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This textbook is dedicated to Margaret MacGillivray (Aug. 30, 1930–Sept. 17, 2016), for 
her vision in editing the first edition and with thanks for asking me to join her. I knew 
Margaret as a colleague, a mentor, and a friend. For those of us that were lucky enough 
to know her, she will be remembered as an outstanding clinician, investigator, mentor, 
and leader. Her passion for pediatric endocrinology, her compassion for others, and 
her upbeat spirit made her not only a most respected colleague but also a deeply 
valued friend.

Margaret was a towering figure in pediatric endocrinology making groundbreaking 
contributions to it. A true professional and role model, Margaret contributed to almost 
every aspect of pediatric endocrinology: thyroid disease, disorders of growth and 
puberty, and diabetes. In the mid-1960s, she published a seminal study on growth 
hormone secretion, defining for the first time short stature in children commonly seen 
with delayed puberty. She was a true physician scientist, investigating the factors that 
regulate growth hormone in these affected children. Her legacy to our field will be the 
pioneering use of growth hormone treatment for children with dwarfism. With this 
impact, Margaret is alive today and for generations to come.

I met Dr. MacGillivray in 1995 when she was president of the Pediatric Endocrine Soci-
ety. I believe she never sought to be a leader, but became one naturally through her 
brilliance, compassion, patience, and selflessness. Her presidential address to the soci-
ety was inspirational as I was beginning my career. I got to know Margaret well as a 
member of a prestigious grant review panel and little did I know that she had recom-
mended my membership. Her guidance was critical as I was beginning to develop my 
academic reputation. In her gentle well-meaning, but somewhat blunt, way, she 
asked me if I had considered the insecurity associated with my academic position and 
whether the benefits were sufficient (which I had only cursorily considered). My salary 
was being funded entirely by NIH grants, which were subject to the vagaries of federal 
funding; I had 2 children and was married to a physician scientist. It was this discus-
sion that changed my career course. She asked me to consider “replacing her” (imag-
ine that) in Buffalo as she was thinking about stepping down as division director. 
Unfortunately, this did not work out, but her “reality check” stayed with me as I made 
my future career decisions. Twenty years later, I followed in her footsteps and was 
elected president of the Pediatric Endocrine Society.

On several occasions, we discussed the need for a pediatric endocrinology textbook 
focused on the knowledge required by clinicians that was comprehensive, organized, 
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and relevant. Agreeing in principal, she gained the support of Humana Press and asked me to 
co-edit the book with her. This was again an example of her mentorship, allowing me to share her 
academic stature. Her main goal, reflected in the preface, was to encourage the senior author of 
each chapter to include “a junior coauthor” as an opportunity to learn, to be mentored, and to give 
the next generation recognition in the field. With this third edition, we continue her tradition of a 
junior colleague as coauthor.

My relationship with Margaret has taught me most about the importance of mentorship. She 
taught mentorship by example and never demanded of her mentees what she would not expect 
of herself. She brilliantly mentored a generation of doctors with her characteristic compassion, 
grace, wisdom, and clever sense of humor. She was and still is an inspiration to women who pur-
sue a career in medicine – very seldom looking backward to difficulties she had to endure as a 
woman, rather looking always forward. Some women would be very angry and bitter, but she 
always looked back on that as a challenge, and she overcame it. There were no role models or 
mentors at the time. She broke the glass ceiling and became the role model. Although she was 
dedicated to her roles as professor, clinician, and researcher, she was passionate about her role as 
wife, mother, and grandmother.

She taught me that hard work, determination, refusal to give up when the going gets rough, and, 
above all, sticking to one’s ideals make for a successful career and a contented life. Margaret was 
a star. She didn’t just shine; she blazed.

In this spirit, I welcome Madhu Misra as a co-editor of the third edition. Dr. Misra is the Fritz Brad-
ley Talbot and Nathan Bill Talbot professor of pediatrics, Harvard Medical School, and division 
chief of pediatric endocrinology at the Massachusetts General Hospital. Her clinical interests 
include disorders of the pituitary gland and bone. Her research interests include the neuroendo-
crine and bone consequence of conditions that span the nutritional spectrum from anorexia ner-
vosa to exercise-induced amenorrhea to obesity and conditions such as autism spectrum disorder 
and major depressive disorders.

Additionally, Dr. Misra is known for her successful mentorship of the next generation of pediatric 
endocrinologists and her service to the field as exemplified by her distinguished service to the 
Pediatric Endocrine Society.

Sally Radovick, MD
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Preface

We welcome you to the third edition of 
Pediatric Endocrinology: A Practical Clini-
cal Guide. The aim of this edition remains 
similar to the previous: to provide practi-
cal detailed and concise guidelines for the 
clinical management of pediatric endo-
crine diseases and disorders. Thus, the 
audience includes pediatric endocrinolo-
gists, pediatricians, and primary care phy-
sicians who provide medical care for 
children and adolescents.

The scope of the text continues to include 
the most common and the most challeng-
ing diseases and disorders seen by both 
primary care physicians and pediatric 
endocrinologists. We have encouraged the 
involvement of a junior coauthor to give 
recognition to our young investigators in 
the field. We believe we have assembled a 
state-of-the-art, comprehensive text on the 
practice of pediatric endocrinology.

Although the main focus of this text is on 
diagnosis and treatment, each author has 
included a brief discussion on pathophysi-
ology and molecular mechanisms. The 
chapters have been organized in such a 
way as to present the following elements in 
synchrony: (1) a table of contents and key 
points; (2) an introductory discussion with 
background information; (3) a brief over-

view of recent progress on the mechanism 
involved; (4) a discussion of the etiology 
and clinical features that characterize each 
condition; (5) a delineation of the criteria 
used to establish a diagnosis; (6) a therapy 
section which comprehensively reviews 
the options available and the risks and 
benefits of each approach corroborated by 
clinical trial and outcome data, includes 
information on the long-term safety and 
efficacy of the treatment modality, and 
cites guidelines when available; (7) where 
relevant, a discussion of psychosocial and 
quality-of-life issues; and (8) finally a new 
section in this edition which includes 
related case studies and relevant questions.

Due to the dynamic clinical practice of 
pediatric endocrinology, extensive revisions 
and significant changes have been made to 
reflect current knowledge and practice. We 
have added chapters and expanded chapter 
content on care of gender nonconforming/
transgender youth, diagnosis and manage-
ment of osteoporosis, mineralocorticoid 
disorders and hypertension, and delayed 
puberty and hypogonadism.

We are most thankful for the generous 
contributions of our author colleagues. We 
hope you find the textbook helpful, and we 
are, of course, open to your comments.

Sally Radovick, MD
New Brunswick, NJ, USA

Madhusmita (Madhu) Misra, MD, MPH
Boston, MA, USA 
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1 Key Points
 5 Severe GH deficiency in the newborn 

period may be characterized by hypogly-
cemia and conjugated hyperbilirubinemia, 
as well as a small phallus in boys, consis-
tent with multiple anterior pituitary 
hormone deficiencies.

 5 Hypopituitarism due to mutations in 
genes involved in pituitary development 
may be associated with other develop-
mental anomalies.

 5 The diagnosis of GH deficiency should be 
made on the basis of physical findings and 
the integration of auxologic, biochemical, 
and radiographic data.

 5 Potential adverse effects of GH therapy 
include benign intracranial hypertension, 
slipped capital femoral epiphysis, and 
progression of scoliosis.

1.1  Introduction and Background 
Information

The pituitary gland is formed of anterior (adeno-
hypophysis) and posterior (neurohypophysis) 
sections, which are derived from two different 
sources [1]. The upward invagination of stomo-
deal ectoderm forms the primordium of the ante-
rior pituitary, Rathke’s pouch, while the posterior 
pituitary arises from the neural ectoderm of the 
forebrain [2]. Rathke’s pouch can be identified by 
the third week of pregnancy [3].

The anterior pituitary, which comprises 80% 
of the pituitary, consists of three parts: the pars 
distalis (pars anterior or anterior lobe), the pars 
intermedia (intermediate lobe), and the pars 
tuberalis (pars infundibularis or pars proximalis). 
In humans, the pars distalis is the largest portion 
of the anterior pituitary and where most of the 
anterior pituitary hormones are produced [3]. 
The intermediate lobe is poorly developed in 
humans with only a tiny remnant in adults, 
although more obvious in the fetus and in preg-
nant women [4]. The upward extension of the 
pars distalis onto the pituitary stalk forms the pars 
tuberalis, which may contain a small number of 
gonadotropin-producing cells [3].

Peptide hormones produced in neurons of 
the hypothalamus are transported via a capillary 
plexus in the pituitary stalk to the anterior pitu-

itary, where they regulate the release and syn-
thesis of several hormones [5]. The anterior 
pituitary hormones are somatotropin or growth 
hormone (GH), prolactin (PRL), thyrotropin or 
thyroid- stimulating hormone (TSH), follicle-
stimulating hormone (FSH), luteinizing hor-
mone (LH), and adrenocorticotropin (ACTH). 
Posterior pituitary hormones are synthesized in 
cell bodies of neurons in the hypothalamus and 
transported along their axons through the neu-
rohypophyseal tract of the pituitary stalk. These 
hormones, arginine vasopressin (also known as 
antidiuretic hormone [ADH]) and oxytocin, are 
stored in and secreted from the posterior pitu-
itary [6].

Hypopituitarism is the deficiency in varying 
degrees of one or multiple pituitary hormones. In 
this chapter, GH deficiency (GHD) will be dis-
cussed, while other hormonal deficiencies are 
presented elsewhere in this book. To understand 
GHD, an understanding of GH physiology is 
important and follows below.

Growth hormone is a single-chain α-helical 
non-glycosylated polypeptide. The majority 
(90%) of circulating GH is a 22-kDA form con-
sisting of 191 amino acids and two intramolec-
ular disulfide bonds [3, 7]. There is also a 
20-kDa variant form, which arises from alterna-
tive splicing during the processing of human 
GH pre-mRNA [8, 9]. The remainder of the GH 
produced by the pituitary is in the N-acetylated 
and desaminated forms and oligomers [3]. 
Secreted GH circulates both unbound and 
bound to binding proteins, which are portions 
of the extracellular domain of the GH receptor 
(GHR) [10].

The GH1 gene encodes for GH and is part of a 
50-kb cluster of five genes located on human chro-
mosome 17q22–24: GH1, chorionic somatomam-
motropin (CS)-like (L), CS-A, GH-2, and CS- B 
[11]. The CS-L translated protein appears non-
functional, while CS-A and CS-B encode human 
chorionic somatomammotropin (hCS), also 
known as human placental lactogen (hPL). The 
syncytiotrophoblastic cells produce hCS, which 
has 85% homology to GH. hCS also contains two 
disulfide bonds that occur at the same positions as 
in GH-N, but it only has 0.5% affinity for the 
GHR.  Interestingly, hCS does not appear neces-
sary for fetal or extrauterine growth, nor does it 
appear essential for maintenance of pregnancy or 
lactation [12]. The GH-2 gene product, which is 
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known as GH variant (GH-V), differs from GH-N 
by 13 amino acids. It is expressed as at least four 
alternatively spliced mRNAs in the placenta and is 
continuously secreted during the second half of 
pregnancy, suppressing maternal pituitary GH-1 
gene function [13, 14].

GH is secreted in a pulsatile manner due to 
the opposing actions of growth hormone- 
releasing hormone (GHRH) and somatotropin 
release-inhibiting factor (SRIF), also known as 
somatostatin (SST). GHRH, a 44-amino-acid pro-
tein, binds to the GHRH receptor (GHRHR), 
which is a G-protein-coupled receptor with 
seven-transmembrane-spanning domains with 
three extracellular and three cytoplasmic loops 
[15]. Activation of the GHRHR results in an 
increase in cyclic adenosine monophosphate 
(cAMP) and intracellular calcium, leading to the 
activation of protein kinase A (PKA) [16, 17]. 
PKA phosphorylates and activates cAMP 
response element-binding protein (CREB), which 

binds to cAMP response elements in the GH pro-
moter to enhance GH-1 gene transcription [18, 
19]. There is also a PKA-dependent, CREB-
independent mechanism of hGH gene activation 
by POU1F1 (also known as Pit-1) and CREB-
binding protein (CBP) [20] (. Fig. 1.1). 

SRIF, a 14-amino-acid neuropeptide, nega-
tively regulates GH release primarily via the SRIF 
receptor subtype 2 (SSTR2) [20]. SRIF activates a 
Gi-coupled protein [21, 22], which decreases 
cAMP and reduces calcium influx, resulting in 
inhibition of GH secretion [23]. SRIF controls the 
pulse frequency of GH [24] (. Fig. 1.1).

Infants have nonpulsatile GH secretion. There 
is a gradual increase in 24-h integrated GH secre-
tion during childhood. The amplitudes of GH 
pulses are increased during puberty, which may 
be secondary to the effect of gonadal steroids on 
GHRH [25–27]. Although GH production con-
tinues throughout life, the levels decline in the 
elderly [28, 29].

GHRH

Gi

Adenyl
cyclase

ATP

PKA CBP

GH

GHsstr-2

Pit-1

GH2 GH1

GH promoter

Nucleus

Pit-1
CREB

Somatotroph

cAMP

GS
(+)

(-)

GHRH-R

SRIF

       . Fig. 1.1 GH secretion. Simplified model of growth 
hormone (GH) gene activation. GH synthesis and release 
from somatotrophs are regulated by growth hormone-
releasing hormone (GHRH) stimulation and somatostatin 
(SRIF) inhibition. GHRH activation of its Gs-protein-coupled 
receptor leads to an increase in cyclic adenosine mono-
phosphate (cAMP) and intracellular calcium, resulting in 
activation of protein kinase A (PKA). PKA phosphorylates 

and activates cAMP response element-binding protein 
(CREB), which binds to cAMP response elements in the GH 
promoter to enhance GH1 gene transcription. There is also 
a PKA-dependent, CREB-independent mechanism of 
human GH gene activation by POU1F1 and CREB-binding 
protein (CBP). SRIF activation of its Gi-coupled protein 
leads to a decrease in cAMP and a reduction in calcium 
influx
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There are multiple other factors that affect GH 

secretion. Thyroid hormone regulates GH secre-
tion at the level of the hypothalamus and pituitary, 
and hypothyroidism is associated with a decrease 
in GH secretion [30]. Adiposity (in particular vis-
ceral fat) is associated with decreased GH secre-
tion [31], while undernutrition leads to 
oversecretion of GH but low IGF-I levels indicat-
ing GH resistance [32].

Synthetic hexapeptides capable of stimulating 
GH secretion are termed GH secretagogues 
(GHS) or GH-releasing peptides (GHRP). These 
compounds can stimulate GH release but do not 
act through the GHRH or SRIF receptors [33, 34]. 
These peptides can initiate and amplify pulsatile 
GH release; however, this is accomplished via the 
GHS receptor (GHS-R), which is distinct from 
the GHRHR [34]. The GHS-R is a seven- 
transmembrane G-protein-coupled receptor that 
acts via protein kinase C activation and is 
expressed in the hypothalamus and in pituitary 
somatotrophs [35].

An endogenous ligand for the GHS-R, ghre-
lin, stimulates GH release in a dose-related man-
ner, as well as potentiates GHRH-dependent 
secretion of GH [36, 37]. It is produced mainly 
by the oxyntic cells of the stomach but is also 
found throughout the gastrointestinal tract, as 
well as in the hypothalamus, heart, lung, and adi-
pose tissue [38]. Several studies have demon-
strated that ghrelin has a wide range of effects, 
including acting as a physiological mediator of 
feeding [39, 40]. Thus, it is difficult to separate 
the direct effects of ghrelin from those related to 
GH secretion.

Approximately 50% of circulating GH is 
bound to GH-binding protein (GHBP). GHBP is 
produced in multiple tissues, with the liver being 
the predominant source. GHBP acts as a circulat-
ing buffer or reservoir for GH, prolonging the 
half-life of plasma GH and competing with the 
GHR for GH, probably forming an unproductive 
heterodimer. In general, GHBP levels reflect GHR 
levels and activity. In rodents, GHBP appears to 
be synthesized de novo from alternative splicing 
of GHR mRNA. In humans, rabbits, and others, it 
is shed from membrane-bound GHR by proteo-
lytic cleavage [10, 41].

The GHR is a 620-amino-acid protein that 
belongs to the cytokine family of receptors [42]. 
It consists of a large extracellular domain, a sin-
gle transmembrane helix, and an intracellular 
domain [43]. The highest level of GHR expres-
sion is in the liver, followed by the muscle, fat, 
kidney, and heart. GH binds to a homodimer 
complex of the GHR in order to activate its 
intracellular signaling pathways. The subunits of 
the GHR are constitutively dimerized in an 
unbound or inactive state [44, 45]. The 
GH-binding sites on the extracellular domains 
of the two subunits are placed asymmetrically; 
GH binding to the constitutive dimer induces 
rotation of the two subunits, which allows down-
stream kinase activation by phosphorylation of 
Janus kinase 2 (Jak2) [45]. Subsequently, the Jak2 
molecule induces tyrosine phosphorylation on 
the intracellular portion of the GHR, which then 
provides docking sites for intermediary signal 
transducers and activators of transcription 
(STAT) proteins [46–48]. After phosphorylation, 
STATs dimerize and move to the nucleus, where 
they activate gene transcription [49, 50] 
(. Fig. 1.2).

Many of the actions of GH, both metabolic 
and mitogenic, are mediated by insulin-like 
growth factors (IGFs) or somatomedins, initially 
identified by their ability to incorporate sulfate 
into rat cartilage [51]. IGF-I, which is a basic 
70-amino-acid peptide, is produced under the 
direction of GH predominantly in the liver [52]. It 
plays an important role in both embryonic and 
postnatal growth. Both systemic and local IGF-I 
have been shown to stimulate longitudinal bone 
growth [53–57].

Human fetal serum IGF-I levels, which are 
approximately 30–50% of adult levels, have been 
positively correlated with gestational age [58, 
59]. The levels of IGF-I gradually increase dur-
ing childhood and peak during pubertal devel-
opment, achieving two to three times the 
normal adult values [60, 61]. IGF-I production 
is also augmented by the rise in gonadal ste-
roids, which contribute to the pubertal growth 
spurt. After adolescence, serum IGF-I concen-
trations decline gradually with age [59, 62]. 
IGFs circulate within the plasma complexed to 
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high-affinity binding proteins or IGF-binding 
proteins (IGFBPs). IGFBPs extend the serum 
half-life of IGFs, transport IGFs into target cells, 
and modulate the interaction of IGFs with their 
receptors [59, 63]. Six distinct IGFBPs have 
been cloned and sequenced [64, 65]. IGFBP-3, 
which is GH dependent, is the major IGFBP in 
human serum and transports over 90% of the 
circulating IGF-I [3].

The IGF-I receptor (IGF-IR), which is struc-
turally related to the insulin receptor, is a hetero-
tetramer comprised of two-membrane-spanning 
α-subunits and two intracellular β-subunits [66, 
67]. The subunits contain binding sites for IGF-I, 
are linked by disulfide bonds, and are composed 
of a transmembrane domain, an adenosine tri-
phosphate (ATP)-binding site, and a tyrosine 
kinase domain that mediates the presumed signal 
transduction mechanism for the receptor [3, 68].

1.2  Etiology of Growth Hormone 
Deficiency

1.2.1  Congenital Forms of GH 
Deficiency (7 Box 1.1)

The incidence of congenital isolated GHD 
(IGHD) has been reported as between 1:4000 and 
1:10,000 live births [69, 70]. Congenital cranial 
malformations, including holoprosencephaly, 
septo-optic dysplasia (SOD) spectrum, and mid-
line craniocerebral or midfacial abnormalities, 
can be associated with anomalies of the pituitary 
gland, including pituitary hypoplasia or aplasia 
[6]. Clinically, they may be associated with pitu-
itary hormone deficiencies at birth or with the 
risk for developing future hormone deficiencies. 
Although these conditions often have no identifi-
able etiology, ongoing advances in understanding 

GH

GH-R GH-R

p
p

p p

p

Nuclear translocation

Gene
transcription

STAT

STAT

p
p

Jak2Jak2

       . Fig. 1.2 GH action. 
Schematic model of growth 
hormone receptor (GHR) 
binding and signaling. A 
single GH molecule binds 
asymmetrically to the 
extracellular domain of two 
receptor molecules, 
causing a conformational 
change. This leads to 
interaction of the GHR with 
Janus kinase (Jak2) and 
tyrosine phosphorylation 
of both Jak2 and GHR, 
followed by phosphoryla-
tion of cytoplasmic 
transcription factors known 
as signal transducers and 
activators of transcription 
(STATs). After phosphoryla-
tion, STATs dimerize and 
move to the nucleus, where 
they activate gene 
transcription
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pituitary development have provided a genetic 
basis to account for pituitary pathology. Mutations 
have been found in genes necessary for pituitary 
development and function. The following pres-
ents a summary of reported genetic defects asso-
ciated with pituitary pathology.

1.2.1.1  GHRH Receptor Mutations
Inactivating mutations reported in the GHRHR 
are often classified as a type of IGHD.  The little 
mouse (lit/lit), which demonstrates dwarfism and 
decreased number of somatotrophs, has a reces-
sively inherited missense mutation in the extracel-
lular domain of the gene for Ghrhr [71–73]. In 
addition to GHD, these mice exhibit postnatal 
growth failure and delayed pubertal maturation 
[73]. The first human mutation identified was a 
nonsense mutation that introduced a stop codon at 

position 72 (E72X) in two cousins who presented 
clinically with the typical phenotype of severe 
GHD [74]. Subsequently, a nonsense mutation was 
found in codon 50  in “Dwarfism of Sindh” in 
Pakistan [75]. Since then, more than 30 nonsense, 
missense, and splice site mutations in the GHRH 
gene and deletions and regulatory mutations of the 
POU1F1-binding sites in the GHRHR promotor 
have been identified [76].

1.2.1.2  Pituitary Developmental 
Factor Mutations

The normal development of the pituitary is a com-
plex cascade of events that has been shown to be 
dependent on several pituitary-specific transcrip-
tion factors, which are expressed in a specific spatial 
and temporal pattern. The coordination of expres-
sion of these factors ultimately leads to the develop-
ment of the pituitary-specific cell types (. Fig. 1.3). 
Although mutations in these factors are often rare, 
it is important for the clinician to recognize the 
genetic basis for the pathology of idiopathic hypo-
pituitarism. Mutations in genes involved in pitu-
itary development may be associated with other 
developmental anomalies (. Table 1.1).

 Developmental Factors
Gli2 Gli transcription factors mediate Sonic 
hedgehog (Shh) signaling, which controls cell fate 
specification and proliferation in multiple tissues. 
Gli2/Shh signaling controls the expression of 
genes in the ventral diencephalon that are neces-
sary for the early patterning of Rathke’s pouch, as 
well as proliferation of pituitary progenitors [80]. 
Mice deficient in Gli2 have early forebrain, spinal 
cord, skeleton, and ventral diencephalon defects 
with variable pituitary loss. Pituitary cell types 
develop, but corticotrophs, somatotrophs, and 
lactotrophs do not proliferate [81]. Mutations in 
GLI2 have been found in patients with GH defi-
ciency alone or with one or more other anterior 
pituitary deficiencies with and without holopros-
encephaly and in patients with holoprosenceph-
aly with and without pituitary hormone 
deficiencies. When pituitary hormone deficien-
cies are present, the GLI2 protein is usually trun-
cated; when pituitary hormone deficiencies are 
absent, there is usually a missense mutation. The 
anterior pituitary may be absent or hypoplastic, 
and there may or may not be an ectopic posterior 
pituitary (EPP). Polydactyly is often an associated 
finding [82].

Box 1.1 Congenital Forms of  Hypopituita-
rism. Congenital Causes of  or Associations 
with Growth Hormone Deficiency

 5 Cranial and central nervous system 
abnormalities

 5 Septo-optic dysplasia
 5 Cleft lip ± palate
 5 Empty sella syndrome
 5 Holoprosencephaly, anencephaly
 5 Pituitary aplasia or hypoplasia
 5 Thin or absent pituitary stalk
 5 Hydrocephalus

 5 Genetic (mutations, deletions)
 5 GHRH receptor
 5 Ventral diencephalon factors

� FGF8
� GLI2

 5 Pituitary developmental factors
� Pituitary primordium factors

� HESX1
� OTX2
� PITX2
� LHX3
� LHX4
� SOX3
� SOX2

� Pituitary transcription factors
� PROP1
� POU1F1

 5 GH-1
 5 Types Ia, Ib, II, and III
 5 Multiple GH family gene deletions
 5 Bioinactive GH
 5 GH receptor
 5 IGF-I
 5 IGF-I receptor
 5 Stat5b

 C. L. Soto-Rivera et al.
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Hesx1 (Rpx) Hesx1, a member of the paired-like 
class of homeobox genes originally described in 
Drosophila melanogaster, is one of the earliest 
known specific markers for the pituitary primor-
dium, although no target genes for Hesx1 have 
been identified [83, 84]. Hesx1 null mutant mice 
demonstrate abnormalities in the corpus callo-
sum, anterior and hippocampal commissures, 
and septum pellucidum, a phenotype similar to 
the defects seen in humans with SOD [83]. The 
initial report of a human HESX1 mutation was in 
two siblings with agenesis of the corpus callosum, 
optic nerve hypoplasia, and panhypopituitarism 
who were found to have a homozygous mutation 
at codon 53 (arginine to cysteine) in the home-
odomain (DNA-binding domain) of HESX1, 
resulting in a drastic reduction in DNA binding 
[83]. Subsequently, autosomal recessive and dom-
inant HESX1 mutations have been found in asso-
ciation with SOD (although a rare cause of SOD) 

or with combined pituitary hormone deficiency 
(CPHD) [85].

Several investigators have screened patients 
with a wide spectrum of congenital hypopituita-
rism for mutations in HESX1. Thomas et al., for 
example, evaluated 228 patients: 85 with isolated 
pituitary hypoplasia (including isolated GH defi-
ciency and combined pituitary hormone defi-
ciency [CPHD]), 105 with SOD, and 38 with 
holoprosencephaly or related phenotypes. In this 
cohort, three missense mutations were identified 
[86]. In another study, approximately 850 patients 
were studied for mutations in HESX1 (300 with 
SOD; 410 with isolated pituitary dysfunction, 
optic nerve hypoplasia, or midline brain anoma-
lies; and 126 patients with familial inheritance). 
Only 1% of the group was found to have coding 
region mutations, suggesting that mutations in 
HESX1 are a rare cause of hypopituitarism and 
SOD [87]. As the described mutations in HESX1 
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       . Fig. 1.3 Anterior pituitary development. The develop-
ment of the mature pituitary gland initiates with the contact 
of the oral ectoderm with the neural ectoderm followed by a 
cascade of events consisting of both signaling molecules and 
transcription factors expressed in a specific temporal and 
spatial fashion. This figure presents a modified overview of 
pituitary development adapted from previous embryological 
studies performed in murine species by illustrating the 
temporal expression of various developmental factors. Early 
on, bone morphogenetic protein 4 (Bmp-4) and NK2 
Homeobox 1 (Nkx2.1) are expressed along with Sonic 
hedgehog (Shh) in order to form the primordial Rathke’s 
pouch, which will become the mature pituitary. Also 
expressed are Gli1 and 2, Lhx3, and Pitx1 and 2, which all play 

a role in the development of progenitor pituitary cell types. 
Subsequently, the expression of Hesx1, Isl1, paired box gene 6 
(Pax6), and Six3 assists in appropriate cellular development, 
proliferation, and migration. The hashed arrows denote the 
attenuation of an expressed factor, such as seen with Hesx1, 
and are often required for the expression of another factor. 
The attenuation of Hesx1, for example, is required for the 
expression of Prop1. Similarly, Pou1F1 (Pit-1), which is required 
for somatotroph, lactotroph, and thyrotroph development, is 
expressed upon the attenuation of Prop1 expression. 
Ultimately, the mature pituitary gland is marked by the 
differentiated cell types: somatotrophs, lactotrophs, 
thyrotrophs, gonadotrophs, and corticotrophs [77–79]

Childhood Growth Hormone Deficiency and Hypopituitarism
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present with variable phenotypes, it has been sug-
gested the hormone abnormalities may be affected 
by modifier genes or environmental factors [88].

Otx2 Otx genes are expressed in the rostral brain 
during development and are homologous to the 
Drosophila orthodenticle (otd) gene, which is essen-
tial for the development of the head in Drosophila 
melanogaster [89]. Otx2 is expressed in the ventral 
diencephalon, where it interacts with Hesx1, and in 
Rathke’s pouch. Homozygous inactivation of 
Otx2 in mice leads to extreme brain defects, while 
heterozygous inactivation results in eye abnormali-
ties, commonly pituitary hypoplasia, and some-
times holoprosencephaly. Heterozygous mutations 
of the OTX2 gene, which have been implicated in 
severe ocular malformations such as anophthalmia, 
have also been reported in patients with hypopitu-
itarism ranging from GH deficiency to multiple 
pituitary hormone deficiencies [90–93]. There are 
variable findings of hypoplastic pituitary, EPP, and 
Chiari syndrome [94–98].

Pitx2 (Ptx2) Pitx2 is a paired-like homeodomain 
transcription factor closely related to the mamma-
lian Otx genes [89]. Pitx2 null mice showed embry-

onic lethality; however, a hypomorphic allele model 
of Pitx2 demonstrated pituitary hypoplasia and cel-
lular differentiation defects in proportion to the 
reduced dosage of Ptx2. The gonadotrophs were 
most severely affected, followed by somatotrophs 
and thyrotrophs [99–101].

RIEG is the human homologue of Pitx2, and 
clinical mutations of PTX2 have been described 
in patients with Axenfeld-Rieger syndrome. This 
syndrome is an autosomal dominant condition 
with variable manifestations including anomalies 
of the anterior chamber of the eye, dental hypo-
plasia, a protuberant umbilicus, mental retarda-
tion, and pituitary alterations [102]. One group of 
investigators described mutations in six out of ten 
families with autosomal dominant Rieger syn-
drome [103, 104]. Five of the six mutations 
reported were in the homeobox region, and sev-
eral showed loss of DNA-binding capacity.

Lhx3 (Lim-3, P-Lim) and Lhx4 Lhx3 is a LIM-type 
homeodomain protein expressed in the anterior 
and intermediate lobes of the pituitary gland, the 
ventral hindbrain, and the spinal cord. Lhx3 expres-
sion persists in the adult pituitary, suggesting a 
maintenance function in one or more of the ante-
rior pituitary cell types [105]. In addition, its expres-
sion is associated with cells that secrete GH and 
PRL, as well as the expression of the α-glycoprotein 
subunit (α-GSU), suggesting a common cell precur-
sor for gonadotrophs, thyrotrophs, somatotrophs, 
and lactotrophs [105, 106].

In humans, homozygous loss-of-function 
mutations in LHX3 have been identified in 
patients with hypopituitarism including GH, TSH, 
PRL, LH, and FSH deficiencies, anterior pituitary 
defects, and cervical abnormalities with or with-
out restricted neck rotation [107–109]. Among 
366 studied patients with idiopathic GHD or 
CPHD, only 7 patients from 4 families were found 
to have LHX3 mutations, suggesting LHX3 muta-
tions are a rare cause of CPHD [109]. A compound 
heterozygous mutation of LHX3 was described 
that leads to a short protein inducing a dominant 
negative effect (from a paternally derived change) 
and a protein with impaired transactivational abil-
ity (from a maternally derived change) [110]. As 
with other described LHX3 mutations, the patient 
presented with pituitary hormone deficiencies, in 
addition to deafness and limited neck rotation.

Lhx4 is a closely related transcription factor to 
Lhx3. Heterozygous sporadic and familial LHX4 
mutations have been reported. Pituitary hormone 

       . Table 1.1 Developmental abnormalities seen in 
association with hypopituitarism due to mutations 
in genes involved in pituitary development

Gene Associated findings

GLI2 Holoprosencephaly
Midline defects
Polydactyly

FGF8 Holoprosencephaly

HESX1 Optic nerve hypoplasia
Absent septum pellucidum and corpus 
callosum

OTX2 Micro- or anophthalmia

LHX3 Cervical spine/vertebral anomalies
Deafness
Hyperextensible joints

LHX4 Hypoplastic corpus callosum
Chiari syndrome

SOX2 Micro- or anophthalmia
Esophageal atresia
Sensorineural hearing loss

SOX3 Absent corpus callosum
Craniofacial abnormalities
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deficiencies range from IGHD to panhypopituita-
rism, and the pituitary may be hypoplastic with or 
without an EPP. Some patients also have corpus 
callosum hypoplasia or Chiari syndrome with 
pointed cerebellar tonsils [111].

Other transcription factors In addition to the 
more commonly cited factors, several other 
mutated developmental factors have been reported 
to cause CPHD [111]. Sox2, for example, has roles 
both in pituitary development and in the stem cell 
compartment [112]. Patients with reported Sox2 
mutations presented with phenotypes including 
hormone deficiencies (primarily isolated gonado-
troph deficiency), pituitary hypoplasia, and eye 
abnormalities [113, 114]. Another interesting 
development has been the association of pituitary 
hormone deficiencies with mutations in the gonad-
otroph genes prokineticin receptor 2 (PROKR2), 
fibroblast growth factor 8 (FGF8), and FGF recep-
tor 1 (FGFR1), which have been traditionally 
reported in patients with isolated hypogonado-
tropic hypogonadism [115].

 Pituitary-Specific Transcription Factors
Prop1 Prop1 is a paired-like homeodomain 
transcription factor with expression restricted to 
the anterior pituitary during development [2, 
116]. During pituitary development, Prop1 acts as 
a repressor in downregulating Hesx1 and as an 
 activator of Pou1f1 [77]. Recent evidence suggests 
that Prop1 may play a more central role in pitu-
itary stem cell differentiation than previously 
 recognized [117].

A considerable variation in clinical pheno-
types of patients with PROP1 mutations has 
been demonstrated, even in patients bearing 
identical genotypes [116, 118, 119]. Several 
reports have shown that the hormone deficien-
cies may be variable and dynamic; some patients 
may develop hypogonadotropic hypogonadism 
despite the progression into spontaneous 
puberty or cortisol deficiency over time [116, 
120–122]. Interestingly, some patients present 
with pituitary hyperplasia prior to developing 
hypoplasia, which is speculated to be due to 
pituitary progenitors accumulating in the inter-
mediate lobe rather than differentiating into 
more mature cell types [123].

At least 25 heterozygous or compound hetero-
zygous human mutations have been described 
[111]. The most common is a recurring homozy-
gous autosomal recessive mutation of PROP1, 

delA301, and G302 (also known as 296delGA) in 
exon 2, which changes a serine to a stop codon at 
codon 109  in the homeodomain, resulting in a 
truncated gene product. It has been found in non- 
consanguineous patients from at least eight differ-
ent countries [124–126].

Pou1f1 Pou1f1 (Pit-1, GHF-1) is a member of a 
family of transcription factors, POU, which are 
responsible for mammalian development, and its 
expression is restricted to the anterior pituitary lobe 
[127, 128]. Pit-1 has been shown to be essential for 
the development of somatotrophs, lactotrophs, and 
thyrotrophs, as well as for their cell-specific gene 
expression and regulation [128].

Mutations in POU1F1 in humans were 
described in 1992 by four different groups in 
patients with CPHD consisting of GHD, TSH, 
and PRL deficiencies and variable hypoplastic 
anterior pituitaries on MRI [129–132]. At least 
28 different mutations have been described, with 
23 demonstrating autosomal recessive inheri-
tance and 5 demonstrating dominant inheri-
tance [78]. The most common mutation is an 
R271W substitution affecting the POU home-
odomain; this leads to a mutant protein that 
binds normally to DNA but acts as a dominant 
inhibitor of transcription and may act by impair-
ing dimerization [130, 132–140]. In another 
single allele mutation, K216E, the mutant Pit-1 is 
able to bind DNA but unable to support retinoic 
acid induction of the Pit-1 gene distal enhancer 
either alone or in combination with wild-type 
Pit-1. This ability to selectively impair the inter-
action with the superfamily of nuclear hormone 
receptors is thus another mechanism responsible 
for CPHD [141]. Several other point mutations 
in the Pit-1 gene resulting in CPHD have been 
described. Some alter residues important for 
DNA binding and/or alter the predicted α-helical 
nature of the Pit-1, while others have been shown 
to or postulated to impair transactivation of tar-
get genes [78, 142].

1.2.1.3  Isolated GHD
Four forms of IGHD have been described, and its 
classification is based upon the clinical presenta-
tion, inheritance pattern, and GH secretion.

IGHD Type IA results primarily from large 
deletions, along with microdeletions and single 
base-pair substitutions of the GH1 gene, which 
ultimately prevents synthesis or secretion of the 
hormone. This condition is associated with growth 
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retardation in infancy and subsequent severe 
dwarfism. Heterogeneous deletions of both alleles 
ranging from 6.7 to 45  kb have been described 
[143–146]. In addition to GH1 gene abnormalities, 
a recent report, in siblings with IGHD, described 
two homozygous variants in the proximal GH1 
promoter within a highly conserved region and 
predicted binding sites [147]. Patients with IGHD 
type 1A frequently develop antibodies to exoge-
nous GH therapy, which is attributed to the lack of 
immune tolerance because of prenatal GHD [148, 
149]. Some patients may eventually become insen-
sitive to GH replacement therapy demonstrating a 
decreased clinical response; subsequently, recom-
binant IGF-I therapy may be an alternative option.

IGHD Type IB is a less severe autosomal reces-
sive form of GHD resulting from mutations or 
rearrangements of the GH1 gene, such as splice 
site mutations that lead to partial GH deficiency 
[144, 150, 151]. In one study, a homozygous splice 
site G to C transversion in intron 4 of the GH-1 
gene was identified, causing a splice deletion of 
half of exon 4 as well as a frameshift within exon 
5. These changes ultimately affected the stability 
and biological activity of the mutant GH protein 
[152]. Several other deletions or frameshift muta-
tions have been described by others [153–155].

IGHD Type II is an autosomal dominant con-
dition considered the most common genetic form 
of IGHD.  Several patients have been found to 
have intronic transitions in intron 3, inactivating 
the donor splice site of intron 3 and deleting exon 
3 [151, 152, 156–160].

IGHD Type III is a partial GH deficiency 
with X-linked inheritance due to interstitial 
Xq13.3- Xq21.1 deletions or microduplications of 
certain X regions. Patients may also have hypo-
gammaglobulinemia, suggesting a contiguous 
Xq21.2- Xq22 deletion [161, 162].

Bioinactive GH has been reported in patients 
with short stature demonstrating normal GH 
immunoreactivity but reduced biopotency. A child, 
with an autosomal arginine to cysteine mutation at 
codon 77, was described with severe growth retar-
dation, high serum GH levels, elevated GHBP, low 
IGF-I levels, and increased GH levels after pro-
vocative testing. The child expressed both mutant 
and wild-type GH; however, the mutant GH had a 
higher affinity for GHBP, a lower phosphorylating 
activity, and an inhibitory or dominant negative 
effect on wild- type GH activity [163]. In another 
patient, an aspartic acid to lysine mutation at 

codon 112 was identified and suggested to prevent 
appropriate GHR dimerization [164].

There are also patients with the phenotype of 
growth hormone insensitivity who do not demon-
strate mutations of the GHR gene, but have identi-
fied mutations in downstream GHR signaling 
molecules. Homozygous mutations in STAT5B, a 
major GH-dependent mediator of IGF-I gene 
transcription, have been identified as a cause of 
GH insensitivity [165, 166]. The first mutation 
characterized was a point mutation resulting in a 
marked decrease in phosphorylation of tyrosine 
[166], a critical step in the pathway to STAT acti-
vation of IGF-I gene transcription; while the sec-
ond characterized mutation was an insertion in 
exon 10, leading to early protein termination [165, 
167, 168]. In addition to growth retardation, both 
patients had evidence of immune dysfunction 
presumably because STAT5B is involved in down-
stream signaling for multiple cytokines.

1.2.1.4  GHR Mutations
Laron dwarfism is an autosomal recessive disorder 
characterized by clinical features of severe GH 
deficiency along with low IGF-I levels but with 
normal to high levels of GH after provocative test-
ing [169]. Several deletions and point mutations of 
several GHR exons have been described [170–179]. 
Many of these mutations affect the extracellular 
domain and, therefore, lead to absent or decreased 
levels of GHBP [180]. Recombinant IGF-I therapy 
has been demonstrated to effectively treat these 
patients [181, 182]. It has also been hypothesized 
that some patients with idiopathic short stature, 
normal GH secretion, and low serum concentra-
tions of GHBP may have partial insensitivity to 
GH due to mutations in the GHR gene [178].

1.2.1.5  IGF-I and IGF-IR Mutations
A patient noted to have a homozygous partial 
IGF-I gene deletion with undetectable levels of 
IGF-I presented with severe prenatal and post-
natal growth failure, bilateral sensorineural deaf-
ness, mental retardation, moderately delayed 
motor development, and behavioral difficulties. 
His evaluation did not demonstrate a significant 
delay in his bone age, and an IGFBP-3 level was 
normal [183]. Subsequently, a few other cases of 
IGF-I mutations have been described.

Studies with African Pygmies demonstrate nor-
mal levels of GH but decreased IGF-I levels and 
unresponsiveness to exogenous GH.  Although 

 C. L. Soto-Rivera et al.



13 1

IGF-I deficiency has been hypothesized, Bowcock 
et  al. found no differences in restriction fragment 
length polymorphisms in the IGF-I gene in Pygmy 
versus non-Pygmy black Africans [184]. 
Furthermore, Pygmy T cell lines show IGF-I resis-
tance at the receptor level with secondary GH resis-
tance [185, 186]. In subsequent studies, it was 
demonstrated that adult Pygmies demonstrate a 
reduction in both GH gene expression (1.8-fold) 
and GHR gene expression (8-fold). This decrease of 
the GHR expression in Pygmies was associated with 
reduced serum levels of IGF-I and GHBP [187].

Abnormalities in the IGF-IR gene have also 
been reported and are often associated with intra-
uterine growth retardation (IUGR). Several het-
erozygous mutations of the IGF-IR gene, as well 
as an association with deletions in chromosome 
15q, have been reported in patients with growth 
retardation [188–193]. The majority of these 
reported patients carried the diagnosis of IUGR 
along with progressive postnatal growth retarda-
tion; however, other phenotypic characteristics 
not universal in these patients included findings 
of developmental delay, microcephaly, or skeletal 
abnormalities. In addition, IGF-I levels were 
found to be either normal or high, whether at 
baseline or after provocative testing.

Other patients are suspected to have IGF-I 
resistance, as they have elevated GH levels and ele-
vated IGF-I levels [194–196]. In one patient, cul-
tured fibroblasts had a 50% reduction in IGF-I 
binding capacity [194]. Another patient had a 
markedly diminished ability of IGF-I to stimulate 
fibroblast α-aminoisobutyric acid uptake com-
pared to control subjects [195]. Their birth lengths, 
which were less than the fifth percentile, suggest 
the importance of IGF-I in fetal growth.

Other post-signal transduction defects and 
mutations in IGF-binding proteins may occur but 
have not been demonstrated as of yet.

1.2.2  Acquired Forms of GH 
 Deficiency (7 Box 1.2)

Hypopituitarism can be caused by anything that 
damages the hypothalamus, pituitary stalk, or pitu-
itary gland. Head trauma can injure the pituitary 
stalk and infundibulum and lead to the develop-
ment of transient and permanent diabetes insipi-
dus, as well as other hormonal deficiencies [197, 
198]. There are a number of reports suggesting an 

association between hypopituitarism and a compli-
cated perinatal course, especially breech delivery 
[199, 200]. It is not clear if a complicated perinatal 
course causes hypopituitarism or if a brain anom-
aly leads to both a complicated delivery and hypo-
pituitarism. The finding that some of these patients 
have a microphallus at birth suggests that pituitary 
dysfunction may precede the birth trauma [6].

Infiltrative conditions can also disrupt the 
pituitary stalk. Diabetes insipidus can be the first 
manifestation of germ cell tumors, Langerhans 
cell histiocytosis [201–203] or sarcoidosis [204]. 
Lymphocytic hypophysitis, usually in adult 
women in late pregnancy or in the postpartum 
period, can result in hypopituitarism [205].

Metabolic disorders can cause hypopituita-
rism through destruction of the hypothalamus, 
pituitary stalk, or pituitary. Hemochromatosis is 
characterized by iron deposition in various tis-
sues, including the pituitary. It may be idiopathic 
or secondary to multiple transfusions (e.g., for 
thalassemia major); gonadotropin deficiency is 
the most common hormonal deficiency, but GHD 
has also been described [206, 207].

Hypothalamic or pituitary tissue can also be 
destroyed by the mass effect of suprasellar tumors 
or by their surgical resection. These tumors include 
craniopharyngiomas, low-grade gliomas/hypotha-
lamic astrocytomas, germ cell tumors, and pituitary 
adenomas [208]. Treatment of brain tumors or 
acute lymphoblastic leukemia (ALL) with cranial 

Box 1.2 Acquired Forms of Hypopituitarism. 
Etiologies of  Acquired Growth Hormone 
 Deficiency

 5 Trauma
 5 Head injury
 5 Perinatal events
 5 Infiltrative and autoimmune diseases
 5 Langerhans histiocytosis
 5 Sarcoidosis
 5 Lymphocytic hypophysitis
 5 Infections
 5 Meningitis
 5 Granulomatous diseases
 5 Metabolic
 5 Hemochromatosis
 5 Cerebral edema
 5 Neoplasms
 5 Craniopharyngioma
 5 Germinoma
 5 Hypothalamic astrocytoma/optic glioma
 5 Cranial irradiation

Childhood Growth Hormone Deficiency and Hypopituitarism



14

1
irradiation may also result in GHD. Lower radia-
tion doses preserve pharmacologic response of GH 
to stimulation, but spontaneous GH secretion may 
be lost [209]. Discordancy between failure to pro-
voke an adequate GH response to insulin-induced 
hypoglycemia and normal response to exogenous 
GHRH stimulation suggest that the hypothalamus 
is more vulnerable than the anterior pituitary [210]. 
Data, however, from Darzy et al. show that sponta-
neous GH secretion is maintained in adults after 
low-dose cranial RT, suggesting there is not GHRH 
deficiency. There is a normal but decreased peak 
GH response to stimulation testing indicating 
decreased somatotroph reserve. They postulated 
that there is compensatory increase in hypotha-
lamic stimulatory input (GHRH) and suggested 
that “neurosecretory dysfunction” after low-dose 
cranial RT may only be seen in puberty during the 
time of increased GH demand [211].

The higher the radiation dose, the more likely 
and the earlier GHD will occur after treatment 
[212, 213]. Clayton et  al. reported that 84% of 
children who received greater than 30 Gy to the 
hypothalamic-pituitary area had evidence of GH 
deficiency more than 5  years after irradiation 
[212]. Higher doses also increase the likelihood of 
the development of other anterior pituitary hor-
mone deficiencies [213]. Cranial radiation can 
also be associated with precocious puberty, lead-
ing to premature epiphyseal fusion [198], and 
spinal irradiation can lead to skeletal impaired 
spinal growth [214], both of which will further 
compromise adult height.

1.3  Clinical Presentation 
of Growth Hormone Deficiency

Growth failure presenting in infancy and child-
hood is the most common sign of GH deficiency. 
Children with mild GH deficiency usually present 
after 6 months of age when the influences of pre-
natal environment wane [215]. They generally 
have normal birth weights and lengths slightly 
below average [216]. The height percentile of a 
child with GH deficiency will progressively 
decline, and typically the bone age will be delayed. 
They develop increased peri-abdominal fat [217] 
and decreased muscle mass and may also have 
delayed dentition, thin hair, poor nail growth, and 
a high-pitched voice [215]. Severe GH deficiency 
in the newborn period may be characterized by 

hypoglycemia and conjugated hyperbilirubine-
mia, as well as a small phallus in boys, consistent 
with multiple anterior pituitary hormone defi-
ciencies [215].

1.4  Diagnostic Evaluation 
of Growth Hormone Deficiency

There is much debate as to the proper methods to 
diagnose GHD in childhood. It is clear that there 
is a spectrum of GHD, and the clinical presenta-
tion varies with the degree of hormonal defi-
ciency. The diagnosis of GHD should be based on 
the integration of auxological, biochemical, and 
radiographic criteria.

GHD should be considered in children with 
short stature, defined as a height more than 3 SD 
below the population mean or height more than 2 
SD below the population mean with a growth 
velocity more than 1 SD below the mean, and in 
children with a very low growth velocity (more 
than 2 SD below mean) irrespective of current 
height. In considering who should undergo evalu-
ation for GHD, it is important to first exclude 
other causes of growth failure and then assess the 
patients for clinical features that can coexist with 
GHD. These features include hypoglycemia, pro-
longed jaundice, microphallus, traumatic delivery 
in the neonate, and craniofacial midline abnor-
malities. Additionally, history of other pituitary 
hormone deficiencies, cranial radiation, and cen-
tral nervous system infection, as well as family 
history of GHD, should be ascertained [218]. 
When present, the majority of these features are 
seen in patients on the severe end of the spectrum 
of GHD. These patients are typically easy to diag-
nose and have low growth velocity and biochemi-
cal markers of GHD, including low IGF-I levels 
[219] and low peak GH levels after stimulation 
tests [220]. Nonetheless, the majority of patients 
with GHD will present with short stature without 
any of these other features.

1.4.1  IGF-I and IGFBP-3

GH induces the expression of IGF-I in the liver 
and cartilage. The use of age and puberty- 
corrected IGF-I levels has become a major tool in 
the diagnosis of GHD [221]. Because of little diur-
nal variation, their quantification in random 
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