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Chapter 1
The Multifaceted Functions of Exosomes 
in Health and Disease: An Overview

Claudia Arenaccio and Maurizio Federico

1.1  Introduction

Cytoplasm of eukaryotic cells contains several compartments, including trans- 
Golgi network, mitochondria, peroxisomes, endoplasmic reticulum, having differ-
ent functions. Transport of macromolecules among these dynamic structures is 
mediated by vesicles moving in a densely populated microenvironment [1, 2]. In 
some instances, part of these vesicles are released into the extracellular milieu. 
Extracellular vesicles (EVs) are part of mechanism of intercellular communication, 
a function of vital importance for multicellular organisms. For decades, intercellular 
communication has been thought to be solely regulated by cell-to-cell contact and 
release of soluble molecules into the extracellular space. These molecules transmit 
the signal through their uptake or binding to specific receptors on target cells. 
However, the discovery of vesicular structures released into the extracellular space 
containing a multitude of factors including signaling molecules, proteins and nucleic 
acids, has opened a new frontier in the study of signal transduction, thereby adding 
a new level of complexity to our understanding of cell-to-cell communication.

Body fluids (e.g., blood, urine, saliva, amniotic fluid, bronchoalveolar lavage 
fluid, synovial fluid, breast milk) contain various types of membrane-enclosed ves-
icles [3] recognizing different pathways of biogenesis. These vesicles possess dif-
ferent biophysical features and functions in health, e.g., protein clearance [4], 
immune regulation [5], cell signaling [6–8], as well as in disease, such as in infec-
tions [9–12] and cancer [13, 14]. Originally, EVs were thought to be garbage bags 
through which cells eject their waste. Today, it is widely accepted that EVs are key 
components of the intercellular communication network.
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All EV subtypes are limited by a lipid bilayer membrane surrounding a specific 
cargo of molecules, and having different sizes and buoyant densities. The variety of 
vesicles released from cells as well as the methods used to isolate them led to some 
confusion in their nomenclature. Current research mainly considers two types of 
EVs according to their biogenesis, i.e., ectosomes and exosomes. The term ecto-
somes indicates vesicles of 150–1000 nm in diameter directly budding from plasma 
membrane, whereas exosomes refer to vesicles of 30–150 nm in diameter generated 
intracellularly by inward invagination of endosome membranes leading to forma-
tion of intraluminal vesicles (ILVs). ILVs became part of multivesicular bodies 
(MVBs) which are released in the extracellular space upon fusion with plasma 
membrane [15]. The term exosomes was coined in 1981 by Trams and coll. who 
described the release from various normal and neoplastic cell lines of EVs with an 
average diameter of 500–1000 nm accompanied by a vesicle sub-population having 
a diameter of ~40 nm [16]. Some years later, it had been reported that reticulocytes 
actively secrete vesicles of 50–100 nm in diameter through a process mediated by 
fusion events of multivesicular endosomes with the plasma membrane [4].

Exosomes contain DNA, RNA, proteins, lipids, and metabolites of producing 
cells, and are released into the extracellular space under both physiological and 
pathological conditions. In recent years, the effects of exosomes are being studied 
in several pathological conditions, such as neurodegenerative, viral, cancer, and car-
diovascular diseases. Their presence in many biological fluids prompted many 
research groups to investigate their possible use as disease biomarkers and tools for 
the development of new therapies.

In this introductive chapter, an overview about biogenesis, structure, and func-
tions of exosomes in both physiological and pathological conditions is provided. In 
addition, some clues about current and future utilizations of exosomes in both diag-
nostic and therapy are summarized.

1.2  Biogenesis of Exosomes

Cell vesiculation can be induced by multiple stimuli, including cell differentiation, 
activation, senescence, hypoxia, transformation, and viral infections. Among the 
different types of EVs, exosomes are the best characterized. They have a buoyant 
density of 1.10–1.14 g/mL, and display either a round spherical shape (Fig. 1.1), or 
a cup-like morphology depending on the transmission electron microscopy tech-
nique used [17]. Exosomes are the only known secreted cellular vesicles originating 
from internal membranes. They are essentially ILVs generated by inward budding 
of endosomal MVBs and targeted to plasma membrane [18].

The processes leading to generation of ILVs in MVBs and their fusion with 
plasma membrane are not completely known. Two independent pathways have been 
proposed (Fig. 1.2). The first one involves the endosomal sorting complex required 
for transport (ESCRT). This multi-molecular machinery comprises ESCRT0, 
ESCRTI, ESCRTII and ESCRTIII, and is recruited to the endosomal membranes 
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where ILVs are generated. In detail, ESCRT0, ESCRTI and ESCRTII recognize 
ubiquitinated proteins, whereas ESCRTI and ESCRTII induce, together with addi-
tional factors, the invagination of the late endosomal membrane [7, 19]. Afterwards, 
ESCRTIII binds ESCRTII thereby leading to the deubiquitination of cargo proteins, 
the promotion of vesicle abscission and, ultimately, the generation of ILVs [20].

Recently published evidences describe the existence of an ESCRT-independent 
pathway based on the specific lipid composition of the endosomal membranes. This 
hypothesis stemmed from the evidence that MVB can be formed in cells depleted of 
the four ESCRT components [21]. Membranes of endosomal compartments include 
lipid rafts comprising high quantities of sphingolipids, which are substrates for the 
neutral sphingomyelinase 2 (nSMase2) [22]. This enzyme converts sphingolipids to 
ceramide, whose accumulation induces microdomain coalescence thereby trigger-
ing ILV budding. As a matter of fact, ILV formation and exosome release are 
reduced when nSMase2 is inhibited [23].

Once ILVs are released into MVBs, they are either forwarded to degradation 
through the lysosomal pathway, or transferred to the cell periphery for the secretory 
pathway. Both processes are regulated by RabGTPases. While Rab7 mediates the 
ILV degradation through the fusion of MVBs with lysosomes, several other Rab 
proteins (i.e., Rab27a, Rab27b, and Rab11) are responsible, together with 

Fig. 1.1 Exosomes as detected by transmission electron microscopy upon negative staining. Bar: 
0.1 μm

1 The Multifaceted Functions of Exosomes in Health and Disease: An Overview
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tetraspanins, for intracellular MVB trafficking and secretion [22, 24]. In detail, 
Rab27b induces the mobilization of MVBs to the actin-rich cortex beneath the 
plasma membrane to which MVBs contact and fuse as consequence of the action of 
Rab27a. In cells defective for Rab27a functions, the fusion of MVBs with plasma 
membrane is induced by Rab11 in response to increased cytosolic calcium [25].

Endosome-like domains rich in exosomal proteins, lipids, and carbohydrates 
have been found within the plasma membrane of certain cell types [26]. These 
domains are supposed to be involved in either trafficking of cargo from plasma 
membrane back to MVBs, or in vesicle formation and budding from the plasma 
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Fig. 1.2 Biogenesis and secretion of exosomes. Exosome biogenesis is mediated by ESCRT (1) 
and/or ceramide (2)-dependent pathways. In ESCRT depend pathway, sequential recruitment of 
ESCRT0, ESCRT I, ESCRT II to the endosomal membrane induces membrane curvature, as well 
as recruitment of ubiquitinated (Ub) proteins for sorting into the vesicles. Binding of ESCRTII to 
ESCRTIII leads to deubiquitination of cargo proteins, promotion of vesicle abscission, and thereby 
generation of ILVs. In ceramide dependent pathway, nSMase2 converts sphingolipids to ceramide 
whose accumulation leads to ILV budding. After ILV formation, MVBs fuse with plasma mem-
brane. ILVs released into extracellular space are referred to as exosomes
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membrane [20]. For instance, it was shown that vesicles with the typical size of 
exosomes bud from the plasma membrane of both lymphocytes [27] and muscle 
cells [28, 29].

1.3  Structure and Composition of Exosomes

In recent years, many research groups have focused their efforts on the identifica-
tion of the content of EVs and exosomes. These works led to the development of 
two constantly updated databases, i.e., Vesiclepedia (http://microvesicles.org), a 
compendium where the characteristics of all EVs are summarized [30], and 
ExoCarta (http://www.exocarta.org), a manually updated list of proteins, RNAs, 
and lipids identified in exosomes [31, 32].

Exosomes are formed by a lipid bilayer membrane enclosing a small organelle- 
free cytosol containing a heterogeneous array of macromolecules defined luminal 
cargo [33, 34]. It includes proteins, RNA, DNA, and lipid-derivatives, such as 
ceramide, cholesterol, phosphatidylserine and sphingolipids. Similarly to plasma 
membrane, the composition of lipid bilayer of these vesicles includes lipid rafts, 
i.e., detergent-resistant microdomains enriched in specific proteins such as flotillins 
and caveolins [35, 36]. At the same time, exosome membrane comprises compo-
nents not present in plasma membrane of the exosome-producer cells and vice 
versa. For instance, exosome membranes do not contain lysobisphosphatidic acid 
(LBPA) [37] which, on the contrary, has been isolated from both plasma membrane 
and ILVs [38]. Starting from this evidence, it was hypothesized that LBPA has an a 
role exclusively in the formation of MVBs targeted to lysosomes [39].

Recent studies based on mass spectrometry highlighted two key aspects regard-
ing the protein contents of exosomes. First, some exosome proteins are cell type- 
specific, while others are invariable part of exosomes independently from the cell 
of origin. Second, the exosome protein composition does not necessarily reflect the 
proteome of the parental cell. Typical proteins found in exosomes include those 
involved in MVB formation (e.g., Alix, TSG101), membrane transport and fusion 
(e.g., annexins, flotillins, GTPases), adhesion (e.g., integrins), tetraspanins (e.g., 
CD9, CD63, CD81, CD82), and antigen presentation (MHC class I and II mole-
cules). Heat shock proteins (e.g., HSP70, HSP90) and lipid-related proteins [17, 
40] were also found in exosomes. Some proteins are preferentially uploaded in 
exosomes, but it is still unclear how proteins are targeted specifically to exosomes. 
More studies are needed to unravel possible mechanisms of exosome sorting/incor-
poration, hence addressing the question of selectivity versus randomness. In par-
ticular, current research aimed at improving the methods of vesicle isolation, 
protein purification and detection will allow to identify the vesicle proteome more 
precisely [41].

Exosomes contain both short and long RNAs [42]. When transferred to target 
cells, mRNAs are translated into proteins [43, 44], and microRNAs (miRs) can 
silence target genes [45]. These findings have given way to study the role of 

1 The Multifaceted Functions of Exosomes in Health and Disease: An Overview
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exosome- delivered extracellular RNA in different biological processes, such as 
immune response, cancer, viral infections, formation of immunological syn-
apse, and angiogenesis. Besides mRNAs and miRs, other RNA species have 
been found within exosomes, such as viral RNAs, Y-RNAs, fragments of tRNAs, 
small nuclear RNA, small nucleolar RNA, piwi-interacting RNAs, and long 
non-coding RNAs [46–48]. However, mechanisms controlling the specific load-
ing of RNA species into exosomes are only partly known. Recently, it has been 
identified a short nucleotide motif regulating the sorting of RNA into exosomes 
through binding with the heterogeneous nuclear ribonucleoprotein (hnRNP)-
A2B1, i.e., a ubiquitously expressed RNA-binding protein [49]. Interestingly, 
an additional short nucleotide sequence has been identified as binding motif for 
the hnRNP–Q-mediated delivery of miRs into exosomes released by hepato-
cytes [50].

Exosomes also incorporate genomic DNA through unknown mechanism. Likely, 
this process is mediated by the release of DNA fragments in cytoplasm during mito-
sis after breaking of nuclear membrane. Genomic DNA has been found in a panel of 
tumor cell lines of nervous and gut origin [51]. They can contain oncogenes as well 
as transposable elements of the genomic DNA [52, 53]. However, the function of 
the DNA incorporated into exosomes is still unclear, and further studies are needed 
to understand its possible role in physiological and pathological processes.

1.4  Interaction of Exosomes with Bystander Cells

Experimental evidences indicate that exosomes can transfer their contents into the 
cytoplasm of target cells. Since exosomes have been isolated from many biological 
fluids [34], it is likely that these vesicles can reach very distant recipient cells while 
protecting their cargo from enzymatic degradation during transit into the extracel-
lular environment [54–56]. Exosome contents can be delivered through fusion of 
exosome lipid membrane with either plasma or endosomal membrane, in the latter 
case upon endocytosis. After release of luminal cargo inside the recipient cells, exo-
some macromolecules can induce pre- and/or post-translational alterations of gene 
expression [57].

Given the emerging role of exosomes in both physiological and pathological 
conditions, as well as their therapeutic potential, understanding the molecular 
processes by which they are taken up by recipient cells is relevant. Exosome 
uptake has been monitored mainly using both flow cytometry and confocal 
microscopy. These techniques allowed to analyze the dynamic localization of 
exosomes through the labeling with fluorescent lipid membrane dyes. Examples 
of such dyes include PKH67 [58], PKH26 [59], rhodamine B [60], DiI [61] and 
DiD [62]. The use of GFP-tagged exosomal proteins also (e.g., GFP-CD63) 
allowed direct vesicle  visualization, confirming their rapid incorporation into 
recipient cells [58, 63]. The treatment of target cells with either acidic buffers 
[63] or trypsin [64] allowed to discriminate between internalized and surface-
bound fluorescent vesicles.
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