Drug Delivery Systems for Tuberculosis Prevention and Treatment

ADVANCES IN PHARMACEUTICAL TECHNOLOGY

A Wiley Book Series

Series Editors: Dennis Douroumis, University of Greenwich, UK Alfred Fahr, Friedrich–Schiller University of Jena, Germany Jűrgen Siepmann, University of Lille, France Martin Snowden, University of Greenwich, UK Vladimir Torchilin, Northeastern University, USA

Titles in the Series

Hot-Melt Extrusion: Pharmaceutical Applications Edited by Dionysios Douroumis

Drug Delivery Strategies for Poorly Water-Soluble Drugs Edited by Dionysios Douroumis and Alfred Fahr

Computational Pharmaceutics: Application of Molecular Modeling in Drug Delivery Edited by Defang Ouyang and Sean C. Smith

Pulmonary Drug Delivery: Advances and Challenges Edited by Ali Nokhodchi and Gary P. Martin

Novel Delivery Systems for Transdermal and Intradermal Drug Delivery Edited by Ryan Donnelly and Raj Singh

Forthcoming titles:

In Vitro Drug Release Testing of Special Dosage Forms Edited by Nikoletta Fotaki and Sandra Klein

Drug Delivery Systems for Tuberculosis Prevention and Treatment

Editor

ANTHONY J. HICKEY RTI International, Research Triangle Park, NC, USA

Consulting Editors

AMIT MISRA CSIR Central Drug Research Institute, Lucknow, India

P. BERNARD FOURIE University of Pretoria, Pretoria, South Africa

WILEY

This edition first published 2016 © 2016 John Wiley & Sons, Ltd.

Registered Office

John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

The advice and strategies contained herein may not be suitable for every situation. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information reganization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising herefrom.

Library of Congress Cataloging-in-Publication data applied for

ISBN: 9781118943175

A catalogue record for this book is available from the British Library.

Set in 10/12pt Times by SPi Global, Pondicherry, India

10 9 8 7 6 5 4 3 2 1

Contents

Fo Sei	rewoi	Contribu rd Preface	utors	xvi xviii xxi xxii
1			n: A Guide to Treatment and Prevention of Tuberculosis	
			rinciples of Dosage Form Design and Delivery	1
		Hickey		
	1.1			1
	1.2	-	e Form Classification	3
			Dosage Forms	3
	1.3		olled and Targeted Delivery	5
	1.4	•	logical and Disease Considerations	6
	1.5	-	peutic Considerations	7
	1.6	Conclu	ision	8
	Refe	erences		8
Se	ction	1 Pat	hogen and Host	11
2	Hos	t Patho	gen Biology for Airborne Mycobacterium tuberculosis:	
	Cell	ular an	d Molecular Events in the Lung	13
	Euse	ondia A	rnett, Nitya Krishnan, Brian D. Robertson and Larry S. Schlesinger	
	2.1	Introd	uction	13
	2.2	Lung		14
		2.2.1	Alveoli	16
		2.2.2	The Different Lung Macrophages	17
		2.2.3	Other Immune Cells in the Lung	17

	2.3	General Aspects of Mucus and Surfactant	17				
	2.4		18				
	2.5	M. tuberculosis Interaction with the Lung Macrophage	19				
		2.5.1 Initial Interactions Following Inhalation	19				
		2.5.2 Interactions with the Macrophage	19				
	2.6	<i>M. tuberculosis</i> Interaction with other Respiratory Immune Cells	23				
		2.6.1 Neutrophils	23				
		2.6.2 Dendritic Cells	24				
		2.6.3 NK Cells	25				
		2.6.4 B Cells	26				
		2.6.5 T Cells	27				
	2.7	TB Granuloma	29				
	2.8	Conclusion	30				
	Refe	prences	30				
3	Ani	mal Models of Tuberculosis	48				
		id N. McMurray					
	3.1	Introduction	48				
	3.2	What is an Animal Model of TB?	49				
	3.3	How are Animal Models of TB Used?	50				
	3.4	TB Animal Models Currently Used for TB Drug and Vaccine Evaluation	51				
		3.4.1 Guinea Pig	53				
		3.4.2 Mouse	54				
		3.4.3 Non-human Primate	55				
		3.4.4 Rabbit	56				
		3.4.5 Zebrafish	57				
		3.4.6 Rat	57				
		3.4.7 Domestic Animals and Wildlife Reservoirs	58				
	3.5	Summary	58				
	Refe	erences	59				
Se	ction	2 Immunological Intervention	67				
4	Vac	cine Preparation: Past, Present, and Future	69				
	Dominique N. Price, Nitesh K. Kunda, Amber A. McBride and Pavan Muttil						
	4.1	Introduction	69				
	4.2	Early Efforts in TB Vaccine Development	71				
		4.2.1 Early BCG Formulation and Manufacturing	71				
		4.2.2 History of the BCG Vaccine and Routes of Administration	72				
		4.2.3 Quality Control Issues	72				
	4.3	Current BCG Vaccine Formulation	73				
		4.3.1 BCG Vaccine Strain Variability	73				
		4.3.2 BCG Lyophilization for Stability	73				
		4.3.3 Manufacturing Process	74				
		4.3.4 Packing and Storage	75				
		4.3.5 Transportation	75				
		4.3.6 Needle-stick Issues	76				

	4.4	Novel TB Vaccination Strategies	76
		4.4.1 Formulation and Stabilization Techniques	78
		4.4.2 Manufacturing of TB Vaccines	81
		4.4.3 Whole-Cell Vaccine	82
		4.4.4 Subunit Vaccines	83
		4.4.5 Regulatory Approval Process	83
		4.4.6 Vaccine Packaging	84
	4.5	Future Perspective	84
	4.6	Conclusions	85
	Refe	prences	85
5	ТВ	Vaccine Assessment	91
	And	re G. Loxton, Mary K. Hondalus and Samantha L. Sampson	
		Introduction	91
	5.2	Preclinical Vaccine Assessment	92
		5.2.1 Murine Model	93
		5.2.2 Guinea Pig Model	94
		5.2.3 Cattle Model	94
		5.2.4 Non-human Primate Model	95
	5.3		97
		5.3.1 Human Clinical Trials and Phases of Testing	97
		5.3.2 Live Attenuated Vaccine Candidates	97
		5.3.3 Viral Vectored Subunit Vaccines	99
		5.3.4 Adjuvanted Subunit Vaccines	100
		5.3.5 Therapeutic Vaccines	101
		5.3.6 Route of Immunization	101
	5.4	Laboratory Immunological Analysis and Assessment	
		of Vaccine Trials	102
		5.4.1 Decision on Population of Interest	102
		5.4.2 Detection of Infection	102
		5.4.3 Detection of Protective Immunity	102
	5.5	How well do the Available Preclinical Models Predict Vaccine	100
	DC	Success in Humans?	103
	Refe	prences	105
Se	ction	3 Drug Treatment	111
6	Test	ing Inhaled Drug Therapies for Treating Tuberculosis	113
		n F. Young, Anthony J. Hickey and Miriam Braunstein	
	6.1	Introduction	113
	6.2	The Need for New Drug Treatments for Tuberculosis	114
	6.3	Inhaled Drug Therapy for Tuberculosis	114
	6.4	Published Studies of Inhalation Therapy for TB	115
	6.5	The Guinea Pig Model for Testing Inhaled Therapies for TB	116
	6.6	Guinea Pig Study Design	117
	6.7	Purchase and Grouping Animals	118
	6.8	Infecting Guinea Pigs with Virulent Mycobacterium tuberculosis	118

	6.9	Dosin	g Groups of Guinea Pigs with TB Drugs	119
	6.10	Collec	cting Data	121
	6.11	Aeros	ol Dosing Chambers and Practice	122
		6.11.1	Study Timing with Regard to Scale of Manufacturing	122
		6.11.2	Animal Model Selection	123
		6.11.3	Dose and Dosing Regimen	123
	6.12	Nebul	izer Aerosol Delivery Systems for Liquids	123
	6.13	Dry-P	owder Aerosol Delivery Systems for Solids	125
	6.14	Sumn	nary	127
		owledg	ements	127
	Refer	rences		127
7			Pharmacokinetics of Antitubercular Drugs	131
	Maria		him and Lucila Garcia-Contreras	
	7.1		uction	131
	7.2		s Influencing the Pharmacokinetic Behavior of Drugs	132
			Physicochemical Properties of the Drug	132
			Formulation and Routes of Administration	137
			Disease State	138
	7.3		onary Delivery of Anti-TB Drugs	138
	7.4		acokinetic Study Design	140
			Animal Models	140
			Biological Samples	141
			Analytical Method	142
			Calculation of PK Parameters	142
	7.5		cations of PK Parameters on Efficacy	144
			Tissue Samples	144
			Pharmacokinetics of Anti-TB Drug in Granulomas	145
	- (PK/PD Correlations	146
	7.6		Studies (Drugs Administered by Conventional and Pulmonary Routes)	146
		7.6.1	Rifampicin	146
	D C	7.6.2	Capreomycin	151
	Refer	ences		152
8			le Manufacture – Supercritical Fluid, High-Pressure	
		ogeniza		156
			no and Hiroshi Terada	
	8.1	Introd		156
	8.2	-	ration of Nano- and Micro-particles	157
		8.2.1	Microparticles Prepared by a Supercritical Antisolvent–Drug	1
			Excipient Mixing (SAS–DEM) Technique	157
		8.2.2	Nanoparticles Prepared by a Supercritical Fluid (SCF) Technique	157
		8.2.3	Nanosuspension	158
		8.2.4	Liposomes	159
	Refer	ences		159

9	-		ng Strategies to Stop Tuberculosis	161		
			ng, Maurizio Ricci and Hak-Kim Chan			
	9.1		uction	161		
	9.2		view of Spray Drying	162		
		9.2.1	Advantages of Spray Drying	163		
		9.2.2	Hardware	163		
			Spray Dryer Classifications	168		
			Process Parameters	170		
			Particle Formation Mechanism	172		
	9.3	Advar	nces in Spray Drying Technology	174		
		9.3.1	(174		
		9.3.2	The Nano Spray Dryer B-90	175		
		9.3.3	Novel Multi-Channel Nozzles	177		
	9.4	Anti-T	Fuberculosis Therapeutics Produced by Spray Drying	179		
		9.4.1	Controlled-Release Microparticles	179		
		9.4.2	Maximal Drug-loaded Microparticles	184		
		9.4.3	Vaccines	186		
	9.5	Concl	usion	187		
	9.6	Ackno	owledgements	187		
	Refer	rences		187		
10	Formulation Strategies for Antitubercular Drugs by Inhalation Francesca Buttini and Gaia Colombo					
		Introd		197		
		-	Delivery of TB Drugs	198		
			ers for Inhalation and Liquids for Nebulization	200		
	10.4		acterial Powders for Inhalation: Manufacturing	202		
	10.5		pirable Microparticles	202		
	10.5		acterial Powders for Inhalation: Devices	• • • •		
	10.6		elivery Strategies	208		
	10.6		usions and Perspectives	211		
	Refer	rences		211		
11			g Combinations	213		
	Sanketkumar Pandya, Anuradha Gupta, Rajeev Ranjan, Madhur Sachan,					
	Atul Kumar Agrawal and Amit Misra					
	11.1	Introd	uction	213		
	11.2	Standa	ard Combinations in Oral and Parenteral Regimens	214		
		11.2.1	Combinations for the Directly Observed Treatment			
			Short-Course (DOTS) Regimen	214		
	11.3	The R	ationale for Inhaled Therapies of TB	216		
		11.3.1	·	218		
		11.3.2		219		
		11.3.3		220		

	11.4	Combinations of Anti-TB Drugs with Other Agents	222		
		11.4.1 Drugs that Primarily Affect the Pathogen	222		
		11.4.2 Drugs that Affect Host Responses	223		
		11.4.3 Drugs that Affect both Host and Pathogen	224		
	11.5	Formulation of Inhaled Drug Combinations	224		
		11.5.1 Excipient-free Formulations	224		
		11.5.2 Applications of Excipients	225		
		11.5.3 Preparing Multi-Component Particles and Vesicles	227		
		11.5.4 Shelf Stability	227		
		11.5.5 Drug Release and Pharmacokinetics	228		
		11.5.6 Inhalation Dosimetry	229		
	11.6	Conclusions	230		
	Refer	ences	230		
12	Ion F	airing for Controlling Drug Delivery	239		
	Stefa	no Giovagnoli, Aurélie Schoubben and Carlo Rossi			
	12.1	Introduction	239		
	12.2	Ion Pairing Definitions and Concepts	240		
		12.2.1 Ion Pairing as Physicochemical Tuning Tool	241		
		12.2.2 Metal Ion Complexation	242		
		12.2.3 Some Considerations on Ion Pair and Metal Complex Stability	244		
	12.3	Ion Pairs, Complexes and Drug Delivery	245		
		12.3.1 Oral Route	245		
		12.3.2 Transdermal/Dermal and Mucosal Route	246		
		12.3.3 Parenteral Route	247		
		12.3.4 The Pulmonary Route and Infectious Diseases	247		
		12.3.5 Toxicity Considerations	248		
	12.4	Remarks	252		
	Refer	ences	254		
13	Unde	erstanding the Respiratory Delivery of High Dose			
	Anti-Tubercular Drugs				
	Shyai	nal C. Das and Peter J. Stewart			
	13.1	Introduction	258		
	13.2	Tuberculosis	259		
	13.3	Drugs Used to Treat Tuberculosis, Doses, Challenges			
		and Requirements for Therapy in Lungs	260		
		13.3.1 Current TB Treatment Regimen	260		
		13.3.2 Challenges of Conventional Oral and Parenteral Therapy	261		
		13.3.3 Rationale for Respiratory Delivery	261		
	13.4	Approaches for Respiratory Delivery of Drugs	262		
	13.5	Current DPI Formulations and Their Mechanisms of Aerosolization	262		
	13.6	DPI Formulations for Tuberculosis and Requirements	264		
	13.7	Issues to Consider in Respiratory Delivery of Powders for Tuberculosis	264		
	13.8	Relationship between De-agglomeration and Tensile Strength	266		
	13.9	Strategies to Improve De-agglomeration	268		

	13.10	DPI Fo	ormulations having High Aerosolization	269
	13.11	Device	s for High Dose Delivery	270
	13.12	Future	Considerations	271
	Refere	nces		272
Sec	tion 4	Alterna	tive Approaches	275
14			cteriophage Aerosols for the Prevention and Treatment	
		oerculosi		277
			full and Reinhard Vehring	
	14.1	Introdu		277
			Bacteriophages	277
			Mycobacteriophages	280
		14.1.3		202
		1 4 1 4	Infection <i>in vivo</i>	282
	14.0	14.1.4	Mycobacteriophages and TB Diagnosis	282
	14.2		ent or Prevention of Tuberculosis Using Phage-based Agents	282
			Bacteriophages as Therapeutic Agents	282
		14.2.2	Prospects for Using Mycobacteriophages for Therapy	202
	14.2	Calast:	or TB Prevention	283
	14.3		on of Mycobacteriophages	284
	14.4	-	atory Drug Delivery of Phages	285
	14.5	wledgen	ary and Outlook	288 288
	Refere	-	lents	288
	Kelele	nces		200
15		_	rticles as Potential Vaccines	293
		t DeLong		••••
	15.1	Introdu		293
	15.2	Nanop		293
	15.3		Vanoparticle Vaccines	294
	15.4	-	ssion of Nanomedicines into the Clinic	295
	15.5		ability Problem	295
	15.6		elivery Problem	298
	15.7		s Targeting Agent or Adjuvant?	298
	15.8		nges for RNA Nanoparticle Vaccine Characterization	300
	15.9 Deferre		Horizon	301 301
	Refere	nces		501
16			ary Host-Directed Therapies for Tuberculosis	
		rosol De	•	307
			zalez-Juarrero	
	16.1	Introdu		307
		16.1.1	Tuberculosis Disease and Control	308
		16.1.2	Chemotherapy and Host Immunity to Tuberculosis	308
		16.1.3	Aerosol Delivery of Host-Directed Therapies for Tuberculosis	
			Treatment	309

	16.2	Lung Immunity to Pulmonary M. tuberculosis Infection	309
		16.2.1 Overview	309
		16.2.2 Influence of Lung Alveoli Environment on Bacilli Survival	
		and its Impact on Tuberculosis Chemotherapy	310
		16.2.3 Potential Targets for Host-Directed Therapy	311
	16.3		313
		16.3.1 Previous Studies via Systemic Administration of	
		Host-Directed Therapies	313
		16.3.2 Previous Studies via Aerosol Delivery of Host-Directed	
		Therapies	315
	16.4	Limitations of Preclinical Studies to Develop Inhalational	
		Host-Directed Therapies for Tuberculosis	317
	16.5	0	
		as Host-Directed Therapies for Tuberculosis	318
	Ackn	owledgements	319
	Refer	rences	319
Sec	tion 5	Future Opportunities	325
17	Treat	tments for Mycobacterial Persistence and Biofilm Growth	327
	David	d L. Hava and Jean C. Sung	
	17.1	Introduction	327
	17.2	Mycobacterial Persistence and Drug Tolerance	328
	17.3	Mycobacterial Multicellular Growth	329
	17.4	Mycobacterial Lipids Involved in Biofilm Formation	330
	17.5	Therapies to Treat Mycobacterial Biofilms and Persistence	332
		17.5.1 Therapies to Treat Mycobacterial Biofilms	332
		17.5.2 Therapies to Disrupt Nutrient Acquisition	
		and Persistence	334
		17.5.3 Treatments for Biofilm Dispersion	335
		17.5.4 Treatments Derived from Host Innate Defenses	336
		17.5.5 Treatments with Inhaled Antibiotics	337
	17.6	Conclusion	339
	Refer	rences	339
18	Direc	cted Intervention and Immunomodulation against	
	Pulm	nonary Tuberculosis	346
	Domi	inique N. Price and Pavan Muttil	
	18.1	Introduction	346
	18.2	TB Immunology	347
		18.2.1 Early Events of Infection	347
		18.2.2 Delayed Adaptive Immunity	348
		18.2.3 Humoral Immunity and Innate Lymphocytes	348
		18.2.4 Latent Infection	349
		18.2.5 Correlates of Protection and Tolerance	350
		18.2.6 Natural Immunity against TB Infection	351

	18.3	Animal	Models of Immunotherapies and Vaccines for TB	351
		18.3.1	Mouse Model	352
		18.3.2	Guinea Pig Model	352
		18.3.3	Non-human Primates Model	352
	18.4	The Cur	rent TB Vaccine – Bacille Calmette Guérin	353
		18.4.1	BCG Vaccine History	353
		18.4.2	Alternative Routes of BCG Delivery	353
		18.4.3	Failures of BCG	354
	18.5	Other Va	accines Platforms	357
		18.5.1	Live Bacterial Vaccines	357
		18.5.2	Inactivated Whole-cell Vaccines	358
		18.5.3	Viral Vector-based TB Vaccines	359
		18.5.4	Heterologous Prime-boost Vaccination Strategy in TB	360
	18.6		ary Immunization	361
		18.6.1	Biomimicry: Harnessing Natural Immunity for Protection against TB	361
		1862	Pulmonary Immunization for Global Protection	361
			Safety Concerns for Pulmonary Immunization	363
			Role of Adjuvants	363
			Live vs Dead Vaccines	364
	18.7		otherapeutic Agents against TB	364
	10.7		Cytokines	365
			Vitamin D Therapy	366
			Re-purposed Drugs	366
			Stem Cell Therapy	366
	18.8			367
	Refer			367
Sect	tion 6	Clinical	l Perspective	379
19	Clini	cal and P	Public Health Perspectives	381
	Ruva		athavitharana and Edward A. Nardell	
	19.1	Introduc	etion	381
	19.2	U		382
	19.3		Considerations	382
			Pill Burden and Fixed-dose Combinations	382
			Non-adherence and Medication Monitoring	383
			Intermittent Therapy	383
			Drug Toxicity	384
			Drug Absorption and Therapeutic Drug Monitoring	384
	19.4		Iealth Considerations	385
			DOTS	385
			Community-based Therapy	386
			Incentives and Enablers to Promote Adherence	386
	19.5		Drugs and Other Alternative Delivery Systems	387
		19.5.1	Possible Advantages	387

		19.5.2	Concerns and Limitations	388	
		19.5.3	Acceptance of Novel Therapies	388	
	19.6	Clinical	l Trials of Inhaled Injectable Drugs	388	
		19.6.1	Capreomycin Phase 1 Clinical Study	390	
		19.6.2	Inhaled Therapy to Reduce Transmission, especially of Highly		
			Drug-resistant Strains – a Trial of Inhaled Colistin		
			(or Polymxyin E)	391	
	19.7	Other N	Novel Delivery Strategies	393	
	19.8	Pediatri	ic Delivery Systems	393	
	19.9	Conclus	sion	394	
	Refer	rences		394	
20	Conc	luding F	Remarks: Prospects and Challenges for Advancing		
		-	d Vaccine Delivery Systems into Clinical Application	400	
	P. Bernard Fourie and Richard Hafner				
	20.1 Introduction		ction	400	
	20.2 Progress in the Formulation and Manufacturing of Drugs and Va		s in the Formulation and Manufacturing of Drugs and Vaccines		
		for Tub	erculosis	401	
		20.2.1	Inhaled Drugs and Drug Combinations	401	
	20.3	Conside	erations in the Development of TB Drug and Vaccine		
		Deliver	y Options	404	
		20.3.1	Lung Biology and Pulmonary Administration of Drugs		
			and Vaccines	404	
		20.3.2	Choice of Animal Model in the Evaluation of Drug		
			and Vaccine Delivery Systems	405	
		20.3.3	Demonstrating Bioequivalence and Clinical Efficacy of		
			Inhaled Drugs to Oral/Parenteral Dosage Forms	406	
		20.3.4	Inhaled Vaccines for TB – are there Potential Advantages?	408	
		20.3.5	Safety of Pulmonary Vaccination	409	
	20.4	Conclu	ding Remarks	410	
	Refer	rences		411	
T., J				415	

Index

415

List of Contributors

Atul Kumar Agrawal, CSIR Central Drug Research Institute, Lucknow, India

Eusondia Arnett, Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus, OH, USA

Miriam Braunstein, Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, NC, USA

Francesca Buttini, Department of Pharmacy, University of Parma, Viale delle Scienze, Parma, Italy *and* Institute of Pharmaceutical Science, King's College London, London, UK

Hak-Kim Chan, Advanced Drug Delivery Group, Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia

Gaia Colombo, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara, Ferrara, Italy

Shyamal C. Das, School of Pharmacy, University of Otago, Dunedin, New Zealand

Robert DeLong, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA

P. Bernard Fourie, Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa

Lucila Garcia-Contreras, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA

Stefano Giovagnoli, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy

Mercedes Gonzalez-Juarrero, Mycobacteria Research Laboratories, Microbiology Immunology and Pathology, Colorado State University, Fort Collins, CO, USA

Anuradha Gupta, CSIR Central Drug Research Institute, Lucknow, India

Richard Hafner, National Institute of Allergy and Infectious Disease *and* National Institutes of Health, Bethesda, MD, USA

Graham F. Hatfull, Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA

David L. Hava, Pulmatrix Inc., Lexington, MA, USA

Anthony J. Hickey, Discovery Sciences Technologies Group, RTI International, Research Triangle Park, NC, USA

Mary K. Hondalus, Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA

Mariam Ibrahim, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA

Nitya Krishnan, MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, UK

Nitesh K. Kunda, Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, USA

Andre G. Loxton, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa

Kimiko Makino, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Japan

Amber A. McBride, Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, USA

David N. McMurray, Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, College Station, TX, USA

Amit Misra, CSIR Central Drug Research Institute, Lucknow, India

Pavan Muttil, Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, USA

Edward A. Nardell, Division of Global Health Equity, Brigham and Women's Hospital, Boston, MA, USA

Ruvandhi R. Nathavitharana, Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, MA, USA

Sanketkumar Pandya, CSIR Central Drug Research Institute, Lucknow, India

Dominique N. Price, Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, USA

Rajeev Ranjan, CSIR Central Drug Research Institute, Lucknow, India

Maurizio Ricci, Dipartimento di Chimica e Tecnologia del Farmaco, Università degli Studi di Perugia, Perugia, Italy

Brian D. Robertson, MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London, UK

Carlo Rossi, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy

Madhur Sachan, CSIR Central Drug Research Institute, Lucknow, India

Samantha L. Sampson, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa

Larry S. Schlesinger, Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus, OH, USA

Aurélie Schoubben, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy

Peter J. Stewart, Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia

Jean C. Sung, Pulmatrix Inc., Lexington, MA, USA

Hiroshi Terada, Niigata University of Pharmacy and Applied Sciences, Niigata, Japan

Reinhard Vehring, Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada

Jennifer Wong, Advanced Drug Delivery Group, Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia

Ellen F. Young, Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, NC, USA

Foreword

"As a physician, I have seen how much pain TB patients experience after months of treatment by intramuscular injection (IM). It is almost impossible to inject by IM after one month. I think that aerosol delivery is the future for TB drug delivery because it is directly delivered to the target organ, and it is even more important for patients who have a hard time to take pills. I believe that aerosol delivery of TB drug(s) will be a milestone in TB treatment if successful." Li Liang, Vice Director Beijing Chest Hospital

Having plagued societies for centuries, tuberculosis (TB) is one of the oldest diseases known to man. While the first drug effective against TB was not developed until 1943, over the next three decades many additional anti-TB drugs were discovered and developed that significantly reduced morbidity and mortality. Yet today it is estimated that one-third of the world's population is infected with *Mycobacterium tuberculosis*. The most recent World Health Organization's report indicated that TB killed 1.5 million people in 2014, making it a larger cause of death than HIV/AIDS, which was responsible for 1.2 million deaths. Thus, despite the perception that tuberculosis is a disease of the past or a disease of only low-income countries, it remains a major global public health challenge that carries significant global and domestic disease burdens and risks. Because serious societal challenges remain, including extreme poverty, inequity, and disproportionate TB burdens in women and children, TB will remain a significant challenge for the foreseeable future. Furthermore, the face of TB is changing. While global numbers of new TB cases and TB deaths have decreased at an average rate of at least 2 percent per year, TB strains that are resistant to the most commonly used, inexpensive, and least-toxic TB drugs have been identified in almost every country. These *multidrug-resistant TB* (MDR-TB) strains as well as the growing numbers of the even more serious *extensively drug-resistant TB* (XDR-TB) strains have been reported from nearly all countries. MDR-TB and XDR-TB cases can be exceedingly difficult and expensive to diagnose and treat successfully.

One of the major barriers to treatment of MDR-TB today is the high cost of second-line drugs that may be 300 to 3000 times more expensive than first-line therapy. Second-line regimens which are administered for between 18 to 24 months are associated with significant adverse events that often lead to discontinuation of treatment. Despite prolonged treatment duration, these regimens are not associated with high cure rates and incomplete, sub-optimal therapy of MDR-TB likely contributes to emergence of XDR-TB. In the face of *M. tuberculosis* strains resistant to all known classes of anti-TB drugs, leaders in global public health are asking whether XDR-TB is signaling a return to a pre-antibiotic era in TB control. Thus the need for new TB drugs has never been more urgent. Importantly, the search for new regimens and alternative strategies requires a thorough understanding of the preparation and performance of dosage forms.

Recent important gains in TB discovery research, product development, and implementation science and regulatory approval of the first new TB drug in 30 years give reason for optimism. Systematic studies of the biological effects of TB infection are beginning to shed light on the complexity of the human immune response and the dynamic nature of the disease process. As the disease becomes better understood in terms of both pathogen and host molecular biology there is an opportunity for new pharmaceutical approaches based on the route and means of delivery of a range of novel therapeutic agents. New studies are identifying molecules that can be used to diagnose TB or provide the basis of new TB vaccine research strategies, as well as critical biological processes against which new drug targets can be identified. Indeed the current global TB pipeline has multiple candidates in clinical trials – but there are few novel molecular entities. Many more candidates with novel mechanisms of action and chemical diversity are needed to overcome historical drug development attrition rates and emergence of resistance.

In the past, natural products have played a pivotal role in antibiotic drug discovery with most antibacterial drugs being derived from a natural product or natural product lead. A key challenge in the development of natural products as drugs is to combine their inherent antibacterial properties with physicochemical properties that confer oral bioavailability, an attribute that is highly desirable for treatment of MDR-TB. Many drugs are lost to development due to lack of oral bioavailability. However, new approaches to TB drug delivery as described in the current volume have the potential to overcome this barrier. New developments in drug delivery systems and technologies open an exciting avenue that may potentially lead to the repurposing of old drugs and re-evaluation of potential new drugs hitherto thought undeliverable.

Finally, while BCG vaccine remains the world's most widely used vaccine and protects children against disseminated TB and meningitis, its effectiveness in preventing disease in adults varies widely. New candidate vaccines are being developed that provide protection against disease and possibly infection in animal models. Since the battle between the pathogen and immune response in TB is fought out largely in the lung, it will be essential both to understand protective immune responses in the lung and how to deliver new vaccine candidates to generate protection in the lung. This is another of the key issues in TB treated in this book.

This is a timely volume addressing the application of pharmaceutical sciences and dosage-form design to the development of novel strategies for TB therapy. This volume is arranged to consider the nature of disease, immunological responses, vaccine and drug

xx Foreword

delivery, disposition and response. In addition to conventional treatments some novel approaches are presented that if successful would create rapid development pathways. The contributors are drawn from the relevant fields of microbiology, immunology, molecular biology, pharmaceutics, pharmacokinetics, and chemical and mechanical engineering. No doubt the knowledge shared by the authors will have a major impact upon development of urgently needed new tools to address the continuing global crisis of TB and the increasing threat of drug-resistant strains.

Gail H. Cassell, Ph.D., D.Sc. (hon)

Executive Vice President TB Drug Development Infectious Disease Research Institute Senior Lecturer, Department of Global Health and Social Medicine Harvard Medical School Vice President Scientific Affairs, Eli Lilly and Company (ret.)

Barbara E. Laughon, Ph.D.

Senior Scientist for TB Drug Development Partnerships in the Office of the Director Division of Microbiology and Infectious Diseases at the National Institute of Allergy and Infectious Diseases U.S. National Institutes of Health

Barry Bloom, Ph.D.

Harvard University Distinguished Service Professor and Joan L. and Julius H. Jacobson Professor of Public Health Harvard T. H. Chan School of Public Health

Li Liang, M.D.

Vice Director, Beijing Chest Hospital Vice Director, Clinical Center on Tuberculosis, China CDC Designated Director General, TB Society of China Medical Association

Advances in Pharmaceutical Technology: Series Preface

The series *Advances in Pharmaceutical Technology* covers the principles, methods and technologies that the pharmaceutical industry uses to turn a candidate molecule or new chemical entity into a final drug form and hence a new medicine. The series will explore means of optimizing the therapeutic performance of a drug molecule by designing and manufacturing the best and most innovative of new formulations. The processes associated with the testing of new drugs, the key steps involved in the clinical trials process and the most recent approaches utilized in the manufacture of new medicinal products will all be reported. The focus of the series will very much be on new and emerging technologies and the latest methods used in the drug-development process.

The topics covered by the series include the following:

- *Formulation:* The manufacture of tablets in all forms (caplets, dispersible, fast-melting) will be described, as will capsules, suppositories, solutions, suspensions and emulsions, aerosols and sprays, injections, powders, ointments and creams, sustained release and the latest transdermal products. The developments in engineering associated with fluid, powder and solids handling, solubility enhancement and colloidal systems, including the stability of emulsions and suspensions, will also be reported within the series. The influence of formulation design on the bioavailability of a drug will be discussed and the importance of formulation with respect to the development of an optimal final new medicinal product will be clearly illustrated.
- **Drug Delivery:** The use of various excipients and their role in drug delivery will be reviewed. Amongst the topics to be reported and discussed will be a critical appraisal of the current range of modified-release dosage forms currently in use and also those under development. The design and mechanism(s) of controlled-release systems including macromolecular drug delivery, microparticulate-controlled drug delivery, the delivery of biopharmaceuticals, delivery vehicles created for gastrointestinal tract-targeted delivery, transdermal delivery and systems designed specifically for drug delivery to the lung will

all be reviewed and critically appraised. Further site-specific systems used for the delivery of drugs across the blood-brain barrier including dendrimers, hydrogels and new innovative biomaterials will be reported.

Manufacturing: The key elements of the manufacturing steps involved in the production of new medicines will be explored in this series. The importance of crystallization; batch and continuous processing; seeding; and mixing including a description of the key engineering principles relevant to the manufacture of new medicines will all be reviewed and reported. The fundamental processes of quality control including good laboratory practice, good manufacturing practice, Quality by Design, the Deming Cycle, Regulatory requirements and the design of appropriate robust statistical sampling procedures for the control of raw materials will all be an integral part of this book series.

An evaluation of the current analytical methods used to determine drug stability, as well as the quantitative identification of impurities, contaminants and adulterants in pharmaceutical materials will be described, as will the production of therapeutic bio-macromolecules, bacteria, viruses, yeasts, moulds, prions and toxins through chemical synthesis and emerging synthetic/molecular biology techniques. The importance of packaging including the compatibility of materials in contact with drug products and their barrier properties will also be explored.

Advances in Pharmaceutical Technology is intended as a comprehensive one-stop shop for those interested in the development and manufacture of new medicines. The series will appeal to those working in the pharmaceutical and related industries, both large and small, and will also be valuable to those who are studying and learning about the drug-development process and the translation of those drugs into new life-saving and life-enriching medicines.

> Dennis Douroumis Alfred Fahr Jűrgen Siepmann Martin Snowden Vladimir Torchilin

Preface

Tuberculosis remains the world's most serious cause of disease due to a single infectious micro-organism. Despite the development of a vaccine almost a century ago and with the advent of drug treatment in the intervening period we appear to be no closer to eradicating this disease. New vaccine antigens and novel drugs have been the major focus in prevention and treatment of tuberculosis. While great effort has been expended and progress has been made in drug therapy it has occurred at a remarkably slow pace. Indeed, the challenges posed by multiple and extensively drug-resistant disease and co-infection with human immuno-deficiency virus have rendered the need for novel approaches urgent.

As the disease becomes better understood in terms of both pathogen and host molecular biology there is an opportunity for new pharmaceutical approaches based on the route and means of delivery of a range of novel therapeutic agents.

This volume is arranged to consider the nature of disease, immunological responses, vaccine and drug delivery, disposition and response. In addition to conventional treatments some novel approaches are presented that, if successful, would create rapid development pathways. The contributors are drawn from the relevant fields of microbiology, immunology, molecular biology, pharmaceutics, pharmacokinetics, and chemical and mechanical engineering.

The role of therapeutic targeting strategy, dosage-form design and route of administration in the effective treatment of tuberculosis has been a topic of personal interest that we have shared for approaching twenty years and it is our privilege to be able to bring current thinking on a range of topics into one volume. We owe a great deal to our friends and colleagues most of whom are authors of chapters in this volume who attended the meetings on 'Inhaled Tuberculosis Therapy' held in New Delhi and Tokyo in 2009 and 2013, respectively. Without their insight, enthusiasm and encouragement we would not have been able to complete this text.

xxiv Preface

It has been a great pleasure working with the staff at Wiley on the preparation of the book and we are particularly grateful for the contributions of Samanaa Srinivas, Emma Strickland and Rebecca Stubbs. Many thanks for their patience and accommodation throughout the process.

> Anthony J. Hickey, Research Triangle Park, NC, USA

> > Amit Misra, Lucknow, India

P. Bernard Fourie, Pretoria, South Africa

July 2016

1

Introduction: A Guide to Treatment and Prevention of Tuberculosis Based on Principles of Dosage Form Design and Delivery

A.J. Hickey

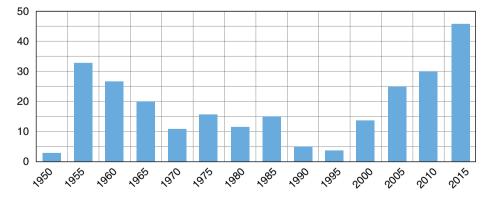
RTI International, RTP, NC, USA

1.1 Background

Tuberculosis has been a scourge of mankind for millennia. The discovery by Koch of the causative organism *Mycobacterium tuberculosis* at the end of the nineteenth century was hailed as the discovery that would rapidly lead to its eradication [1]. Despite the speed of development of a vaccine, attenuated *Mycobacterium bovis* (bacille Calmette Guerin), and the discovery of a therapeutic drug within only a few decades, circumstances that could not have been foreseen with respect to new strains, multiple-drug resistance and co-infection with human immunodeficiency virus, have rendered the disease a more complicated challenge than originally envisaged.

As the twentieth century progressed physicians were horrified to discover that the vaccine was not universally protective and that resistance to the drug of choice, streptomycin, was increasing rapidly [2]. These observations led to further activities in both the realm of vaccine and drug development, the latter being the more clinically successful but the former yielding much need information on the pathogen, the host immunity and pathogenesis of disease.

Edited by Anthony J. Hickey, Amit Misra and P. Bernard Fourie.


Drug Delivery Systems for Tuberculosis Prevention and Treatment, First Edition.

^{© 2016} John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.

During this period pharmacy and pharmaceutical dosage form design were also entering a golden age. Manufacturing of drug products or compounding, which was traditionally an activity that took place in a pharmacy, was transferred to an industrial setting. Commercial products involving a variety of dosage form were being standardized to allow production on a scale previously unknown. The introduction of legislation regulating the quality of products, particularly to address adulteration and ensure safety, commenced most notably in the 1930s with the Food Drug and Cosmetics Act of the United States [3]. In the latter half of the twentieth century the underlying physical chemistry and chemical engineering required to manufacture under rigorously controlled conditions that ensured the quality, uniformity, efficacy and safety of the product were developed.

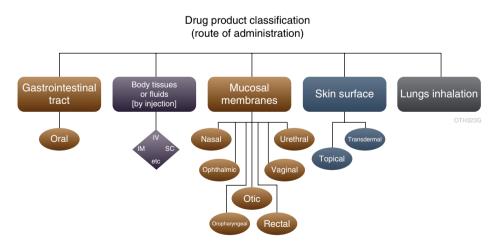
With this background it is noteworthy that the parallel developments in dosage form and tuberculosis (TB) treatment led to their convergence in the early part of the twentieth century when reproducible drug delivery could only be achieved by oral administration (tablets and capsules) or parenteral administration (injection). As a consequence, other routes and means of delivery were rarely, if ever, considered for the delivery of drugs or vaccines. This can be contrasted with the products of biotechnology developed in the late twentieth century for which both oral and parenteral administration were rarely feasible. Of course, the ease of delivery and the required dose were the leading reasons for the selection of these routes of administration.

There was a brief period in the middle of the twentieth century when the absence of new drugs and the increase in drug resistance led to studies of inhaled therapy for tuberculosis but the development of new drugs resulted in this approach being abandoned and only revisited during times when there were no apparent oral and parenteral dosage forms to meet the immediate challenge. Figure 1.1 presents the number of publications that can be found in the accessible literature for the period since the initial rise in drug-resistant tuberculosis in the 1940s. A subsequent peak appears following the rise in human immunodeficiency virus co-infected patients and multiple-drug-resistant tuberculosis requiring alternative therapeutic strategies.

Figure 1.1 Reports of Aerosol Delivery Extracted from PubMed from the earliest citations in the modern literature

1.2 Dosage Form Classification

The route of administration by which drugs are delivered dictates the dosage form employed. The United States Pharmacopeia has classified therapeutic products in terms of three tiers: route of administration, dosage forms and performance test which captures all conventional and most novel strategies for disease treatment as shown in Figure 1.2 [4]. The performance measure of significance for the majority of dosage forms is the dissolution rate which, together with the biological parameter of permeability for those drugs presented at mucosal sites, dictates the appearance of the drug in the systemic circulation and ultimately its therapeutic effect.


1.2.1 Dosage Forms

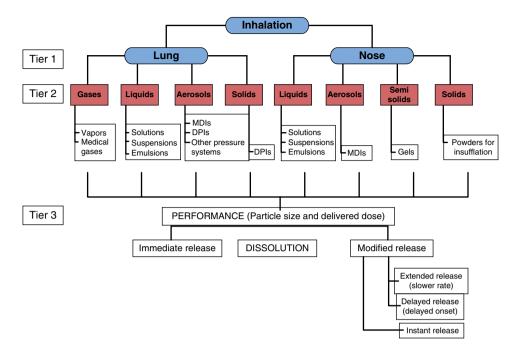
It would not be possible to do justice to the science and technology underpinning the wide range of dosage forms available for drug delivery. However, to put those used in the treatment and prevention of tuberculosis in context a brief review of the key components and processes involved may be helpful to the reader.

1.2.1.1 Solid Oral Dosage Forms

These consist of a mixture of powders each of which is intended to confer a desirable property on the dosage form that leads to effective manufacture, drug delivery and therapeutic effect [5, 6].

In addition to the drug substance which must be well characterized, glidants help the powder flow which aids in filling, surfactants enhance dissolution and diluents are considered inert bulking agents that assist in metering small quantities of drug during filling and may help in compaction. Binding agents, as the name suggests, help in binding all components into a granule or tablet to preserve the integrity of the dosage form on storage and

Figure 1.2 United States Pharmacopeia Taxonomy of Dosage Forms structured from: Tier 1 – Route of Administration; through Tier 2 – Dosage Form to; Tier 3 – Performance (not shown). (Modified from ref. [4] Courtesy of Margareth Marques and the USP)

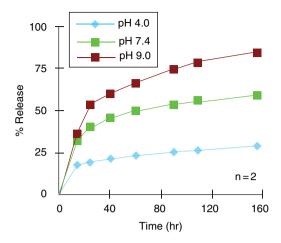

prior to administration. The common dosage forms are capsules and tablets that differ in that the former consists of a powder or granulated loose fill while the latter requires compaction [5, 6]. The most common capsule is prepared with gelatin and filled with the optimized formulation of drug in excipients to allow for stability on storage and reproducible and efficacious dose delivery. Tablets also contain the drug and excipient compacted into a single solid dosage form that has desired performance properties in terms of stability, dissolution, dose delivery and efficacy. Biopharmaceutical considerations are of great significance to the disposition of drugs from solid oral dosage forms. Their behavior under the wide range of pH conditions (1–8) in the gastro-intestinal tract and an understanding of the influence of anatomy and physiology on local residence time and regions of absorption are significant considerations in optimization of the dosage form. Relatively recently the publication of Lipinski's rules [7] and the biopharmaceutical classification system [8] have been an enormous help in the selection of drugs and requirements of formulations that correlate with successful drug delivery by the oral route of administration.

1.2.1.2 Parenteral Dosage Forms

These are intended for injection either directly into the blood circulation [intravenous (IV)] or at a site from which the drug can readily be transported to the vasculature as would occur following subcutaneous or intramuscular administration [9]. There are other infrequently employed (intraperitoneal) or specialized (intrathecal or intratumoral) sites of injection that are not relevant to tuberculosis therapy. The key elements of a parenteral dosage form are the requirement for a formulation suitable for delivery from a syringe through a needle to the intended site. The formulation can range from simple solutions to a variety of dispersed systems (emulsions, micelles, liposomes and solid suspensions). Important physico-chemical properties must be considered to avoid local tissue damage on injection. Primarily these relate to the requirement to approximate physiological pH and ionic strength (tonicity) [10]. However, there are other safety considerations for injectable dispersed systems that relate to physical obstruction of capillaries (embolism), as well as uptake by the reticulo-endothelial system (inflammation, irritation or immune responses) [11]. The composition of any excipients, carrier systems and the nature of the injected active ingredient will dictate expectations of any of these responses.

1.2.1.3 Inhaled Dosage Forms

These deliver droplets or particles to the pulmonary mucosa that are then distributed locally and transported to the systemic circulation by absorption. The most important criteria for the efficacy of inhaled therapeutics are the aerodynamic particle size distribution and the dose delivered. The particle size range that is targeted for efficient delivery of drug to the lungs is $1-5 \mu m$ [12]. The United States Pharmacopeia has described types of inhaled drug product. Of those shown in Figure 1.3 the most important aerosol products for the treatment of pulmonary disease fall into three categories: metered dose inhalers (MDIs), dry powder inhalers (DPIs), and nebulizer systems. MDIs employ high-vapor-pressure propellant to deliver rapidly evaporating droplets containing the active ingredient; dry powder inhalers deliver particles of drug alone or by the use of a carrier particle; and nebulizers deliver aqueous solutions or suspensions of the active ingredient [12]. It is important to note that the primary performance measures for aerosol systems are aerodynamic particle size distribution and delivered dose since these are determinants of the drug reaching the


Figure 1.3 Dosage forms intended for delivery of drugs to the respiratory tract divided according to the USP taxonomy of route of administration (tier 1), dosage form (tier 2) and performance measures (tier 3)(Modified from Ref. [4] Courtesy of Vinod Shah and the USP)

mucosal site for action or absorption. Owing to the solubility, very small particle size and surface area of inhaled particles and droplets, dissolution is rarely the dominant factor in drug bioavailability. However, where the drug substance exhibits poor solubility or is prepared as a controlled release, dissolution is limited, and formulation dissolution rate will play an important role in location and extent of bioavailability.

Metered dose inhaler formulations are non-aqueous-based solutions or suspensions and in general are limited to delivering boluses of relatively low doses, rarely above a milligram. Dry powder inhalers in which carriers such as lactose particles are employed also deliver boluses of relatively low doses. However, the use of drug alone in engineered particles has increased the potential dose to 100 mg. Nebulizers do not deliver bolus doses, rather they deliver steady-state aerosols from a reservoir until the fixed volume has been depleted. The total dose delivered from these devices is only limited by the rate (liquid volume/time) and duration of delivery. Delivery for 15–20 minutes is commonly conducted, and precedent for the dose of antimicrobial agent has been set at several hundred milligrams.

1.3 Controlled and Targeted Delivery

In the mid-1980s the attention of some researchers turned to controlling the dissolution rate of orally administered drugs to treat tuberculosis by preparing polymeric microparticles [13, 14]. The intent was to more effectively deliver the drug and to potentially increase the duration of action by extending the period that circulating concentrations remained above

Figure 1.4 Dissolution of 7.5% rifampicin in poly(lactide-co-glycolide) in three media of different pH values (4.0, 7.4 and 9.0) (Ref. [15])

the minimum inhibitory concentration. Interestingly, when the dissolution profiles of rifampicin are examined as shown in Figure 1.4, the effect of pH, in the range of relevance to oral delivery, is to lower the dissolution rate and extent at lower pH. This raised the potential not only for controlled but also targeted delivery when particles of similar composition but in a respirable size range were delivered by inhalation. Aerosol particles that do not dissolve immediately when delivered to the lungs are phagocytosed by alveolar macrophages and the low pH (~5.0–5.5) in the endosome presents the opportunity for extended duration of delivery [15]. Therefore, the therapeutic effect will be enhanced in this location within the host cell for *Mycobacterium tuberculosis* [16, 17]. This observation has since launched a wide range of control and targeting strategies (nanoparticles, liposomes, micelles, etc.) for drug delivery to the lungs to treat tuberculosis [18]. The link to observations from oral delivery should not be forgotten. As more potent agents are developed and gastro-intestinal targeting strategies are informed by greater biological and biophysical understanding it is conceivable that lessons from pulmonary delivery can be translated into future options for oral dosage forms.

1.4 Physiological and Disease Considerations

Delivery of drugs by the oral route in tablets or capsules requires that the drug is absorbed and distributed from the gastro-intestinal tract to the systemic circulation where it can subsequently present to infected organs and tissues at concentrations sufficient (above the minimum inhibitory concentration) to treat the infection. The large volume of distribution for systemically circulating drugs currently in use for TB therapy usually requires large amounts of drug in order to achieve therapeutic concentrations. The need for multiple drug therapy for many months is a burden for patients and is seriously exacerbated in those with multiple or extensively drug-resistant disease where many more drugs are administered for even longer periods of time. Simply ingesting the large quantities of medicine required is an ordeal. However, in principle oral delivery remains the simplest means of administration, the least invasive and most convenient approach for the patient, and requires no special storage or disposal requirements.

Parenteral administration by whichever route (commonly subcutaneous, intramuscular, intravenous) ensures the delivery of a controlled dose and as an invasive method circumvents the need for absorption by placing the drug either in or near the circulatory system. However, this approach is quite often painful for the patient and has additional storage and hazardous waste disposal requirements that are not required for other dosage forms.

Tuberculosis is contracted by pulmonary deposition of virulent organisms and the subsequent proliferation of disease from the lungs. The majority of individuals develop natural immunity that clearly originates at the pulmonary mucosa. Consequently, it is reasonable to propose that presentation of vaccines or drugs to this site will offer an advantage in disease prevention or therapy. Inhaled therapy has been well established through the administration of drugs to treat asthma and chronic obstructive pulmonary disease (COPD). More recently, the interest in treating other pulmonary infectious diseases has resulted in the approval of tobramycin to treat *Pseudomonas aeruginosa* in cases of cystic fibrosis [19]. Therefore, the precedent has been set for the delivery of doses of drug sufficient to treat local infection.

1.5 Therapeutic Considerations

When considering a route of administration several practical questions must be considered:

- 1. What is the target?
- 2. What dose is required for therapeutic effect?
- 3. What is the maximum tolerated or feasible dose?
- 4. Are there off-target effects?
- 5. Are there any drug interactions?
- 6. Are there any metabolic considerations?
- 7. Are there drug specific physico-chemical property limitations or advantages?

While there are many means and routes of administration it is generally accepted that for those drugs that are orally bioavailable following ingestion into the gastro-intestinal tract, tablets and capsules are a desirable dosage form. However, not every drug, disease and indication lends itself to oral delivery.

The diversity of geographical locations in which tuberculosis occurs does not support every route of administration equally under all circumstances. It is particularly notable that parenteral products require needles, syringes and, often, cold chain for transport and storage. These requirements add an additional level of complexity in distribution and maintenance of an adequate supply in remote or impoverished locations.

The advent of multiple and extensively drug-resistant disease and the conundrum of treatment that might be effective against latent or persistent disease has been the cause for exploring other routes and means of delivery of drugs, the most notable of which is aerosol therapy to the lungs.

In order to understand the role of the dosage form in effective disease treatment and prevention a range of considerations must be explored. The purpose of this volume is to

examine the pathogenesis of disease, animal models required to adequately assess new approaches, conventional and novel methods of preparing drugs and vaccines for delivery, testing strategies to evaluate the impact of any strategy, new considerations that might complement or disrupt the traditional approach to therapy (immunotherapeutics, biofilm busters, phage therapy) and finally anticipated clinical strategies. This will then serve the purpose of giving those involved in drug and vaccine development, dosage form design and delivery of therapeutic agents a foundation from which to consider the path to new and effective products.

1.6 Conclusion

Tuberculosis therapy and prevention has been driven by major discoveries in basic understanding of the disease, new drugs and potential new vaccines. However, the increase in multiple and extensively drug-resistant tuberculosis, HIV co-infection and absence of an approach to the treatment of latent and persistent disease still confounds our ability to control and ultimately eradicate this disease. The effectiveness of any drug or vaccine is only as good as the ability to deliver it in efficacious doses to the desired site of action which, in turn, is dictated by the nature of the dosage form, the delivery system and the disposition of the active agent following delivery. The intent of this volume is to consider the role that each of these elements plays currently, and explore future possibilities that arise from ongoing scientific and technological advances.

References

- Sakula, A. (1983) Robert Koch: Centenary of the discovery of the tubercle bacillus (1882), *Can. Vet. J.*, 24, 127–131.
- [2] Hickey, A.J., Durham, P.G., Dharmadhikari, A. and Nardell, E.A. (2016), Inhaled drug treatment for tuberculosis: Past Progress and Future Prospects, *J. Controlled Release*, submitted.
- [3] Federal Food, Drug and Cosmetics Act (1938) To prohibit the movement in interstate commerce of adulterated and misbranded food, drugs, devices, and cosmetics, and for other purposes.
- [4] Marshall, K., Foster, T.S., Carlin, H.S. and Williams, R.L. (2003) Development of a compendial taxonomy and glossary for pharmaceutical dosage forms. *Pharm. Forum*, **29**, 1741–1752.
- [5] Augsburger, L.L. (2002) Hard and Soft Shell capsules, in *Modern Pharmaceutics*, 4th edn (eds G. Banker and C. Rhodes), Marcel Dekker, New York, NY, pp. 335–380.
- [6] Kottke, M.J. and Rudnik, E.M. (2002) Tablet dosage forms, in *Modern Pharmaceutics*, 4th edn, Marcel Dekker, New York, NY, pp. 287–333.
- [7] Lipinski, C.A., Lombardo, F., Dominy, B.W. and Feeney, P.J. (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, *Adv. Drug. Del. Rev.*, **46**, 3–26.
- [8] Amidon, G.L., Lennernas, H., Shah, V.P. and Crison, J.R. (1995) A theoretical basis for a biopharmaceutical drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability, *Pharm. Res.*, 12, 413–420.
- [9] Boylan, J.J. and Nail, S.L. (2002) Parenteral Products, in *Modern Pharmaceutics*, 4th edn, Marcel Dekker, New York, NY, pp. 381–414.
- [10] Martin, A. (1993) Non-electrolytes, electrolytes, ionic equilibria and buffers, in *Physical Pharmacy*, 4th edn, Lea and Febiger, Malvern, MA, pp. 101–189.
- [11] Langille, S.L. (2013) Particulate matter in injectable drug products, *PDA J. Pharm. Sci. Technol.*, **67**, 186–200.

- [12] Hickey, A.J. (2004) Summary of common approaches to pharmaceutical aerosol administration, in *Pharmaceutical Inhalation Aerosol Technology*, 2nd edn, (ed. A.J. Hickey), Marcel Dekker, New York, NY, pp. 385–421.
- [13] Denkbas, E.B., Kaitan, X., Tuncel, A. and Piskin, E. (1995) Rifampicin-carrying poly (D,Llactide) microspheres: Loading and release, J. Biomater. Sci., Polym. Ed., 6, 815–825.
- [14] O'Hara, P., and Hickey, A.J. (2000) Respirable PLGA microspheres containing rifampicin for the treatment of tuberculosis: manufacture and characterization, *Pharm. Res.*, 17, 955–961.
- [15] Barrow, E.L., Winchester, G.A., Staas, J.K., Quenelle, D.C. and Barrow, W.W (1998) Use of microsphere technology for targeted delivery of rifampicin to Mycobacterium tuberculosisinfected macrophages, *Antimicrob. Agents Chemother.*, 42, 2682–2689.
- [16] Suarez, S., O'Hara, P., Kazantseva, M., Newcomer, C.E., Hopfer, R., McMurray, D.N. and Hickey, A.J. (2001) Airways delivery of rifampicin microparticles for the treatment of tuberculosis, *J. Antimicrob. Chemother.*, 48, 431–434.
- [17] Suarez, S., O'Hara, P., Kazantseva, M., Newcomer, C.E., Hopfer, R., McMurray, D.N. and Hickey, A.J. (2001) Respirable PLGA microspheres containing rifampicin for the treatment of tuberculosis: screening in an infectious disease model, *Pharm. Res.*, 18, 1315–1319.
- [18] Geller, D.E., Weers, J. and Heuerding, S. (2011) Development of an inhaled dry powder formulation of tobramycin using PulmoSphere[™] technology. J. Aerosol. Med. Pulm. Drug Deliv., 24, 175–182.
- [19] Mortensen, N.P., Durham, P. and Hickey, A.J. (2014) The role of particle physico-chemical properties in pulmonary drug delivery for tuberculosis therapy. J Microencapsul., 31, 785–795.

Section 1 Pathogen and Host

2

Host Pathogen Biology for Airborne Mycobacterium tuberculosis: Cellular and Molecular Events in the Lung

Eusondia Arnett^{1,*}, Nitya Krishnan^{2,*}, Brian D. Robertson² and Larry S. Schlesinger¹

¹Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus, OH, USA ²MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College, London, UK

2.1 Introduction

Tuberculosis (TB), caused by the slow-growing, obligate human pathogen *Mycobacterium tuberculosis* (*M. tuberculosis*), has probably occurred in humans for a significant part of their history. Just exactly how long is a matter of debate, with differing dates suggested depending on the methodology and materials used. One study, based on whole genome sequences representing the diversity of *M. tuberculosis* across the planet [1], puts TB with humans since pre-history, some 70,000 years ago, subsequently moving with human populations out of Africa and across the globe. This would mean that TB only arrived in the Americas post-Columbus, and fits with the idea that *M. tuberculosis* first evolved to live in low-density hunter-gatherer populations where the chances of meeting a new host were low, making long-term, latent infections an evolutionary advantage. Another study [2] is based on mycobacterial DNA collected from Peruvian skeletons with evidence of TB dating from

Edited by Anthony J. Hickey, Amit Misra and P. Bernard Fourie.

^{*} Equal contributors

Drug Delivery Systems for Tuberculosis Prevention and Treatment, First Edition.

^{© 2016} John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.