3.1	Neuropsychiatric Symptoms	9
		1.3.2	1	12
			Dysautonomia	13
			Other Symptoms	15
	1.4		al Parkinson's Disease Subtypes	16
			Empirically Driven Subtypes	17
			Data-Driven Subtypes	17
	1.5		nt Diagnosis	18
	1.6		nt Treatment	18
	1.7	Unme	et Needs and New Therapeutic Targets	19
		1.7.1	Symptoms Beyond the Dopamine Scope	19
		1.7.2	Biomarkers	20
		1.7.3	The Cure: Cause-Directed Therapy	21
			Neuroprotection	21
	Ref	erences		21

RSC Drug Discovery Series No. 34

Emerging Drugs and Targets for Parkinson's Disease

Edited by Ana Martinez and Carmen Gil

[©] The Royal Society of Chemistry 2013

Published by the Royal Society of Chemistry, www.rsc.org

371	i.	i	
VI	u	I	

Chapter 2

•			ew Targets for New Therapies
		uel Ro	staño, Carmen González, José A. Obeso and driguez
	111 00	11101 1100	angue2
	2.1		uction
	2.2		ular Pathogenesis of Parkinson's Disease
		2.2.1	Genetic Channels
		2.2.2	
			Inflammatory and Immunity Channels
		2.2.4	Reactive Oxygen and Nitrogen Species Channels
		2.2.5	Channels of Mitochondrial DNA Mutations
		2.2.6	Channels of Somatic Nuclear Mutations
		2.2.7	Channels of Cell Division Activation
		2.2.8	Connecting Channels to Define the
			Pathogenesis of Parkinson's Disease
		2.2.9	Transcriptional Re-Programming and
			Epigenetic Control
	2.3		athophysiology of Parkinson's Disease
		2.3.1	
		2.3.2	1 2
			Involved in PD
		2.3.3	e
			Necessary to Understand Parkinson's Disease
		2.3.4	New Structural Data for the Basal
			Ganglia Model
		2.3.5	
		_	Ganglia Model
			ts for New Parkinson's Disease Therapies
			gements
	Refe	erences	
		L-]	DOPA and Dopaminergic Agents
Chapter 3	Dop	aminerg	gic Treatments for Parkinson's Disease:
•			hadows
	Nice	ola Sim	ola
	3.1	Introd	luction
	3.2	Overv	iew of the Drugs used
		in Do	pamine-Replacement Therapy
		3.2.1	L-DOPA
		3.2.2	Adjuncts to L-DOPA: COMT and MAO
			Inhibitors
		3.2.3	Dopaminergic Agonists

Molecular Pathogenesis and Pathophysiology of Parkinson's

	v
1	Δ

Contents		ix
	3.3 Effect of Dopamine-Replacement Therapy on the	
	Motor Features of Parkinson's Disease	68
	3.3.1 Motor Impairment	68
	3.3.2 Motor Complications	69
	3.4 Effect of Dopamine-Replacement Therapy on the	
	Non-Motor Features of Parkinson's Disease	71
	3.4.1 Non-Motor Symptoms	71
	3.4.2 Addictive-Like Behavior Associated with	
	Dopamine-Replacement Therapy	72
	3.5 Effect of Dopamine-Replacement Therapy on Disea	se
	Progression	73
	3.6 Future Directions in Dopamine-Replacement Therap	ру 76
	3.6.1 Continuous Drug Delivery	76
	3.6.2 Development of New Drugs	76
	3.7 Final Remarks	77
	Acknowledgements	77
	References	77
Chanton 1	Cotashal O Mathul Transforma Indibitary Dragant Drahlan	
Chapter 4	Catechol-O-Methyl-Transferase Inhibitors: Present Problem and Relevance of the New Ones	lis 83
	P. Nuno Palma, László E. Kiss and Patrício Soares-da-Sil	
	1. Ivano 1 alma, Laszio E. Kiss and 1 alficio Soares-au-Su	vu
	4.1 Introduction	83
	4.2 The Role of COMT Inhibitors in the Symptomatic	
	Treatment of Parkinson's Disease	84
	4.3 Pyrogallol and Catechol Derivatives as	
	COMT Inhibitors	85
	4.4 Nitrocatechol COMT Inhibitors	88
	4.5 Non-Clinical Pharmacology of COMT Inhibitors	92
	4.6 Metabolic Profile of COMT Inhibitors	93
	4.7 Human Pharmacology	95
	4.8 New Insights into the Mechanism of	
	COMT Inhibition	100
	4.8.1 In Vitro Potency	100
	4.8.2 In Vivo Duration of Action	103
	4.9 Final Remarks	105
	Acknowledgements	106
	References	106
Chapter 5	Pharmacologic Management of Dopaminergic-Induced	
¥	Dyskinesias in Parkinson's Disease	110
	Mildred D. Gottwald and Michael J. Aminoff	
	5.1 Introduction	110
	5.2 Why Do Dyskinesias Occur?	111

	 5.3 Scales Used for Assessing Dyskinesias 5.4 Medical Therapies 5.4.1 Delaying the Onset of Dyskinesias with Dopamine Agonists 5.4.2 Therapeutic Strategies for Existing Dyskinesias 5.4.3 Parenteral Therapies 5.4.4 New Compounds in Development 	111 112 112 114 117 119
	5.5 Conclusion References	122 122
Chapter 6	D ₃ Receptor Agonists and Antagonists as Anti-Parkinsonian	
	Therapeutic Agents Mark Johnson and Aloke Dutta	126
	6.1 Introduction: The D₃ Receptor6.1.1 D₃ Localization and Distribution in	126
	the Brain	127
	6.2 D_3 Receptor-Selective Ligands	128
	6.2.1 D ₃ Receptor-Selective Agonists	129
	6.2.2 D₃ Receptor-Selective Antagonists6.3 Role of D₃ Receptors in Levodopa-Induced	131
	Dyskinesias	134
	6.3.1 D ₃ Receptor Modulation in the Treatment of Levodopa-Induced Dyskinesias	136
	6.4 Neuroprotective Action of D ₃ Receptor-Preferring	
	Agonists	138
	6.4.1 D ₃ Receptor-Independent Neuroprotection	139
	6.5 Conclusion	142
	Acknowledgements	142
	References	142
Chapter 7	Protein Phosphatases in Parkinson's Disease Petr Heneberg	149
	7.1 Introduction	149
	7.2 Protein Tyrosine Phosphatases	149
	7.2.1 Receptor Protein Tyrosine	
	Phosphatase β/ζ	150
	7.2.2 Protein Tyrosine Phosphatase PTP-PEST	151
	7.2.3 Striatum-Enriched Protein Tyrosine	
	Phosphatase	151
	7.2.4 Src Homology 2 Domain-Containing	
	Phosphatase 2	153

Contents

	7.2.5	Phosphatase and Tensin Homolog Deleted on	
		Chromosome 10	154
	7.2.6	Dual-Specificity Protein Phosphatase 1	156
7.3	Protei	n Serine/Threonine Phosphatases	157
	7.3.1	Protein Phosphatase 1	158
	7.3.2	Protein Phosphatase 2A	160
	7.3.3	Protein Phosphatase 3	163
	7.3.4	PH Domain Leucine-Rich Repeat	
		Protein Phosphatase 1	163
7.4	Futur	e Views	164
Ackn	owledg	ments	164
	ences		164

The α-Synuclein Hypothesis

Chapter 8	-	clein and Parkinson's Disease: An Update A. Jellinger	175
	8.1	Introduction: α-Synuclein and Disease	175
	8.2		176
	8.3	• •	176
		8.3.1 Structure	176
		8.3.2 Localization and Regulation	177
		8.3.3 Physiological Functions	179
		8.3.4 Genetics	180
	8.4	α-Synuclein and Neurodegeneration	183
		8.4.1 α-Synuclein Neurotoxicity and the Oligomer	•
		Toxicity Hypothesis	184
		8.4.2 Mitochondrial Involvement in Parkinson's	
		Disease	187
		8.4.3 Lysosomal Dysfunction and	
		Autophagy	188
		8.4.4 Oxidative and Nitrative Injuries	189
		8.4.5 α-Synuclein and Neuroinflammation	189
	8.5	α-Synuclein Interaction with Other Proteins	190
	8.6	α-Synuclein Spread and Disease Propagation	191
	8.7	Neuropathology of Lewy Body Disorders	193
		8.7.1 Sporadic Parkinson's Disease	193
		8.7.2 Dementia with Lewy Bodies and	
		Parkinson's Disease	196
	8.8	Animal Models of Parkinson's Disease	197
	8.9	α-Synuclein as a Biomarker for	
		Synucleinopathies	197
	8.10	Conclusions and Outlook for the Future	198

8.10Conclusions and Outlook for the Future198References200

	g doi:10.1039/9781849737357-FP007
Downloaded	ublished on 18 July 2013 on http://pubs.rsc.or

Contents

Neuroprotective Therapies

Chapter 9	New Approaches to Neuroprotection in Parkinson's Disease María Angeles Mena, Juan Perucho, José Luis López-Sendón and Justo García de Yébenes				
	9.1	Introdu	action	219	
	9.2	Pathog	enic Mechanisms in Parkinson's Disease due		
		U	etic Defects	221	
		9.2.1	α-Synuclein	221	
			PARKIN	223	
		9.2.3	Other Genes Involved in Hereditary		
			Parkinsonism	224	
	9.3	Tempor	ral Profile of Clinical Features and Pathological		
			es Observed in Parkinson's Disease	225	
		0	The Temporal Spectrum on Clinical Findings	225	
			The Temporal Pattern of Pathological		
			Changes	228	
	9.4		protective Therapies: Towards Neuroprotection		
			on Pathogenesis in Parkinson's Disease	229	
	Ackn	owledge		232	
	Refe	rences		232	
Chapter 10	Agen	ts in the	ceptor Modulators as Emergent Therapeutic Treatment of Parkinson's Disease	237	
			ire, Benjamin Perry, Robert Lutjens,		
	Sonia	a Poli an	d Ian J. Reynolds		
	10.1	Introdu	action	237	
		10.1.1	Glutamate Receptors: Nomenclature and		
			Links with Parkinson's Disease	238	
		10.1.2	Allosteric Modulators versus Orthosteric		
			Ligands	240	
		10.1.3	Animal Models of Parkinson's Disease	240	
	10.2	Recent	Progress of Ionotropic Glutamate Receptor		
		Modula	ators in Parkinson's Disease	241	
		10.2.1	NMDA Receptor Blockers	241	
		10.2.2	AMPA Receptor Modulators	244	
	10.3		Progress of Metabotropic Glutamate		
			or Modulators in Parkinson's Disease	246	
		10.3.1	Group I mGluRs: Focus on mGluR5		
			Negative Allosteric Modulators	246	
		10.3.2	Group II mGluR Modulators	248	
		10.3.3	Group III mGluRs: Focus on mGluR4 and		
			mGluR8 Activators	250	

Contents			xiii
	10.4	I I I I I I I I I I I I I I I I I I I	252
		Therapeutics in Parkinson's Disease	253
		10.4.1 NMDA Receptor Blockers	253 254
		10.4.2 AMPA Receptor Modulators10.4.3 mGluR5 Receptor Negative	234
		Allosteric Modulators	254
	10.5		255
		owledgements	256
		rences	256
Chapter 11	LRR	K2 Kinase Inhibitors as New Drugs for Parkinson's	
	Disea	0	266
		ra Schulz, Stefan Göring, Boris Schmidt and	
		ten Hopf	
	11.1	Introduction	266
	11.2	Insight into LRRK2 Inhibitor SARs from Structural	
		Biology Studies and Molecular Modeling	267
	11.3		
		Selective LRRK2 Inhibitors	269
		11.3.1 Non-Selective LRRK2 Inhibitors	269
		11.3.2 Potent and Selective LRRK2 Inhibitors	273
		11.3.3 Examples from Recently Published Patent	
		Applications	277
	11.4	The Role of LRRK2 Outside the Brain and	
		Implications for Potential Mechanism-Based	
		Toxicity of LRRK2 Inhibitors as Drugs	277
	11.5	Invertebrate and Vertebrate Animal Models for	
		Pharmacological Evaluation of LRRK2 Inhibitors	282
	11.6	Pharmacokinetics and Pharmacodynamics of	
		LRRK2 Inhibitors: The Current State-of-the-Art	284
	11.7	Will LRRK2 Kinase Inhibitors be Developed into	
		Drugs (for the Treatment of Parkinson's Disease)?	286
		11.7.1 Patient Stratification	287
		11.7.2 Mechanism-Based Toxicity	288
		11.7.3 Utility in Other Therapy Areas Besides	
		Parkinson's Disease	288
	Refer	rences	289
Chapter 12		phodiesterase Inhibitors as a New Therapeutic Approach	_
		e Treatment of Parkinson's Disease Martinez and Carmen Gil	294
	12.1	Introduction	294
	12.2	Dopamine and Cyclic Adenosine Monophosphate	295

	12.3	Phosphodiesterases and their Role in	
		Dopamine Signaling	296
	12.4	Phosphodiesterases as Drug Targets	
		Beyond Dopamine	298
	12.5	Phosphodiesterase Inhibitors as New Drugs for	
		Parkinson's Disease	298
		12.5.1 PDE1 Inhibitors	300
		12.5.2 PDE4 Inhibitors	300
		12.5.3 PDE7 Inhibitors	301
		12.5.4 PDE10 Inhibitors	302
	12.6	Conclusions	303
	Ackn	owledgements	303
	Refer	ences	303
Chapter 13	5-HT	IA Receptors as a Therapeutic Target for Parkinson's	
-	Disea		308
	Saki	Shimizu and Yukihiro Ohno	
	13.1	Introduction	308
	13.2	5-HT _{1A} Receptors	310
	13.3	Role of 5-HT _{1A} Receptors in the Treatment of	
		Parkinson's Disease	312
		13.3.1 Treatment of Parkinsonian Symptoms	312
		13.3.2 Treatment of L-DOPA-Induced Dyskinesia	314
		13.3.3 Treatment of Non-Motor Symptoms in	
		Parkinson's Disease	316
	13.4	5-HT _{1A} Receptor Ligands	320
	13.5		320
	Refer	ences	322
Chapter 14	Trypt	ophan Metabolism in Parkinson's Disease: Future	
-		peutic Possibilities	327
	Zsófia	a Majláth and László Vécsei	
	14.1	Introduction	327
	14.2	Tryptophan Metabolism	328
		14.2.1 Serotonin Pathway	328
		14.2.2 Kynurenine Pathway	328
	14.3	Pathogenesis of Parkinson's Disease	330
		14.3.1 Some of the Main Aspects of the	
		Pathogenesis of Parkinson's Disease	330
		14.3.2 Altered Tryptophan Metabolism in	
		Parkinson's Disease	331

View Online

Contents			
	14.5 Ackn	Future Conclu lowledge cences	
Chapter 15	Park Disor Taka Shue	inson's D :ders uto Taker	Receptor Signaling in the Treatment of Disease and Other Neurodegenerative nouchi, Kazunari Sekiyama, Masayo Fujita, a, Yoshifumi Iwamaru, Hiroshi Kitani and nimoto
	15.1	Introdu	action
	15.1		f Neuroinflammation in the Progression of
	10.2		son's Disease
			Neuroinflammation in Parkinson's Disease Brains and Animal Models of Parkinson's
		15.2.2	Disease Role of IL-1β in Neuroinflammation in the Progression of Parkinson's Disease
	15.3	Express	sion in the Central Nervous System and Drugs
			Modulation of P2X7R
			P2X7R Expression in the Central Nervous
		15.3.2	System The Dual Neuroprotective and Neurotoxic
			roles of P2X7R
		15.3.3	Modulators of P2X7R Function
	15.4	Altered	Expression and Function of
		P2X7R	in Parkinson's and Other
			legenerative Conditions
	15.5		of P2X7R Modulators or Deficiency
			nal Models of Parkinson's and Other
			legenerative Diseases
		15.5.1	Effects of P2X7R Antagonists or Deficiency
		15.5.2	Possible Effects of Other P2X7R Modulators

View Online		~	
	AW)n	line
		$\mathbf{O}\mathbf{n}$	me

xvi		Ca	ontents
		Neuroregenerative Strategies	
Chapter 16	Disea Javier Simón	id Body Transplants as a Therapy for Parkinson's se r Villadiego, Ana Belén Muñoz-Manchado, n Mendez-Ferrer, Juan José Toledo-Aral and López-Barneo	363
	16.1 16.2	Cell Therapy in Parkinson's Disease Anatomical and Physiological Features of the	363
	10.2	Carotid Body	364
	16.3	Carotid Body Cell Therapy for Parkinson's Disease 16.3.1 Initial Preclinical Studies: The Carotid Body	366
		as a Source of Dopamine Cells16.3.2 Recent Preclinical Studies: The Carotid Body as a Biological Pump Releasing	366
	16.4	Dopaminotrophic Factors Clinical Studies of Carotid Body	367
		Autotransplantation on Parkinson's Disease Patients	371
	16.5	Conclusions and Perspectives	372
	Ackn	owledgements	373
	Refer	ences	373
Chapter 17	Disea	Cell-Based Cell-Replacement Therapy in Parkinson's se <i>Sonnesen and Merab Kokaia</i>	376
	17.1		376
	17.2 17.3	Proof-of-Principle: Fetal-Cell-Replacement Therapy Candidate Stem Cells for Parkinson's Disease	377
		Cell-Replacement Therapy	378
		17.3.1 Fetal Neural Stem Cells	378
		17.3.2 Embryonic Stem Cells	379
		17.3.3 Induced Pluripotent Stem Cells	379
		17.3.4 Directly Induced Neurons	382
	17.4		382
	17.5		384
	17.6 Refer	Concluding Remarks and Future Perspectives ences	384 385

390

Introduction

Published on 18 July 2013 on http://pubs.rsc.org | doi:10.1039/9781849737357-00003

CHAPTER 1

Parkinson's Disease: Symptoms, Unmet Needs and New Therapeutic Targets

MÓNICA M. KURTIS^{*a} AND PABLO MARTINEZ-MARTÍN^{bc}

^a Movement Disorders Unit, Department of Neurology, Hospital Ruber Internacional, Madrid, Spain; ^bArea of Applied Epidemiology, National Centre of Epidemiology and CIBERNED, Carlos III Institute of Health, Madrid, Spain; ^cAlzheimer Disease Research Unit, CIEN Foundation, Carlos III Institute of Health, Alzheimer Center Reina Sofia Foundation, Madrid, Spain

*Email: mkurtis@ruberinternacional.es

1.1 Introduction

Since James Parkinson wrote the first systematic clinical description of six patients in 1817 in his essay titled "Paralysis Agitans",¹ Parkinson's disease (PD) has been considered a motor disorder, consisting of tremor, rigidity and gait difficulties. A few decades later, Jean Martin Charcot characterized the feature of bradykinesia and added other observations not pertaining to the motor domain, consisting of arthropathy, dysautonomia, and pain.² In the mid 1950s, pathological changes in the PD mid-brain described as "neuronal degeneration of the *substantia nigra*" were defined by Greenfield and Bosanquet.³ The delineation of the nigrostriatal pathway in the 1960s and discovery by Arvid Carlsson and colleagues of the direct correlation between

© The Royal Society of Chemistry 2013

RSC Drug Discovery Series No. 34

Emerging Drugs and Targets for Parkinson's Disease

Edited by Ana Martinez and Carmen Gil

Published by the Royal Society of Chemistry, www.rsc.org

striatal dopamine loss and clinical Parkinsonian manifestations were a major breakthrough in the neurosciences and provided the opportunity for the development of effective therapies.⁴ In 1967 George Cotzias and others demonstrated the benefits of oral levodopa in patients, paving the way for substitutive dopaminergic treatments.^{5,6}

1.2 Motor Signs and Symptoms

Based on these early findings, the classic features that define the Parkinsonian syndrome are: bradykinesia, rigidity, tremor at rest, and gait disturbances (flexed posture, freezing, and loss of postural reflexes). At least two of these signs should be present before the diagnosis of Parkinsonism is put forth.⁷ The etiology is widely variable, therefore multiple primary and secondary causes must be considered when evaluating a patient, considering that PD is the most prevalent of the primary causes. In the following section, the well-established PD motor symptoms are enumerated and defined (Table 1.1).

1.2.1 Bradykinesia

The terms akinesia, literally means absence; bradykinesia, meaning slowness; and hypokinesia, meaning decreased amplitude; are all used, often interchangeably, to describe the most prominent phenomena of Parkinsonism. Patients show poverty of automatic movements (*i.e.*, blinking, arm swing) and also present reduced speed when initiating and executing single and repetitive movements with progressive loss of amplitude. Characteristically, there is greater difficulty in moving with self-initiated cues than with externally triggered movements and this abnormal activation and slowness affects most body parts.

Pathophysiology of bradykinesia can generally be explained by the classic model of the basal ganglia-thalamocortical circuitry postulated in the 1980s. In the absence of dopamine, the main output nucleus of the basal

Axial symptoms	Limb symptoms
Hypomimia	Micrographia
Blepharospasm	Loss of dexterity
Hypophonia	Asymmetric arm swing
Dysarthria	Slow gait
Dysphagia	Rest tremor of the hand or foot
Sialorrhea	Foot dystonia
Chin, lip and tongue tremor	2
Vertical eye movement restriction	
and convergence insufficiency	
Freezing of gait	
Flexed posture	
Loss of postural reflexes	
Camptocormia	

Table 1.1 The motor symptom and sign complex of PD.

Parkinson's Disease: Symptoms, Unmet Needs and New Therapeutic Targets

ganglia, the *globus pallidus interna* (GPi) is abnormally active, thus inhibiting the ventroanterior and ventrolateral motor thalamus, and subsequently the primary motor cortex, resulting in slowness. Current findings add complexity to the model, attempting to explain the other features of akinesia. It is hypothesized that the main disturbances in PD are the non-generation of phasic neurons, and the time-locked inhibition of GPi neurons which cannot facilitate recruitment of cortical motor neurons that are appropriately adjusted to produce voluntary movement. The primary motor cortex is also altered and there is a functional uncoupling with premotor areas that is not well understood. The loss of automatic movements in PD is probably related to alterations of basal ganglia projections to the brainstem central pattern generators, with excessive inhibition being the net result.⁸

1.2.1.1 Hypomimia

Bradykinesia affecting the facial muscles results in decreased expression, sometimes called 'poker' face, alluding to card players that do not show any emotion during their game, and can be an initial sign of the disease. This sign can also be seen in depressed patients and the differential diagnosis must be kept in mind. With disease progression, the lips can remain open most of the time and blink rate becomes severely decreased, leading to ocular problems such as dry eye.

1.2.1.2 Hypophonia

Hypophonia, meaning soft voice, is an axial sign that can also be a first complaint and is generally noted by the patient's family and friends. The person with PD is usually unaware that he/she is speaking softly and tends to blame others for being 'hard of hearing'. Some patients complain that their tone of voice has changed and become monotonous (termed "aprosody").

1.2.1.3 Dysarthria

Difficulty in articulating language is a reflection of bradykinesia of the tongue, oral cavity and larynx musculature. Some patients may talk too fast, presenting tachyphemia, others may stutter, due to freezing of speech episodes, and in advanced stages of the disease, patients may develop progressively severe mumbling that can make language unintelligible.

1.2.1.4 Dysphagia

Difficulty swallowing secondary to neurological disease generally affects liquids more than solids. Patients complain of coughing during their meals due to minor choking episodes and with disease progression, dysphagia may be severe and lead to aspiration, causing pulmonary infections such as pneumonia. In order to avoid this, patients must be instructed to maintain proper posture when swallowing and avoid food textures, liquids and volumes they have difficulty managing. Ultimately, gastrostomy may be considered although the danger of saliva aspiration is not avoided.

1.2.1.5 Sialorrhea

Excessive salivation is probably secondary to decreased spontaneous swallowing although in some patients, saliva characteristics can differ from normal (becoming denser), and thus hypersalivation may also be considered a nonmotor dysautonomic problem.

1.2.1.6 Eye Movement Abnormalities

In the past two decades, neuro-ophtalmologic symptoms in PD have been objectively measured and thus defined. Horizontal and vertical pursuit can show bradykinesia and decreased amplitude even in the early stages of the disease⁹ and as in other body parts, slowness becomes increasingly marked with repetition.¹⁰ It is not infrequent to find restriction of vertical eye movements. The saccade system is also altered, showing characteristically slow and hypometric saccades, and occasionally prolonged latencies.^{11,12} Patients often complain of blurred or double vision, secondary to convergence insufficiency as Biousse *et al.* found in an early untreated PD cohort.¹³ This study also showed that, when compared to controls, PD patients declared more local ocular symptoms (irritation, pain, conjunctival redness), eyelid problems (blepharospasm and decreased blinking) and dry eye.¹³ Dry eye is probably multi-factorial, secondary to motor disturbances (decreased blinking), and dysautonomic changes of the lacrimal glands.¹⁴

1.2.1.7 Micrographia

Small handwriting can often be the first symptom noted when PD affects the dominant side of the body. Patients describe that their writing starts out normally but becomes increasingly smaller as they keep writing. Their hand-writing can become illegible and their signature can change to the point of misunderstandings with banks and official documents.

1.2.1.8 Slow Gait

Some patients' initial complaint is that they walk more slowly. They describe walking as tremendously effortful, since their legs feel heavy, as if they had weights pulling them down. Often a person close to them will note that they have decreased arm swing, usually asymmetric. Recent studies show that there are marked alterations in the rhythmicity and timing of gait, even in the early stages of the disease when speed can be intact.¹⁵

7

1.2.2 Rigidity

Rigidity is defined as increased muscle tone at rest that can be palpated, reduced distension when the limb is passively moved, increased resistance when the limb is stretched, and facilitation of the shortening reaction.⁸ Resistance is more noticeable when the limb is passively moved slowly, can manifest as cog-wheeling since the limb gives way in a stepwise fashion, and is increased with voluntary movement of other body parts (Froment's maneuver). Flexor muscles are generally affected earlier than the extensors. Rigidity is not explained by the classic model of the Parkinsonian state, where overactivity of the basal ganglia's main output nucleus (GPi) leads to cortical inhibition. Projections to the brainstem and spinal mechanisms probably play an important role as experimental findings suggest that spinal cord motorneurons present a shift towards increased activity in response to peripheral stimulation.⁸

1.2.3 Rest Tremor

Parkinsonian tremor usually involves distal parts of the extremities (called "pill rolling" when the thumb and index are involved) or the lips and chin, and characteristically occurs at rest. About two thirds of patients with PD show the typical rest tremor with a frequency measured by motor neurophysiological testing (electromyography and accelometery) of 4–5 Hz. Some rest tremors reemerge after a short latency period of a few seconds, thus appearing during some actions such as posture holding. Kinetic and postural tremors can also be seen, but are generally not significant and do not interfere with the patient's activities. The pathophysiological mechanism behind PD tremor is unclear. To date there is no proven model that explains the link between dopamine deficiency and abnormal oscillatory activity in an extensive motor network that involves the basal ganglia, the cerebellum, the thalamus and the motor cortex.⁸

1.2.4 Gait Disturbances

1.2.4.1 Freezing of Gait

When initiating gait or turning, the feet literally become stuck to the ground, so the patient feels he/she cannot take a step. Some patients may present freezing in the initial stages of the disease, although it is rare in the first three years. The problems begin when they want to initiate gait (start hesitation), when turning, in tight spaces, or in doorways. With disease progression, patients develop destination freezing (*i.e.*, stopping a few steps from the chair where they want to sit) and freezing may interrupt gait at any time, even in open spaces. Characteristically patients with freezing do not have trouble with other complex motor programs such as climbing stairs or riding a bicycle. To date, the physiopathology of freezing is not well understood and the best treatment for freezing is based on physiotherapy since most patients benefit from external visual or auditory cues.

1.2.4.2 Flexed Posture

As the disease advances, patients tend to walk with flexion at the neck, elbows, hips and knees, with the forearms placed in front of the body. When extreme, this flexed posture can lead to pronounced kyphoscoliosis.

1.2.4.3 Loss of Postural Reflexes

Balance is tested in the office by a gentle pull backwards on the shoulders by the examiner. In the early stages of the disease, patients may have to take a few steps backwards (up to two is considered normal) in order to regain their balance. As the disease progresses, patients will not be able to recuperate due to loss of postural reflexes and falls become a major problem.

1.2.4.4 Festination

The patient with a festinating gait walks progressively faster and faster, taking shorter and shorter steps as he/she tries to catch up with his/her axial center of gravity. It is a result of stooped posture and altered postural reflexes.

1.2.4.5 Falls

One of the symptoms with highest morbidity in PD is falling, conditioned by multiple factors. Freezing is one of the primary etiologies of falls, as the body moves forward or to the side when turning, but the feet do not follow. Festinating gait can also cause the patient to fall forward as eventually the lower limbs cannot catch up with the forward tilting trunk. Loss of postural reflexes means that any small obstacle or nudge will throw the patient off balance, generally leading to a fall backwards. Cognitive impairment also plays a role in patients' falls, since loss of insight and risk appraisal can be affected.

1.2.5 Motor Fluctuations and Dyskinesias

With disease progression, treated patients may develop motor fluctuations, signifying they present what is termed an "off" state, in which their motor symptoms re-appear as medication benefits disappear, and an "on" state, when medications are effective and symptoms are well controlled. In addition to this, they may develop dyskinesias or involuntary movements that resemble chorea or dancing movements, generally appearing in the areas most affected by parkinsonism and probably secondary to dopamine receptor hypersensitivity.

1.2.6 Dystonia

Abnormal posturing due to sustained muscle contractions can be the first sign of the disease, or it can develop years later as a consequence of dopaminergic treatment, representing a similar phenomenon to dyskinesias. Axial dystonia can affect the eyes, causing blepharospasm; the neck, usually producing antecollis; or the trunk, resulting in camptocormia or stooped posture that increasingly worsens with walking, or Pisa syndrome, as patients lean the trunk to the side. Axial dystonia characteristically normalizes when standing against a wall or lying down. Secondary dystonia of the limbs can be associated with tremor (dystonic tremor), which tends to be faster and more erratic than the typical 4–5 Hz rest tremor, and when affecting the lower extremities can lead to abnormal gait.

1.3 Non-Motor Symptoms

At present, PD is still defined clinically by the presence of two or more of the cardinal motor symptoms described above. However, in the past decade, research has expanded to the prevalent non-motor symptom complex that affects patients during all stages of the disease, even in the premotor phase. Non-motor symptoms including sleep, mood, cognition, pain, and autonomic disorders have been identified as important PD manifestations, which often remain undeclared unless specifically sought.^{16,17} It is important to recognize and treat these symptoms since they are key determinants of patients' quality of life. Results of a recent study by our group showed that non-motor symptoms have, as a whole, a greater impact on health-related quality of life (HRQoL) than motor symptoms, and non-motor symptom progression contributes importantly to HRQoL decline in PD patients.¹⁸

The neurochemical and pathological substrates for most of the non-motor symptoms remain a puzzle. Key dopaminergic areas in the brain (the *substantia nigra pars compacta*, ventral tegmental area, and hypothalamus) project extensively to form four main circuits: the mesocortical, meso-limbic, nigro-striatal, and tuberoinfundibular pathways, which mediate several non-motor symptoms such as cognition, sleep, and pain. Other non-dopaminergic pathways depending on neurotransmitters such as serotonin, norepinephrine and acetylcholine also play a major role.¹⁹ Therefore, the non-motor symptoms that are classified and described in the next section may be modulated by dopaminergic therapy (Table 1.2) while others rarely respond.

1.3.1 Neuropsychiatric Symptoms

1.3.1.1 Depression

Depression is very frequent in PD patients, although prevalent cases range from 2.7 to 70%, depending on the study,²⁰ possibly due to differing methodologies. In practice, about 40% of patients²¹ show signs of depression which can be expressed as sadness, but often presents as irritability, hopelessness, pessimism or worry, more often than guilt or remorse, and contributes to insomnia and general slowness. Studies have suggested that depression is probably another premotor non-motor biomarker that can precede the development of clinical PD as it is currently defined.^{22–24} Serotoninergic