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Foreword

In neonates, organs and tissues of infants and young children are localized
closer to each other than in adults and—according to radio-biological inves-
tigations—children are more sensitive to ionizing radiation. Quality criteria
for diagnostic radiographic imaging needed to be specifically adapted to pae-
diatric radiology. After the important work in 1979 of Rosenstein on the cal-
culation of organ doses in paediatric age groups, this book closes a wide gap
on this topic.

The authors, internationally renowned in the field, provide new normal-
ized organ doses for conventional paediatric X-ray examinations in all age
groups. Although the mathematical phantoms had some inaccuracies con-
cerning the location, size, and shape of the organs in the different age groups,
the anatomy of the developing child is detailed enough to get reliable dose
calculations. Clinical indications, different field settings, exposure parame-
ters, image quality criteria, and normalized radiation doses have been inves-
tigated. The combination of these criteria, especially with various field
settings, offers new aspects of dose reduction and risk calculation.

The book is well organized with clear figures and similar structure and
formation of the tables for all investigated regions.

Imaging practice and radiation protection should be the reference tool for
everybody who works in paediatric radiology.

Don’t forget, children are our future.

Cologne, Germany Gabriele Benz-Bohm
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Preface

“Es hat nie einen Mann gegeben, der fiir die Behandlung von Einzelheiten so begabt
gewesen wire. Wenn er sich mit den kleinsten Dingen abgab, so tat er das in der
Uberzeugung, daf3 ihre Vielheit die grofien zuwege bringt.”—“There has never been
a man who was more capable to address details. If he had to do with the minor
details he did it believing that a lot of minor things would produce the great ones.”

Friedrich 1. about Friedrich Wilhelm 1., both kings of Prussia

Children are amongst the most radiation-sensitive living creatures on
earth. Thus, radiation protection of young patients might be one of the most
important issues in paediatric diagnostic radiology. On ethical grounds, chil-
dren also need greater protection against diseases compared to adults. Thus,
imaging of the child in paediatric radiology is an essential part of medicine.
But trying to optimize radiation exposure and image quality simultaneously
may make the paediatric radiologist feel himself like Ulysses between Scylla
and Charybdis.

Indeed, especially in paediatric radiology, there are numerous interacting
exposure parameters which influence radiation exposure and image quality, a
fact that makes the optimization process in paediatric radiology so compli-
cated. The authors of this book would like to contribute some facts to help
clarify this situation. This book addresses mainly to all radiologists and tech-
nologists who are involved in paediatric imaging and who wish to improve
the radiation protection of children by choosing adequate field settings and
exposure parameters. The book addresses also to medical physicists and epi-
demiologists who want to reconstruct organ doses achieved in patients during
conventional paediatric X-ray examinations.

The authors are aware that they perform a balancing act when trying to
bring together two quite distinct areas of paediatric radiology, the exposure
technique and the radiation dosimetry, each of them comprehensive enough
to fill an entire book. However, the authors believe that it is this combination
that may help the reader to assess the dosimetric consequences of the applied
exposure practice.

The book is divided into four parts. In the first part, a very short introduc-
tion will be given to the topics of radiation exposure and radiation risk. In the
second part, a short introduction to radiation physics and radiation dosimetry
will be given. However, the first two parts are no prerequisites at all for under-
standing the third part as the main part of this book. In the third part, a short
introduction will be given on how to calculate organ doses from clinically



Preface

measured dose indicators. Each chapter in this part deals with a specific
radiographic technique and provides a lot of tables subsuming clinical indica-
tions, image quality requirements, field settings, exposure parameters, and
normalized organ doses which result from various field settings and exposure
conditions. Finally, the fourth part of this book provides additional informa-
tion on the state of the art of dose reconstruction in paediatric radiology.

In preparation for this book, the authors were greatly assisted by several
people. First of all, the authors are grateful to Mrs. Corinna Hauser, to Mrs.
Anna Lena Buchholz, and to Mrs. Wilma McHugh, Springer Company, for
all their advice and patience. The authors want also to express their gratitude
to Mrs. Saanthi Shankhararaman and Mr. Kumar Srinivasan Deepak, Springer
Company, and their team for their patience and accuracy when preparing the
layout of the book. Special thanks go to Prof. Dr. Stefan Milz, anatomist at
the University of Munich and editor-in-chief of the Journal of Anatomy, as
well as to M. A. Franz Jiirgen Gotz, librarian of the national library of Bavaria,
for supporting the literature research. Thanks go also to our colleague Dr.
med. Birgit Kammer, head of the section for paediatric radiology at Dr. von
Hauner Children’s Hospital, and to Mrs. Sieglinde “Sigi” Eberle, chief
radiographer of the section for paediatric radiology, who have provided pho-
tographs of X-ray devices. And last but not least, the authors want to thank
Mrs. Tanja Smith and Mrs. B. A. Isabella Korbl for performing the linguistic
review of this book.

The authors want herewith to express their hope that this book might sup-
port a short step on the long way of radiation protection in paediatric
radiology.

Munich, Germany Michael Seidenbusch
Summer 2019 Veronika Résenberger
Karl Schneider
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Introduction

“Wir werden ja sehen, was wir sehen.”—*“We shall see what we will see.”

Wilhelm Conrad Rontgen, 28.12.1895
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Radiation Risk and Radiation
Protection in Paediatric Radiology

1.1 Paediatric Radiology

Immediately after Wilhelm Conrad Rontgen’s
publication about X-rays! in December 1895
[58], the evolution of diagnostic radiology as a
new medical discipline started [30], and so did
the evolution of paediatric radiology. By 1896,
within a very short period of time, 21 reports had
been published on X-ray examinations in chil-
dren [67]. Now, in rapid succession, departments
for paediatric radiology were founded all over the
world: In 1897, possibly for the first time ever, a
department of paediatric radiology was estab-
lished by the German physician and bacteriolo-
gist Theodor Escherich in the Anna Children’s
Hospital in Graz, Austria, [2, 16, 26], and in
1899, in the United States of America, the first
department of paediatric radiology was founded
in the Children’s Hospital of Boston by the civil
war surgeon Francis Henry Brown [8, 26]. These
foundations can be traced back to the fact that,
within a little while, diagnostic radiology had
become an essential diagnostic tool not only in
adult medicine [30] but also in paediatrics [1, 30,
57]. Nevertheless, child-specific radiological
methods had still to be developed in the follow-
ing decades [55, 59].

'In Germany, Austria, and Switzerland, the new kind of
radiation discovered by Roentgen has been called
“Rontgenstrahlung” (Roentgen rays), in other countries
“x-rays” with “x” standing for “unknown”.

© Springer Nature Switzerland AG 2019

Radiation Risk in Paediatric
Radiology

1.2

At that time, typical radiographies required radia-
tion exposures of several minutes [7, 14, 37].
Thus, radiation doses achieved in patients during
X-ray examinations were about three orders of
magnitude higher than today [38, 41]. As a con-
sequence, adverse biological effects could be
observed in clinical practice already within the
first year of X-ray diagnostics. As an example, a
case of hair-loss after a paediatric X-ray exami-
nation was described by Daniel [11] as an “inter-
esting observation [of] a physiological effect of
the x-rays” in April of 1896, but, of course, due to
the lack of knowledge about the true nature of
X-rays in former times, no correct pathomecha-
nism could be identified.

Today, after more than 100 years of world-wide
radiation research, the risks associated with ioniz-
ing radiation can be divided into deterministic and
stochastic biological effects [39]. While determin-
istic effects do occur only after exceeding a tissue-
specific threshold dose below which the effect is
not observed, there is, according to the present
state of research, no threshold for stochastic effects
[39], of which radiation-induced cancerogenesis is
the most terrifying one. Thus, since it is impossi-
ble to avoid stochastic radiation effects com-
pletely, these effects do play a crucial role in
radiation protection especially in diagnostic radi-
ology where ionizing radiations are intended to be

M. Seidenbusch et al., Imaging Practice and Radiation Protection in Pediatric Radiology,

https://doi.org/10.1007/978-3-030-18504-6_1
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clinically applied in order to avert further deter-
ministic pathologic damage of patients.
Unfortunately, children have to be considered
as being much more radiation-sensitive than adults.
Radiation exposure in children under 10 years has
been assumed to increase the stochastic radiation
risk by a factor of 34 [33]. And in fact, radio-bio-
logical investigations have shown in recent years
that organs and tissues in children seem to be much
more sensitive to ionizing radiation than those of
adults [64, 66]. This fact is of utmost importance in
paediatric radiology as most of the paediatric
X-ray examinations are performed in neonates and
young infants [62, 63] who may be even more
radiosensitive than children of other age groups.
To add insult to injury, the collective radiation
exposure of the European and US American popu-
lation is mainly determined by medical imaging
[13, 48, 56] and is still going up due to the increas-
ing use of computed tomography in medical diag-
nostics [5]. Therefore, it can be assumed that this
will also apply to children who represent a percent-
age of about 15-25% of the European and US
American populations [20, 26]. Indeed, up to 10%
of all conventional X-ray examinations are per-
formed in children in Western Europe [17], and up
to 15% in the United States [48], a lot of them in
neonates and young infants [54]. Accordingly,
Brenner et al. have warned at the beginning of the
new millennium that the stochastic radiation risk
of children might be considerably increased
through paediatric computed tomographic (CT)
examinations [3, 4]. Moreover, direct epidemio-
logic proof has been given recently of a signifi-
cantly heightened risk for neoplastic diseases after
CT examinations in the age range under 22 years
[40, 52]. Nevertheless, diagnostic imaging of chil-
dren by means of ionizing radiation is one of the
most important diagnostic techniques in paediat-
rics and there is a clear common agreement that
children’s health is a primary consideration [65].

Radiation Protection
in Paediatric Radiology

1.3

Against this background, the radiation exposure
during X-ray examinations ought to be minimized

especially in children and young adolescents.
This requires a rational use of ionizing radiation
[21-23, 28]. Today, there exist three fundamental
principles of rational use of ionizing radiation in
medicine [44] which are based on each other:
justification, optimization, and limitation [26, 31,
35,43, 63].

1.3.1 Justification

The fundamental and most effective principle of
radiation protection in paediatric radiology is the
principle of justification which represents one of
the main tasks of the paediatric radiologist.
Justification involves the question whether the
particular procedure will actually have any bene-
fit for the individual patient [26]. Thus, by
observing the principles of efficacy [23, 26],
many paediatric X-ray examinations might be
avoided and replaced by alternative diagnostic
procedures of similar diagnostic yield [50].

1.3.2 Optimization

If a paediatric X-ray examination is indicated
according to the principle of justification, the
radiation exposure ought to be kept as low as rea-
sonably achievable. This demand has been sum-
marized in the so-called ALARA concept, where
ALARA is an acronym for the phrase “as low as
reasonably achievable” [68]. This concept can be
traced back to the phrase that radiation exposure
should be kept “at the lowest practical level” in a
report of the American National Committee on
Radiation Protection (NCRP) which was pub-
lished in 1954 [42, 47]. The ALARA concept
may be also derived from the ALARP principle
that has arisen in 1974 from legislation in the
United Kingdom [51], where ALARP is the acro-
nym for “as low as reasonably practicable”.
Probably for the first time in paediatric radiol-
ogy the principle of minimization was postulated
by the German paediatrician Reyher in his paedi-
atric  radiology textbook entitled “Das
Rontgenverfahren in der Kinderheilkunde”
(“Roentgenology in paediatrics”) [49, 57].
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In Europe, systematic efforts were made in
order to improve image quality and radiation
exposure of patients in diagnostic radiology [46]
since the 1960s. Based on these efforts and on the
concept of efficacy which was defined by the
World Health Organization (WHO) in 1977,
Helmut Fendel, a paediatric radiologist at the Dr.
von Hauner Children’s Hospital, University of
Munich, introduced a new era of radiation pro-
tection in paediatric radiology [21, 22, 24] con-
sidering the radiation doses as well as the image
quality achieved during paediatric X-ray exami-
nations [23, 25]. His publications anticipated the
principles of justification and optimization intro-
duced by the International Commission on
Radiological Protection (ICRP) [31, 32]. In 1989,
Fendel founded the so-called Lake Starnberg
Group (Fig. 1.1, Table 1.1), a group of research-
ers of the European Society of Paediatric
Radiology (ESPR) that held their meetings at the
Lake Starnberg, Bavaria. In these years, efforts
have been made by international working groups
in order to optimize image quality and radiation

Fig. 1.1 Helmut Fendel, founder of the Lake Starnberg
Group, at the opening ceremony of the annual meeting of
the European Society of Paediatric Radiology (ESPR),
Munich 1990

Table 1.1 Members of the Lake Starnberg Group and the

European Network of Paediatric Radiologists

Rosemary Arthur
Giampiero Beluffi
Valmai Cook

Clément Fauré 4
Helmut Fendel 4

Eldad Horwitz

Peter Kramer -|-
Jean-Philippe Montagne
Noemi Perlmutter

Leeds, UK

Pavia, Italy

London, UK

Paris, France

Munich, Germany
Wiirzburg, Germany
Utrecht, The Netherlands
Paris, France

Brussels Belgium

Karl Schneider Munich, Germany

Betty Sweet Glasgow, UK
Paul Thomas Belfast, UK
Annotations:
—I— = deceased

exposure during conventional X-ray examina-
tions [15, 45, 46]. After Fendel’s death in 1991,
his successor Karl Schneider performed funda-
mental investigations on the image quality as
well as the radiation dose in paediatric radiology
all over Europe [61]. In 1996, the European
Network of Pediatric Radiology (ENPR) that
emerged from the former Lake Starnberg Group
published the European Guidelines on quality
criteria in paediatric radiology [9, 53]. These
studies were considered in a recommendation of
the German Commission for Radiation Protection
[12] even many years later. In the United
Kingdom, Valmai Cook published guidelines on
the best imaging practice in paediatric imaging in
1998 [10]. The German Medical Association
published in 2007 guidelines for all radiographic
and fluoroscopic examinations with specific
comments on the imaging procedures of paediat-
ric patients [29], and so did the Austrian Ministry
of Health [27].

1.3.3 Limitation

The concept of diagnostic reference levels
(DRL) was introduced in radiation protection in
1997 [34]. This concept was developed and used
for a long time in the United Kingdom. The DRL
were defined as the third quartile dose values—
either the entrance surface dose or the dose-area
product values—received from large field stud-
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ies in country. The very meaning is that radiol-
ogy departments or private practices which
exceed the third quartile values make at least one
significant mistake in the daily routine imaging
[36]. In Germany, DRL were introduced in 2003
[6] using the data from several European field
studies published in European Guidelines [9]
and have been revised three times, last amended
in 2016 [60]. In the meantime, dose reference
levels of many European countries have been
published by the national authorities [9, 18, 19].
However, the DRL were not implemented in all
European member states. Furthermore, they dif-
fer by a factor between 5 and 15 for chest X-rays
which is the most radiographic examination in
paediatrics. The reasons are diverse, but can be
mainly attributed to ignore the recommendations
on good radiographic practice outlined in the
European guidelines on quality criteria for diag-
nostic radiographic images in paediatrics [9].

References

1. Benz-Bohm G, Richter E. Chronik der
Kinderradiologie. Berlin, Heidelberg: Springer; 2012.

2. Benz-Bohm G, Stover B, Riccabona M. 50 years
Gesellschaft fiir Pidiatrische Radiologie—a chal-
lenge. Fortschr Rontgenstr. 2013;185:807-9.

3. Brenner DJ. Estimating cancer risks from pediatric
CT: going from the qualitative to the quantitative.
Pediatr Radiol. 2002;32:228-31.

4. Brenner DJ, Elliston CD, Hall EJ, Berdon
WE. Estimated risks of radiation-induced fatal cancer
from pediatric CT. AJR. 2001;176:289-96.

5. Brenner DJ, Hall EJ. Computed tomography: an
increasing source of radiation exposure. N Engl J
Med. 2007;357:2277-84.

6. Brix G. Bekanntmachung der
Referenzwerte fiir radiologische
medizinische ~ Untersuchungen:
Strahlenschutz, Salzgitter; 2003.

7. Biirgerspital Basel. Jahresbericht pro 1899. Basel;
1899.

8. Caffey J. The first sixty years of pediatric roent-
genology in the United States—1896 to 1956. AJR.
1956;76:437-54.

9. Commission of the European Communities. European
guidelines on quality criteria for diagnostic radio-
graphic images in paediatrics. EUR 16261, SBN
92-827-7843-6; 1996.

10. Cook JV, Shah K, Pablot S, Kyriou J, Pettett A,
Fitzgerald M. Guidelines on best practice in the x-ray
imaging of children. A manual for all x-ray depart-

diagnostischen
und nuklear-
Bundesamt  fiir

11.
12.

14.

15.

16.

17.

19.

20.

21.

22.

23.

24.

25.

26.

ments. London: Queen Mary’s Hospital for Children,
Surrey, and The Radiological Protection Centre; 1998.
Daniel J. The x-rays. Science. 1896;3:562-3.
Deutsche = Strahlenschutzkommission. Bildgebende
Diagnostik beim Kind—Strahlenschutz,
Rechtfertigung und Effektivitit. Empfehlung der
Strahlenschutzkommission, Deutschland; 2006.

. Deutscher Bundestag, 18. Wahlperiode. Unterrichtung

durch die Bundesregierung. Umweltradioaktivitdt und
Strahlenbelastung im Jahr 2014. Drucksache 18/9600;
2016.

Dommann M. Durchsicht, Einsicht, Vorsicht. Eine
Geschichte der Rontgenstrahlen, 1896-1963. Ziirich:
Chronos-Verlag; 2003.

Drexler G, Eriskat H, Schibilla H, Haybittle JL,
Secretan LF. Criteria and methods for quality
assurance in medical x-ray diagnosis. Br J Radiol.
1985;Suppl 18.

Escherich T. Die diagnostische Verwertung des
Rontgenverfahrens bei Untersuchung der Kinder.
Fortschr Rontgenstr. 1899;3:119.

European Commission. Radiation Protection 154.
European guidance on estimating population
doses from medical x-ray procedures. Directorate-
General for energy and transport, Directorate H—
Nuclear energy, Unit H.4—Radiation protection;
2008.

. European Commission. Radiation Protection 180.

Diagnostic reference levels in thirty-six European
countries. Directorate-General for energy, Directorate
D—Nuclear safety & fuel cycle, Unit D.3—Radiation
protection; 2014.

European Commission. Radiation Protection 185.
European guidelines on diagnostic reference levels for
paediatric imaging. Directorate-General for Energy,
Directorate D—Nuclear Energy, Safety and ITER,
Unit D3—Radiation Protection and Nucl Saf; 2018.
Eurostat. Population structure and ageing. ISSN
2443-8219; 2016.

Fendel H. Die zehn Gebote des Strahlenschutzes
bei der Rontgenuntersuchung im Kindesalter. Padiat
Prax. 1976;17:339-46.

Fendel H, Schneider K. Verniinftige diagnostische
Bildgebung in der Kinderurologie. Krankenhaus-
Arzt. 1988;61:513-22.

Fendel H, Schneider K, Bakowski C, Glas J, Drews
K, Kohn MM. The efficacy of diagnostic radiation
in paediatrics. Report of the Federal Ministery for
Environment, Environment Protection and Reactor
Safety of the Federal Republic of Germany, BMU-
1987-161; 1987.

Fendel H, Stieve FE, editors. Radiation protection in
pediatric radiology. NCRP report 68; 1983.

Fendel H, Stieve FE, editors. Verniinftige diag-
nostische Bildgebung bei Kindern. Bericht einer
Studiengruppe der  Weltgesundheitsorganisation.
Berlin: Hoffmann Verlag; 1990.

Fendel H, Sweet EM, Thomas PS, editors. The status
of paediatric radiology in Europe. Berlin: Schering
AG; 1991. ISBN 3-921817-43-9.



References

27.

28.

29.

30.

31.

32.

33

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Fotter R, Sinzig M, Jost G, Unterweger O,
Weissensteiner S. Qualitétskriterien fiir Rontgen-
aufnahmen bei Kindern. Ein Leitfaden der AG
Kinderradiologie: Osterreichisches Bundesministe-
rium fiir Gesundheit.

Fuchs W. Simple recommendations on how to avoid
radiation harm. Western Electrician. 1896;12.
German Medical Association. Guidelines of the
German Medical Association for quality assurance in
diagnostic radiology. 2007.

Gocht H. Die Rongten-Literatur. II. Teil: Sachregister.
Stuttgart: Enke Verlag; 1912.

International Commission on Radiological Protection.
Protection against ionizing radiation from external
sources. ICRP report 15; 1969.

International Commission on Radiological Protection.
Recommendations of the International Commission
on Radiological Protection. ICRP publication 26;
1977.

. International Commission on Radiological Protection.

1990 recommendations of the International
Commission on Radiological Protection. ICRP pub-
lication 60; 1990.

International Commission on Radiological Protection.
Radiological protection and safety in medicine. ICRP
publication 73; 1997.

International Commission on Radiological Protection.
Radiological protection in paediatric diagnostic and
interventional radiology. ICRP publication 121; 2013.
International Commission on Radiological Protection.
Diagnostic reference levels in medical imaging. ICRP
publication 135; 2017.

Kaufmann HJ, Ringertz H, Sweet E, editors. The first
30 years of the ESPR. The history of pediatric radi-
ology in Europe. Berlin, Heidelberg: Springer; 1993.
ISBN 978-3-540-56541-3.

Kemerink M, Dierichs TJ, Dierichs J, Huynen HIM,
Wildberger JE, van Engelshoven JMA, Kemerink
GJ. Characteristics of a first-generation x-ray system.
Radiology. 2011;259:534-9.

Little MP. Risks associated with ionizing radiation. Br
Med Bull. 2003;68:259-75.

Mathews JD, Forsythe AV, Brady Z, Butler MW,
Goergen SC, Byrnes GB, Giles GG, Wallace AB,
Anderson PR, Guiver TA, McGale P, Cain TM,
Dowty JG, Bickerstaffe AC, Darby SC. Cancer risk
in 680 000 people exposed to computed tomog-
raphy scans in childhood or adolescence: data
linkage study of 11 million Australians. BMJ.
2013;346:£2360.

Melo DR, Miller DL, Chang L, Moroz B, Linet MS,
Simon SL. Organ doses from diagnostic medical radi-
ography—trends over eight decades (1930 to 2010).
Health Phys. 2016;111:235-55.

Miller DL, Schauer D. The ALARA principle in med-
ical imaging. AAPM Newslett. 2015;40:38—40.
Moores BM. A review of the fundamental prin-
ciples of radiation protection when applied to the
patient in diagnostic radiology. Radiat Prot Dosim.
2017;175:1-9.

44,

45.

46

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

Moores BM. The psychology of decision making and
its relevance to radiation protection of the patient in
medicine. Radiat Prot Dosim. 2018;178:245-53.
Moores BM, Stieve FE, Eriskat H, Schibilla H, edi-
tors. Technical and physical parameters for quality
assurance in medical diagnostic radiology. British
Institute of Radiology, BIR report 18; 1989.

. Moores BM, Wall BF, Eriskat H, Schibilla H, editors.

Optimization of image quality and patient exposure
in diagnostic radiology. British Institute of Radiology,
BIR report 20; 1989.

National Council on Radiation Protection and
Measurements. Permissible dose from external
sources of ionizing radiation. NRCP report no. 17;
1954.

National Council on Radiation Protection and
Measurements. lonizing radiation exposure of the
population of the United States. NRCP report no. 160;
2009.

Oestreich AE. ALARA 1912: “as low a dose as
possible” a century ago. Radiographics. 2014;34:
1457-60.

Oikarinen H, Merilidinen S, Pidikko E, Karttunen A,
Nieminen MT, Tervonen O. Unjustified CT examina-
tions in young patients. Eur Radiol. 2009;19:1161-5.
Parliament of the United Kingdom. Health and safety
at work etc act. UK; 1974.

Pearce MS, Salotti JA, Little MP, McHugh K, Lee
C, Kim KP, Howe NL, Ronckers CM, Rajaraman
P, Craft AW, Parker L, Berrington de Gonzilez
A. Radiation exposure from CT scans in child-
hood and subsequent risk of leukaemia and brain
tumours: a retrospective cohort study. Lancet.
2012;380:499-505.

Perlmutter N, Arthur RJ, Beluffi G, Cook V,
Horwitz EA, Kramer P, Montagne JP, Thomas PS,
Schneider K. The quality criteria for diagnostic radio-
graphic images in paediatrics. Radiat Prot Dosim.
1998;80:45-8.

Portelli JL, McNulty JP, Bezzina P, Rainford
L. Frequency of paediatric medical imaging examina-
tions performed at a European teaching hospital over
a 7-year period. Eur Radiol. 2016;26:4221-30.
Pouders E, Van Tiggelen R. Milestones in paediatric
radiology. JBR-BRT. 2007;90:15-7.

Regulla D, Eder H. Patient exposure in medi-
cal x-ray imaging in Europe. Radiat Prot Dosim.
2005;114:11-25.

Reyher P. Das Rontgenverfahren in  der
Kinderheilkunde. Berlin: Hermann Meusser; 1912.
Rontgen WC. Ueber eine neue Art von Strahlen.

(Vorldufige Mittheilung.) Sitzungsberichte
der Wiirzburger Physik. medic. Gesellschaft.
1895:137-47.

Rotch TM. Living anatomy and pathology; the diag-
nosis of diseases in early life by the Roentgen method.
Philadelphia, London: Lippincott Company; 1910.
Schegerer A. Diagnostische Referenzwerte fiir diag-
nostische und interventionelle Rontgenanwendungen.
Salzgitter: Bundesamt fiir Strahlenschutz; 2016.



1 Radiation Risk and Radiation Protection in Paediatric Radiology

61.

62.

63.

64.

65.

Schneider K. Evolution of quality assurance in paedi-
atric radiology. Radiat Prot Dosim. 1995;57:119-23.
Seidenbusch MC, Schneider K. Radiation exposure of
children in pediatric radiology. Part 1: referral crite-
ria and x-ray examination frequencies at a university
children’s hospital between 1976 and 2003. Fortschr
Rontgenstr. 2008;180:410-22.

Seidenbusch MC, Schneider K. Strahlenhygienische
Aspekte bei der Rontgenuntersuchung des Thorax.
Radiologe. 2015;55:580-7.

Stephan G, Schneider K, Panzer W, Walsh L,
Oestreicher U. Enhanced yield of chromosome aber-
rations after CT examinations in paediatric patients.
Int J Radiat Biol. 2007;83:281-7.

Unites Nations. Convention of the rights of the child;
1989.

66.

67.

68.

United Nations Scientific Committee on the Effects
of Atomic Radiation (UNSCEAR). UNSCEAR 2013
Report, Volume II: scientific findings on effects of
radiation exposure of children, Scientific Annex B:
effects of radiation exposure of children. ISBN 978-
92-1-142293-1, New York: United Nations; 2013.
Willich E, Ebel KD. The history of paediatric radiol-
ogy in Germany. In: Kaufmann HJ, Ringertz H, Sweet
E, editors. The first 30 years of the ESPR. Berlin,
Heidelberg: Springer; 1995.

Willis CE, Slovis TL. The ALARA concept in pedi-
atric CR and DR: dose reduction in pediatric radio-
graphic exams—a white paper conference executive
summary. Radiology. 2005;234:343—4.



®

Check for
updates

The Concept of Normalized Organ
Doses for Dose Reconstruction
in Paediatric Radiology

2.1 Normalized Organ Doses

The estimation of the radiation exposure of the
patient during X-ray examinations is an essential
requirement in order to assess the stochastic radi-
ation risk of the patient. In Chap. 3, an outline of
the fundamentals of paediatric dosimetry will be
given.

In recent years, the estimation of the organ
doses received during conventional radiographic
X-ray examinations has been usually performed
by applying normalized organ doses (synony-
mously: conversion factors, conversion coeffi-
cients) to basic dose indicators like the incident air
kerma or the dose area product which can be mea-
sured. This concept of normalized organ doses is
highly applicable in clinical radiology as normal-
ized organ doses for conventional radiographs are
given in numerous individual publications and in a
few large systematic reference tables which have
been published in recent years (see Chap. 29).
Thus, organ doses can be estimated easily and
quickly from basic dose indicators like the inci-
dence air kerma or the dose area product.

2.2 Normalized Organ Doses
Considering Varying Field

Settings

In the reference tables published up to now, the
selection of exposure parameters and standardized

© Springer Nature Switzerland AG 2019

radiation field settings (size and position of the
radiation field on the patient) has been performed
through the institutions publishing the reference
tables of normalized organ doses. However,
exposure parameters and radiation field settings
applied in clinical practice may differ from the
standard values given in the reference tables.
Beyond that, the cited reference tables are lack-
ing quantitative information regarding the impact
of the variation of exposure parameters and field
settings on the radiation exposure especially in
such organs and tissues which are localized close
to the radiation field. Thus, the normalized organ
doses listed in these tables are probably not
generally applicable to a particular clinical exam-
ination situation, or are only applicable with
limitations.

For this reason in particular and for considering
the varying radiation field settings in clinical rou-
tine, new sets of normalized organ doses for calcu-
lating organ doses from measured incidence doses
have been provided by the authors of this book in
recent years, basing on optimal and suboptimal
radiation field settings and considering different
age groups of 0,' 1, 5, 10, 15, and 30 years for the
most frequent X-ray examinations, i.e. the skull,
the thorax, the abdomen, the segmental spine, the

'The age group “0” refers to children having an age less
than 1 year. Although this term can be criticized from the
paediatric point of view, it is very appropriate for mathe-
matically describing anthropometric properties.
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pelvis, and the thoraco-abdominal radiograph in
neonates and young infants [1-6].

However, due to the limited space available in
scientific publications, only a small set of expo-
sure parameters and field settings could be con-
sidered in these publications. As normalized
organ doses are significantly affected by the radi-
ation quality, the normalized organ doses listed in
these publications may be not complete enough
for any kind of clinical application. In addition,
no standard operating procedures regarding the
patient preparation, the field setting, and the
exposure parameters depending on the patient’s
age could be provided. As the field setting and the
exposure parameters do have strong impact on
the organ doses achieved in a patient, an inte-
grated presentation of clinical and dosimetric
aspects seems to be essential in order to achieve a
maximum of clinical applicability.

Therefore, the intention of this book has been
to provide new normalized organ doses for all
common conventional paediatric X-ray examina-
tions in paediatric patients of all age groups con-
sidering various aspects of field setting, exposure
parameters, image quality requirements, and
radiation doses.
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Specific Problems of Paediatric

Radiology

Children are not to be considered as “little adults”
[10, 20, 93]. Thus, medical examinations in children
will have to be different from those in adults [19].
This is particularly true for paediatric X-ray exami-
nations [10]. Children differ from adults regarding

e anthropometry

e anatomy and physiology
e psychology

 radiation biology
 radiation risk

3.1  Anthropometry

“Anthropometry is the measurement of human
size, shape, and physical capabilities” [37].
Anthropometry is as old as humanity.! In ancient
Egypt and Greece, it was a common matter in
knowledge of artists and philosophers that there
inevitably had to exist a divine relationship
between anthropometry and geometry. Probably
one of the first of the ancient artists who described
the divine proportions in humans was Polyklet [24,
56]. Once again in the Renaissance, artists like
Leonardo da Vinci tried to find a relationship
between human body measures and geometrical
figures [13]. Across the millennia, there have been

'During the national-socialistic period in Germany
(1933-1945), anthropometry was misused for racist pur-
poses. The German authors of this book distance them-
selves strongly from this approach.

© Springer Nature Switzerland AG 2019

a lot of motivations for the geometric approach to
human anthropometry: theology [13], natural phi-
losophy [47], visual arts [13, 24, 39, 44, 56, 79,
86], architecture and ergonomics [15, 74], and last
but not least medicine [1, 3, 6, 7, 22, 23, 29, 33, 36,
40, 41, 42, 46, 51, 54, 82, 85, 89, 92]. Indeed,
anthropometry is an important measure in paediat-
rics e.g. for diagnosing disorders in the somatic
evolution of children [3, 22, 36, 85]. But also in
paediatric radiology, the anthropometry of chil-
dren does play a crucial role as radiation exposure
during conventional radiographs is an exponential
function of patient diameter (see Chap. 4.6) [1, 29,
38, 40, 41, 42, 46] and thus has to be considered
when planning paediatric CT protocols [55].
Beyond that, the effects of scatter radiation, colli-
mation, and shielding are strongly affected by the
children’s body measures as well. As children’s
anthropometry does vary over a wide range not
only during ontogenesis but also within a defined
age group [e.g. [54, 85]], determining exposure
parameters for performing paediatric X-ray exam-
inations or reconstructing radiation doses achieved
during X-ray examinations in children is rather
extensive.

There are various publications about paediat-
ric anthropometry. Modern relations between
human’s age and anthropometry have been estab-
lished e.g. by various authors in the seventeenth
century [39], in the eighteenth century [47], in
the nineteenth century [63, 78], and in the twenti-
eth century [3, 22, 54, 86, 92]. These findings

13
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Fig. 3.1 Variation of human anthropometry over the
years of life. Body measures are given in units of skull
heights (KH = Kopfhohe (German) = skull height,

have also been transferred in textbooks of graphic
art’ [44, 86].

3.1.1 Body Height in Units of

Head Heights

Figure 3.1 [54] shows the variation of human
body measures as a function of age with the head
height as measuring unit as it is common in visual
arts [79] and probably was used first by Polyklet
and his predecessors in ancient Greece and
Egypt. A simple equation® can be used to describe
the patient’s total body height hg., as a linear
function of patient’s age a in years (0-18 years)
in terms of patient’s head height Ay,

*It seems to be somewhat strange that data of human body
proportions can be taken from textbooks of graphic art
rather than from books of human anatomy, but indeed,
anthropometry seems to be more a topic of visual arts and
architecture than a topic of human medicine [49].

*This equation has been derived by the British painter
Martin Dace.

12 25

KM = Korpermittelpunkt (German) = midpoint of the
body in the longitudinal axis) (From [54])

2
hBody :£§.a+4j'h’l{ead (31)

3.1.2 Anthropometric Parameters
of Anatomical Regions

Detailed anthropometric parameters of children
are given in various publications, e.g. in the tables
of Bohmann [6, 7] and Hart et al. [29]. More data
have been provided e g. by Snyder et al. [74] and
by the National Health and Nutrition Examination
Surveys (NHANES) database [34]. In recent
years, especially diameters of anatomical regions
have been determined through several clinical
studies. Numerical values of diameters of various
anatomical regions being examined in paediatric
patients are given also in the publications men-
tioned above [6, 7, 29, 36]. In many X-ray exami-
nations, however, the trunk diameter of children
does play a crucial role. As the human trunk
region has an elliptical cylindrical shape, the
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Fig. 3.2 Diameters of the trunk. (a) Concept of
Lindskoug’s equivalent cylindrical diameter. The equiva-
lent diameter of the chest according to Lindskoug is
derived from the patient’s height / and the patient’s mass
m assuming the patient’s body as a cylinder. The body
density is assumed to be constant in all body regions. This
approximation of the body of a paediatric patient by a

thickness of the human trunk can be described by
its anatomical sagittal and lateral diameters d, i
and diea.* For dosimetric purposes, it can be
advantageous to calculate a virtual mathematical
diameter representing these both real anatomical
diameters.

Beyond that, also the chemical composition of
organs and tissues determines the dosimetric
properties of patients. Detailed chemical compo-
sitions are listed e.g. in [31].

3.1.3 Anthropometric Parameters
of the Trunk Region

3.1.3.1 Equivalent Cylindrical Diameter
of the Trunk Region

An approach to calculate a mathematical diame-

ter from clinical anthropometric parameters is

“By the way, during the adolescence, the ratio of the lat-
eral to the sagittal diameter converges to the golden sec-
tion [72].

cylinder is valid for children in their first 2 years of life.
(b) Concept of the effective elliptical diameter. The effec-
tive elliptical diameter is the geometric mean of the sagit-
tal and the lateral trunk diameter of the patient. Using
computed tomography the diameters can be exactly mea-
sured [52, 64, 67]. (b) shows a chest CT image of a
6-month-old infant (© M. Seidenbusch 2018)

Lindskoug’s concept of the equivalent cylindric
diameter (in short: equivalent diameter) d.
(Fig. 3.2) [40, 41, 42, 46] which can be calculated
from the patient’s height /2 and mass m approxi-
mating the patient’s shape by a cyclic cylinder
with height 4, diameter d., and medium density p:

(3.2)

3.1.3.2 Effective Elliptical Diameter
of the Trunk Region

Another approach is the calculation of an effec-
tive elliptical diameter (in short: effective diame-
ter) d. from the real sagittal diameter d and
lateral diameter d,.; considering the fact that the
transversal section of human body has an ellipti-
cal shape [1, 9]:

d, =/d

e sagittal :

d (3.3)

lateral

As can be seen e.g. in Chap. 4 from Table 4.3,
the equivalent cylindrical diameter is closer to the
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sagittal diameter and the effective elliptical diam-
eter is closer to the lateral diameter.

3.1.4 Anthropometric Parameters
of the Skull

The anthropometric parameters of the skull (sag-
ittal diameter, lateral diameter, head circumfer-
ence, skull surface, brain weight, brain volume
and many more) have been described since sev-
eral centuries in numerous publications [e.g. [30,
54,65, 89]]. In order to perform correct dosimetric
calculations in paediatric patients, a realistic
model of skull and brain are necessary especially
in neonates and young infants because of the
short distance between skull and trunk. Only
then, scattered radiation originating from skull
and chest is appropriately taken into account. In

Fig. 3.3 Somatogram
for body height of

children in the Dr. von o L 5

Chap. 4 will be shown that the skull volume has
been considerably underestimated in the mathe-
matical phantoms used for calculating the nor-
malized organ doses in this book.

3.1.5 Somatograms

In paediatrics, for describing the age-related
development of children, so-called somatograms
are used which depict the dependence of body
height ad body weight as functions of age [23, 51,
85]. As can be seen from somatograms derived
from patients’ anthropometric data acquired in
the Dr. von Hauner Children’s Hospital of the
University of Munich during 1976-1998 [68],
anthropometric properties such as body height
and body weight show a wide range even within a
defined age group (Figs. 3.3 and 3.4).

Body height vs age (number of patients = 33.000)

10 15 20 25 30

. 3000
Hauner Children’s 1

Hospital, University of
Munich, 1976-1998
[68]. Blue lines = 3%,
10%, 25%, 15%, 90%,
and 97% percentiles;
green line = 50%
percentile = median; red
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3.1.6 Age Groups®

The simplest way to assign normalized organ
doses to a paediatric patient is characterizing the
patient’s anthropometry by his age. However,
despite of the fact that patients’ anthropometries
may vary over a wide range even in the same age
group, the definition of age groups may be rea-
sonable not only for practical reasons.

There are various possibilities to define age
groups for children [82]. From the medical point
of view, the so-called traditional age groups can
be defined (Table 3.1, [83]). Beyond that, accord-
ing to numerous anthropometric considerations,
several systems of age group intervals have been
proposed (Table 3.2, [82]).

SThe age group “0” refers to children having an age less
than 1 year. Although this term can be criticized
from the paediatric point of view, it is very appropriate
for mathematically describing anthropometric properties.

25 30

Age (years)

Table 3.1 Traditional age groups [83]

Age group Age range
Newborn 0-3 months
Infant 0-12 months
Toddler -3 years
Preschool —6 years
School age —12 years
Adolescent —18 years

Table 3.2 Examples for different age group systems [82]
Age group interval (years)

Various

countries

[14,26,29, UK|[32, Japan Portugal Australia
47] 71,72]  [28] [52] [7]

- - - 0-0.25 -

0-1 <1 <1 0.25-3 04

1-5 5 1-7 3-8

5-10 10 8-12 8-15 5-14
10-15 - 13-19 15-19 -

- - >19 - -
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These age group intervals can be assigned to
body weight intervals (Table 3.3, [84]).

Another approach is calculating age groups by
defining equidistant trunk or body height inter-
vals which can be derived from the anthropomet-
ric data published in somatograms (Tables 3.4
and 3.5 [83]).

In another approach, age group intervals are
chosen in a way that within an age group organ
sizes do not vary more than 15% (Table 3.6, [83]).

Overall, it can be stated that the age groups
and age group intervals defined in Table 3.6 cor-
respond to minimal variations of trunk or body
height and of organ dimensions within an age

group.

Table 3.3 Age groups corresponding to body weight
intervals [84]

Age group interval (years) Body weight interval (kg)

0-1 <10
1-5 10-20
5-10 20-35
10-15 >35

Table 3.4 Age groups corresponding to nearly equal
trunk height intervals [83]

Trunk height
Age group (years) Age range (years) range (cm)
0 0-0.5 10-24
1 0.5-3 24-30
5 3-7.5 30-36
10 7.5-12.5 36-42
15 12.5-17 42-50

Considering the medium percentile of a somatogram of
trunk height vs. age, age ranges were derived from
somatogram values corresponding to trunk height inter-
vals between the age groups of about 6 cm

Table 3.5 Age groups corresponding to body height
intervals [83]

Height
Age group (years)  Age range (years) range (cm)
0 0-0.5 0-66
1 0.5-3 66-95
5 3-7 95-124
10 7-13 124-156
15 13-17 156-168

Considering the medium percentile of a somatogram of
body height vs. age, age ranges were derived from
somatogram values corresponding to body height inter-
vals of about 30 cm

Table 3.6 Age groups corresponding to variation of
organ dimensions [83]

Age group (years) Age range
0 0-0.5

1 0.5-3

5 3-7

10 7-13

15 13-17

Age groups are chosen in a way that within an age group
organ sizes do not vary more than 15%

3.2  Anatomy and Physiology

Children differ from adults not only in anthro-
pometry [33] but also in anatomy and physiol-
ogy [54]. There are several implications arising
from these differences: The age-depending ana-
tomical situs of organs, the size of organs and
tissues have an impact on X-ray findings. As in
infants and young children organs are localized
closer together than in older children, radiation
protection through collimation or shielding is
much more sophisticated. Beyond that, the age-
related specific peculiarities of the physiology,
e.g. respiratory rate, have to be considered. By
this means, the exposure time should be as low
as possible in uncooperative patients. It should
be kept below 4 ms for ap chest X-rays in
infants to avoid motion and minimize pulsation
artefacts of small intrapulmonary interstitial
pulmonary structures [10]. In this paragraph,
reference will be made to some age-specific
properties of some organs and tissues insofar
they are important for radiation protection. The
following paragraphs refer also to the STUK
MIRD phantom family described in Chap. 4.8.

3.2.1 Skull

The ocular lenses are not inserted in the STUK-
phantoms. Therefore, no calculations of the lens
dose are possible.

In first year of life, a considerable proportion
of the active bone marrow (about 30%) is located
in the cranial vault and the facial bones. This pro-
portion of bone marrow decreases continuously
over the years. Post puberty it is in the range of
10% of the total.
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3.2.2 Thymus

The thymus varies greatly in size and shape up to
the age of 2 years. The cervical lobe of the
thymus—a frequent anomaly in infancy—is not
incorporated in the STUK MIRD phantoms. This
variant underestimates the thymus dose even if
the skull ap radiograph is collimated tightly (opti-
mal field setting).

3.2.3 Chest

Size and shape of the human chest depend on
patient’s age [6, 7, 61, 72]. Thus, the sagittal and
lateral chest diameters are a function of age. In
elder children, the increase of the lateral chest
diameter has been overestimated when the phan-
tom family of PCXMC program was created [72].

3.2.4 Lungs

The lung density and thus the value of the
effective linear mass-attenuation coefficients
(see Chap. 4) of the lungs decrease with
patient’s age [35, 43, 72, 77]. This can be
explained by the enlargement of the air spaces
with simultaneous decrease of the interstitial
tissue of the developing lungs. This process,
the continuing increase in number and size of
the alveoli occurs within the first 7 years of
life. At the same time, the patient’s diameters
grow preferably in the horizontal and longitu-
dinal direction with age. These two character-
istics implicate that the radiation doses required
for chest radiographs can be kept nearly con-
stant over the age range from infants till the
age of 10 years, a physical effect which at first
glance may seem somewhat strange but which
is well known in clinical routine [71].

3.2.5 Mammae
Post-partum maternal hormones can sensitize the

breast tissue of full-term newborns leading to a
transient increase of the mammary tissue. This

increase of glandular tissue mass in the first
3—6 months of life has not been respected when
the phantom family of PCXMC program was cre-
ated [69]. The glandular breast tissue in this age
period is probably more vulnerable to ionizing
radiation as the mitotic activity is increased [90].

3.2.6 Gonads

The location of ovaries varies considerably in all
age groups of females. In neonates they are
often located higher in the pelvic region than in
older girls or adolescents. One reason for the
high position is a long mesovar which allows the
ascension of ovaries even into the upper abdo-
men [2, 14, 18, 21, 58]. The size of the urinary
bladder can also change the position of the ova-
ries considerably.

The male gonads descend to the scrotum. This
process is not finished before the school age. In
premature male babies born before the 28th gesta-
tional week, they are located within the abdomen.

3.2.7 Active Bone Marrow

The active bone marrow with its stem cells is
amongst the most radiation-sensitive tissues in
human body. Therefore, the radiation exposure of
active bone marrow will contribute significantly
to the total stochastic radiation risk. The estima-
tion of the active bone marrow dose requires
detailed quantitative information about its
regional distribution in the different compart-
ments of the human body. This regional distribu-
tion of red bone marrow cells, however, is
depending on age [11, 16, 62, 66, 87, 88, 91]. For
example, in premature babies with a gestational
age of 28 weeks, erythropoietic stem cells are
mainly found in the liver with a percentage of
50% and in the spleen with a percentage of 15%
[50]. Even in mature neonates, during the first
weeks of life, not all stem cells will have migrated
to the active bone marrow. It must be stated here
that it remains questionable whether these aspects
have been considered sufficiently when con-
structing the mathematical MIRD phantoms



20

3 Specific Problems of Paediatric Radiology

forming the basis of the normalized organ doses
listed in this book.

As active bone marrow cells are enclosed by
bone cells and as the linear mass absorption coef-
ficients (see Chap. 4) of bone are higher than
these of red bone marrow, interface effects may
play an important role during radiation exposure
of active bone marrow cells [75] resulting in a
local dose enhancement which likely cannot be
calculated through the conventional phantom
models used in radiation dosimetry.

3.3  Psychology

It may be somewhat surprising at first glance that
even children’s psychology should play an impor-
tant role in paediatric radiology [5, 80]. However,
already in 1911, the German paediatrician Reyher
reported that X-ray examinations create additional
distress for the child [60]. Indeed, for a child,
“admission to hospital is a kind of trap from which
there is no escape” [20], and “there is always the
fear of unknown” [20]. Moreover, “large [X-ray]
machines are intimidating, and most children do
not like the feeling that they are trapped under
something which may fall on them” [20].
Therefore, children often will not cooperate during
medical examinations or even try to escape, espe-
cially during X-ray examinations. Of course, a
restless child will enhance the number of motion
artefacts during X-ray examinations [59]. Thus,
from the dosimetric point of view, this behaviour
of children may result in repeated radiographs or
in extended fluoroscopy durations. As a conse-
quence, the radiation burden in uncooperative chil-
dren may be increased compared to the radiation
doses achieved in cooperating children.®’

®Moreover, also the parents’ psychology may be taken
into consideration as the perception of radiation risk is
rather different in different population groups [17, 45] and
thus affects radiation risk communication in clinical
practice.

"More literature about this subject has been provided in
[80].

3.4 Radiation Biology

As mentioned in the Introduction section, chil-
dren have to be considered as being much more
radiation-sensitive than adults. The radiation
exposure in children under 10 years has been
assumed to increase the stochastic radiation risk
by a factor of 3—4 [32]. Radio-biological inves-
tigations have shown in recent years that at least
some organs and tissues in children seem to be
much more sensitive to ionizing radiation than
those of adults [76, 81]. In particular, children
younger than 10 years seem to be more
radiation-sensitive than adolescents. Finally,
this factor may be of wider importance as a lot
of paediatric X-ray examinations are performed
in neonates and young infants [70, 73]. The rea-
son for the enhanced radiosensitivity of children
may be the fact “that radiosensitivity of tissues
depends upon the number of undifferentiated
cells which the tissue contains, the degree of
mitotic activity in the tissue, and the length of
time that the cells of the tissue stay in active
proliferation” (law of Bergonié and Tribondeau)
[4, 57] and all of these factors are enhanced in
children.

3.5 Radiation Risk

Against this background, the question comes
up whether children have an increased stochas-
tic radiation risk through paediatric X-ray
examinations. For the dose range of conven-
tional X-ray examinations, no significant
enhancement of stochastic radiation risk could
be found in epidemiologic studies [e.g. [25-
28]]. However, Brenner et al. assumed that the
stochastic radiation risk of children might be
considerably increased by paediatric CT exam-
inations [8]. According to this, direct epidemio-
logic proof of a significantly heightened risk
for neoplastic diseases after CT examinations
in the age range under 22 years has been given
[48, 53].
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Radiation Dose and Dose
Reconstruction in Conventional
Paediatric Radiology

4.1 Introduction

Radiation dosimetry is the science of deter-
mining the fraction of the energy which is
absorbed in matter during interaction with ion-
izing radiation [5]. Due to the fact that children
are much more sensitive to ionizing radiation
than adults, radiation dosimetry may be con-
sidered as one of the most important topics in
paediatric radiology. In this chapter, the funda-
mentals of radiation dosimetry against the
background of paediatric radiology will be
presented. Therefore, the description of radia-
tion physics will be focus on clinical paediatric
aspects. For a more physical description, see
e.g. [1,5, 13, 17, 33, 40, 46].

Organ doses achieved in patients during con-
ventional paediatric X-ray examinations
depend on many influence parameters. Thus,
radiation dosimetry and dose reconstruction are
the most sophisticated subjects in paediatric
radiology. In the following section, a short
overview over the fundamentals of radiation
dosimetry in paediatric radiology shall be given
in order to enable the reader to perform dose
reconstructions in children using this book. For
more details in clinical radiation physics, see
e.g. the books of Bushberg et al. [13] and Dance
et al. [14].

© Springer Nature Switzerland AG 2019

4.2  Technical Principle
of a Conventional X-Ray

Examination

In order to achieve optimal image quality under
optimized radiation exposure to the patient during
an X-ray examination, the technical components
of an X-ray unit and the physical exposure param-
eters have to be simultaneously adapted to each
other with a lot of care. Figure 4.1 exemplifies the
technical principle of a standard paediatric X-ray
examination by a chest radiography in a 5-year-
old patient and the exposure parameters associ-
ated to the technical components of the X-ray
unit. From the technical point of view, a conven-
tional X-ray examination works as follows.

4.2.1 X-RayTube

An electric field between the cathode and the
anode is generated in the X-ray tube (depicted in
Fig. 4.2) by connecting the cathode material with
the negative pole and the anode material with the
positive pole of a high voltage source with voltage
V. Electrons with elementary electric charge e are
released from a glow filament connected with the
cathode and are accelerated in the electric field up
to a kinetic energy E\;, when hitting the anode:
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This kinetic energy is transformed into energy
of bremsstrahlung that is released from the elec-
trons during their slowing-down within the elec-
tric fields of the atomic nucleus of the anode
material. As the slowing-down of electrons is a
probabilistic process, bremsstrahlung will not
have a defined energy but show an energy distri-
bution which is called bremsstrahlung spectrum
or X-ray spectrum with a maximum energy E.x
which equals to the kinetic energy of the
electrons:

Eo = Ekin

max

4.2)

Typical X-ray spectra generated by diagnostic
X-ray tubes when selecting a tube voltage of
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Fig. 4.3 X-ray spectra 1,0
resulting from various
total filtrations. The 0,9 A
maximal photon energy
is defined by the tube 0,8 1
voltage and equals in °
this example to 70 keV. e 0,7 1
(From [53], © Springer S
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Total filtration:
—— 70kV + 2.5 mm Al + 0.0 mm Cu
—— 70 kV + 3.5 mm Al + 0.0 mm Cu
—— 70 kV + 3.5 mm Al + 0.1 mm Cu
—— 70 kV + 3.5 mm Al + 0.2 mm Cu
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70 kV are depicted in Fig. 4.3. It should be stated
here that the shape of X-ray spectra is also
affected a little bit by the anode angle, but the
contribution of the anode angle is to be neglected
for practical clinical purposes.

The percentage of electric energy being trans-
formed into radiation energy is called the yield Y
of the X-ray tube. As the dose rate of an X-ray
unit is proportional to the yield of the tube and
the yield is proportional to the tube current, any
kind of radiation dose quantity D is a linear
function of the current-time product or mAs
product:

D ~Y ~ mAsproduct 4.3)

However, as the yield of an X-ray tube must
be known in order to estimate the dose rate of an
X-ray tube from the tube current, the mAs
product cannot be considered as an appropriate
dose indicator for the reconstruction of organ and
effective doses.

4.2.2 Filters and Total Filtration

X-ray spectra originating from X-ray tubes are
composed of bremsstrahlung photons with an

30 40 50 60 70 80 90
Photon energy (keV)

100

energy range from zero to the maximal photon
energy defined by the tube voltage. As low energy
X-rays are absorbed in the patient’s skin surface
and thus increase the patient’s skin dose without
contributing to the diagnostic imaging process,
X-ray spectra originating from the X-ray tube
should not be applied for X-ray diagnostics in
their native form. However, the filtering of X-ray
spectra by placing metallic filters between the
X-ray tube and the patient will reduce the per-
centage of low energy photons and thus will
reduce the exposure of the patient. The rotal fil-
tration of an X-ray unit is defined as the sum of
the inherent filtration of the X-ray tube and the
additional filtration that can be added depending
on the clinical situation. Figure 4.3 depicts vari-
ous diagnostic X-ray spectra resulting from dif-
ferent total filtrations when selecting a tube
voltage of 70 kV. As can be seen, an increasing
total filtration goes along with a shift of the maxi-
mum of the X-ray spectrum towards higher pho-
ton energies but also with a decrease of the
relative photon fluence and thus with a decrease
of the dose rate. As a consequence, the tube cur-
rent has to be increased when increasing the total
filtration in order to achieve the same image
detector dose.
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4.2.3 Collimator

Collimation of the primary X-ray field originat-
ing from the X-ray tube to the anatomical region
of interest is necessary when performing diag-
nostic X-ray examinations. Collimation has two
effects: First, it is one of the most effective mea-
sures in order to reduce the radiation exposure of
the patient. Second, reducing the irradiated
patient volume will reduce the amount of scat-
tered photons and thus reduce the image noise
and therefore improve the image quality. Please
note that by now collimating is the unique method
in diagnostic radiology for optimizing radiation
exposure and image quality simultaneously.
Depending on the patient’s age and the clini-
cal situation, optimal field sizes which can be
achieved under optimal clinical conditions can
be defined. In clinical application, field sizes are
visually defined by harmonizing the boundaries
of the light field with specific anatomical land-
marks of the patient. However, small deviations
of an optimal field collimation may considerably

increase the field size (Fig. 4.4). Thus, not only
optimal but also suboptimal field settings should
be considered in dose calculations - one of the
main concerns of this book.

Of course, uncertainties in the visual estima-
tion of the radiation field through the light field
do also play a role when defining the field size.
A very important prerequisite for determining
an optimal field size is, of course, that there is
congruency of light field and radiation field [29].
Nevertheless, the field sizes applied during pae-
diatric X-ray examinations have been found to
differ considerably between different institu-
tions and even within radiological departments
[7, 18,19, 23, 27, 29, 41, 56, 57, 60, 66].

4.2.4 KAP Meter

The KAP meter (synonymously: DAP chamber)
is mounted at the X-ray unit after the collima-
tion system and serves for measurement of the
kerma area product (KAP) or dose area product

200
3 —— Neonates (6 cm x 6 cm)
2= 190 4 —— Infants (10 cm x 10 cm)
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Fig. 4.4 Ratio of optimal and suboptimal field size of an
ap/pa chest X-Ray due to additional increase of field size
in longitudinal axis of the patient. Naturally, small opti-
mal field sizes are applied in neonates and young infants
and large optimal field sizes are applied in adolescents
accordingly. Thus, an additional increase of field height

due to suboptimal collimation in longitudinal direction
will not considerably increase the field size in adoles-
cents but will increase the field size in neonates and
young infants by more than 100%. (From [53], ©
Springer Verlag 2015, courtesy Springer Verlag)
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(DAP) (see Sect. 4.3.2) as a dose indicator for
the radiation exposure of the patient. The dose
area product is the most important dose quan-
tity for the reconstruction of the organ and the
effective doses achieved and thus for assessing
radiation risks during conventional X-ray exam-
inations [32].

In daily routine, no entrance surface dose will
be measured but the dose area product. In
Germany, recording of the dose measured during
paediatric X-ray examinations is mandatory [63].
Especially in neonatology, dose meters must be
sensitive enough in order to be able to measure
entrance surface doses of 10 pGy or less. Highly
sensitive dose meters are offered by several man-
ufacturers of medical dosimetry systems which
are, however, unable to capture all relevant dose
quantities. It is particularly important in paediat-
ric radiology that clinical KAP meters have been
calibrated accurately [43].

4.2.5 Patient

The patient is the most variable component of the
X-ray equipment in paediatric radiology as his
diameter varies over a wide range depending on
age group, beam projection, and body part to be
examined. As X-rays are attenuated exponen-
tially when passing through the patient, the radia-
tion exposure of the patient is strongly affected
by the patient’s size and shape.

4.2.6 Antiscatter Grid

The purpose of antiscatter grids is to reduce
scattered radiation originating from the patient
and thus reducing image noise. Antiscatter grids
consist of a system of lead lamellae that are
aligned according to the irradiation geometry.
Therefore, antiscatter grids have to be adjusted
carefully considering the focus-to-detector dis-
tance. However, not only scattered radiation is
absorbed by antiscatter grids but also a fraction
of the useful beam. Thus, the use of antiscatter
grids goes along dependent on patient age and

type of X-ray examination with an increase of
radiation exposure of the patient up to a factor of
three to five [13]. Overall, the use of antiscatter
grids in paediatric radiology is discussed contro-
versial [3, 15, 24, 34, 48, 49]. Nevertheless, the
authors of this book recommend using of anti-
scatter grids in paediatric X-ray examinations of
children beyond the age of 8 years for chest
X-rays (Fig. 4.5). For skull radiographs, an anti-
scatter grid is already used in infants. Details on
the use of antiscatter grid were published in
many guidelines (e.g. [15]).

4.3 Dose Quantities

In this section, dose quantities as being used in
this book shall be presented short from the clini-
cal point of view. For more precise physical defi-
nitions, see e.g. the books of Artix [5] or Jones
and Cunningham [40].

The interaction between ionizing radiation
and material can be divided into four phases [46]:
The physical phase of first order, the physical
phase of second order and the physico-chemical
and biological phase. In the physical phase of
first order, radiation energy from the incident
X-ray beam is transferred into kinetic energy of
secondary electrons through the photo effect, the
Compton effect, and the pair formation effect. In
the physical phase of second order, the kinetic
energy of the secondary electrons is absorbed in
matter, generating ions and radicals in the chemi-
cal phase. Ions and radicals cause chemical reac-
tions in material, as well as radiation damages
like DNA strand brakes in biological environ-
ment during the biological phase of radiation
interaction. To each of these phases, a dose quan-
tity can be attributed: the Kerma (Kerma = kinetic
energy released in material) to the physical phase
of first order, the absorbed dose (synonymously:
energy dose) to the physical phase of second
order, the equivalent dose to the chemical phase,
and the effective dose to the biological phase.
Figure 4.6 depicts the four phases of radiation
interaction with matter and the dose quantities
associated.
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Fig. 4.5 Ratio of scatter radiation to primary radiation as
a function of patient age and type of X-ray examination
(using the scatter ratios of Bushberg et al. [13]). The ratio
of scatter is highest for abdominal X-rays even in early
childhood. As could be expected, the fraction of scattered

radiation is increasing with age for chest and abdominal
X-rays. For the skull, the slope of scatter curve decreases
during adolescence. According to these data, an antiscat-
ter grid is recommended for all X-rays in children older
than 8 years of age. (© M. Seidenbusch 2018)
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Fig.4.6 The four phases of radiation interaction with liv-
ing matter [46] and corresponding dose quantities. Green
cubes symbolize living cells. Purple arrows symbolize
X-ray photons, blue and red lines secondary electrons (e~)

and secondary positrons (e*), respectively. The four
phases of interaction are depicted in chronological order
in four cells. For details, see the text. (© M. Seidenbusch
2018)
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Table 4.1 Backscatter factors B for various radiation qualities, field sizes, and focus-to-skin distances [45]

Total filtration F'
Voltage U (kV)

50 2.5 - 1.74 32.0
60 2.5 - 2.08 35.8
70 25 - 2.41 39.3
3.0 - 2.64 40.0
3.0 0.1 3.96 44.0
80 25 - 2.78 429
3.0 - 3.04 43.7
3.0 0.1 4.55 48.2
90 25 - 3.17 46.3
3.0 - 3.45 47.0
3.0 0.1 5.12 51.7
100 25 - 3.24 48.1
3.0 - 3.88 50.0
3.0 0.1 5.65 54.8
120 25 - - -
3.0 - 4.73 55.4
3.0 0.1 6.62 60.1
150 2.5 - 4.79 59.1
3.0 - 6.80 64.9
3.0 0.1 8.50 69.2

Al (mm) Cu(mm) HVL (mm) Mean energy (keV)

Backscatter factor B for ICRU tissue
10 x 10 cm®> 20 x 20 cm? 25 x 25 cm?

1.25 1.27 1.28
1.28 1.32 1.32
1.31 1.36 1.36
1.32 1.37 1.38
1.39 1.47 1.47
1.33 1.39 1.39
1.34 1.40 1.41
1.40 1.50 1.51
1.34 1.41 1.42
1.36 1.43 1.44
1.41 1.51 1.53
1.34 1.41 1.42
1.37 1.45 1.46
1.42 1.53 1.55
1.38 1.45 1.49
1.42 1.54 1.56
1.36 1.46 1.48
1.39 1.51 1.53
1.41 1.54 1.57

Annotations: HVL = half value length of the X-rays of a certain radiation quality

4.3.1 Kerma

If material M is hit by an X-ray photon field, sec-
ondary electrons are released within the material
by the photoelectric effect, by the Compton
effect, and by the pair formation effect. The
amount of the radiation energy of the incident
photon field that is transferred to kinetic energy
E\;, of secondary electrons within a given mass
element mis named the kerma (KERMA =Kkinetic
energy released in material) Ky:

dE

K — kin

M 4.4)

The physical SI' unit of the kerma is 1
Gray=1Gy=11J kg™

The incidence air kerma K; is defined as the
kerma in air in the entrance plane of the incident
radiation field at a patient’s position but without
presence of the patient:

Ki = Kair (45)

When a patient is present, the corresponding
dose quantity is the entrance surface dose K, that is

I'SI = Systeéme international d’unités.

defined as the sum of incidence air kerma and the
backscatter radiation from the patient. The entrance
surface dose can be calculated by multiplying the
incidence air kerma with a backscatter factor B:

K, =B-K, (4.6)

Backscatter factors depend on the parameters
of the beam quality (X-ray tube voltage V and
total filtration F [12]) and the parameters of the
beam geometry (beam projection p, field size A,
and focus-to-skin distance FSD):

B=B(V.F,p.A,FSD) (47

Backscatter factors for diagnostic photon
energies and various field sizes and focus-to-film
distances are given in [45] and are provided in
Table 4.1 and Fig. 4.7.

4.3.2 Dose Area Product (DAP),
Kerma Area Product (KAP)

The Dose Area Product (DAP) or strictly speak-
ing: air Kerma Area Product (KAP) [32, 42] is
the product of incident air kerma K; at any given
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Table 4.2 Conversion coefficients C for various DAP measuring units
mR cm? cR cm? dR cm? R cm? mGy cm? cGy cm? pGy m? B=A/IC
mR cm? 1 0.1 0.01 0.001 0.0084 0.00084 0.00084
cR cm? 10 1 0.1 0.01 0.084 0.0084 0.0084
dR cm? 100 10 1 0.1 0.84 0.084 0.084
R cm? 1000 100 10 1 8.4 0.84 0.84
mGy cm? 119 11.9 1.19 0.119 1 0.1 0.1
cGy cm? 1190 119 11.9 1.19 10 1 1
Gy m* 1190 119 11.9 1.19 10 1 1
A=CB C

Note that DAP values in column A can be calculated from DAP values in row B by the equation A = C B and vice versa

point of the X-ray beam and the field size A at
this point:

KAP=DAP =K, -4 (4.8)

The physical SI unit of the dose area product
is 1 Gy m%

As an X-ray source is usually a point source,
the inverse square law is valid for the irradiation
geometry, and the dose area product remains
nearly constant over the whole focus-to-skin dis-

tance. Furthermore, the dose area product is a
dose indicator which represents a measure of the
radiation exposure of the patient. The dose area
product is usually measured by an ionization
chamber that is fixed at the beam collimator.

In diagnostic radiology, there are various dose
measuring units in practical use for the DAP as
shown in Table 4.2. Table 4.2 provides conver-
sion coefficients C for transforming the DAP
measuring units into each other.
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4.3.3 Absorbed Dose

The part E of kinetic energy of secondary elec-
trons E\;, that is transferred to a mass element m
of a material M is named the absorbed dose (in
Europe synonymously: energy dose) Dy:

_dE

Dy, 4.9)

The physical ST unit of the absorbed or energy
doseis 1 Gray=1Gy=11J kg™~

In case of secondary electron equilibrium
which can be assumed to be always achieved in
the photon energy range of X-ray diagnostics, the
absorbed dose equals the kerma.

If an absorbed dose or energy dose is esti-
mated for an organ or tissue T, the absorbed dose
or energy dose is also called organ absorbed dose
(in Europe synonymously: organ energy dose)
Dr:

D, =D, achieved in tissueT  (4.10)

4.3.4 Equivalent Dose

In order to allow for the fact that different radi-
ation qualities differ in energy transfer mecha-
nisms, the equivalent dose Hy; can be calculated
from an absorbed or energy dose by multiply-
ing the absorbed or energy dose Dy with a
radiation-specific radiation weighting factor
wrg (almost synonymously: quality factor Q) as
follows:

Hy =wy-Dy =0Q-Dy 4.11)

The physical SI unit of the equivalent dose is
1 Sievert =1Sv=11Jkg™".

Within the photon energy range applied in
X-ray diagnostics, the radiation weighting factor
has been defined to be wg = 1.

If an equivalent dose is estimated for an organ
or tissue T, the equivalent dose is also called
organ equivalent dose or, in short, organ dose Hr:

H, =H,, achieved intissueT (4.12)

Note that the organ dose is defined as the aver-
age dose achieved within an organ or tissue.

4.3.5 Effective Dose

In order to allow for the fact that different organs
and tissues T differ in radiation sensitivity, the
effective dose E has been defined as the weighted
sum of all organ doses, each of them weighted
with a tissue-specific tissue weighting factor wr
representing the specific radiation sensitivity of
organs and tissues T as follows:

HTzzWT'HT (413)
T

The physical SI unit of the effective dose is 1
Sievert =1 Sv=11Jkg™".

As the effective dose is intended to represent
the virtual whole body dose that would have to be
achieved in order to cause the same stochastic
risk as a really applied dose distribution in some
organs or tissues, the condition

ZWT =1
T

(4.14)

has to be fulfilled when defining the tissue
weighting factors wr. For this reason, the effec-
tive dose has sometimes also been called the
“weighted sum of stochastic risks”. However, the
effective dose has been intended to serve as a risk
indicator in occupational health and has not been
defined for describing the radiation exposure of
patients originally [39], particularly not for chil-
dren. Therefore, its application for describing
radiation exposure of patients in diagnostic radi-
ology has to be estimated critically [14, 21, 22].
Although attempts have been made to derive tis-
sue weighting factors for children [2, 8, 44] in
recent years, the concept of effective dose ought
to be considered as to be inapplicable for paediat-
ric patients at least in the opinion of the authors
of this book.

Dose Reconstruction
Algorithms

4.4

Reconstruction of the organ and the effective doses
achieved during conventional X-ray examinations
can be performed through various mathematical
methods [1, 20]. In recent years, the conversion
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