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Preface

Mitochondrial Medicine: 30 Years Old, Much to Learn

The initial spark of the “mitochondrial revolution” in medicine was the descrip-
tion, in 1988, of the first pathogenic mutations in mitochondrial DNA (mtDNA). 
Anita Harding and her team identified large-scale single deletions of mtDNA in 
patients with mitochondrial myopathies [1]. Soon thereafter, Doug Wallace and 
his team described a point mutation in the gene encoding subunit 4 of complex 
I in a family with Leber’s hereditary optic neuropathy [2].

With the publication of this book in early 2019, we celebrate the 30th 
anniversary of these groundbreaking discoveries. The last 30 years have been 
the golden age of mitochondrial medicine, with hundreds of genes responsi-
ble for multiple genetic mitochondrial disorders being identified.

Mitochondrial diseases are now recognized as one of the most common 
genetic conditions worldwide, and the phenotypic expression involves all the 
disciplines of medicine.

We hope that we have been able to convey, with this book, the excitement 
that has accompanied—as it still does—the extraordinarily rapid develop-
ment of mitochondrial medicine. The therapeutic era has just begun, and we 
are confident to see similarly exciting progress in the next few years.

It has been a great experience to serve as editors for this special book. We 
would like to express our special gratitude to all contributing authors for their 
timely and superb efforts in composing this monography.

Finally, this book is dedicated to our great mentor, Professor Salvatore 
“Billi” DiMauro. The enormous and still ongoing progress in our understand-
ing of mitochondrial medicine is only possible by an intense collaboration of 
a team of international mitochondriologists, many of whom have been trained 
in the College of Physicians and Surgeons, Columbia University Medical 
Center, NY, under the guidance of Billi.

Enjoy the reading!

Pisa, Italy� Michelangelo Mancuso
Munich, Germany� Thomas Klopstock
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Mitochondrial Medicine: 
A Historical Point of View

Yi Shiau Ng, Salvatore DiMauro, 
and Doug M. Turnbull

�Introduction

Mitochondria are essential double-membrane, 
dynamic organelles found in all nucleated cells, 
and they are referred as the powerhouse in cells 
because of their vital role in generating ATP via the 
oxidative phosphorylation (OXPHOS). The 
OXPHOS machinery is located at the inner mito-
chondrial membrane and comprises five enzymatic 
complexes, which are mitochondrial respiratory 
chain (complexes I to IV) and ATP synthase (com-
plex V). The mechanism by which the passage of 
electrons down the respiratory chain generates ATP 
was described by Peter Mitchell [1], who was 
awarded the Nobel Prize for Chemistry in 1978. 
Mitochondria are also important players in multi-
ple other cellular activities such as intrinsic apopto-
sis, redox, calcium handling and urea cycle.

One of the most fascinating biological features 
of mitochondria is that they contain extranuclear 
DNA materials, mitochondrial DNAs (mtDNA), 
which are tiny, double-stranded DNA molecules 

that exist in multiple copies per cell and only encode 
37 genes. However, the replication and maintenance 
of mtDNA and almost all building blocks of mito-
chondria are controlled by the nuclear genome. The 
cross talk between the mitochondrial DNA and 
nucleus means that any genetic defects in either 
mtDNA or nuclear genome could perturb the mito-
chondrial functions especially the OXPHOS, con-
sequently leading to the development of disease.

The clinical features of mitochondrial disease 
are very variable with high-energy demand tissues 
and organs such as the brain, skeletal muscle, heart, 
liver and optic nerves, which are particularly sus-
ceptible to the mitochondrial dysfunction. However, 
mitochondrial disease can affect practically any 
organ making the diagnosis and management chal-
lenging. Mitochondrial diseases are one of the most 
common groups of inherited neurogenetic disor-
ders with a minimal prevalence of 1  in 4300 [2], 
comparably, if not, higher than other common neu-
rogenetic disorders such as Charcot-Marie-Tooth 
neuropathy and myotonic dystrophy [3].

In this chapter, we begin with an overview of 
the pathological description of various mitochon-
drial syndromes, the biochemical classification of 
mitochondrial defects, followed by the era of iden-
tification of primary mtDNA mutations and dis-
coveries of multiple nuclear genes implicated in 
mitochondrial disease. We also highlight the emer-
gence of reproductive options especially mito-
chondrial donation in primary mtDNA disease and 
advancement in potential treatments (Fig. 1).
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�1950–1980

�Leigh Syndrome

Leigh syndrome, also known as subacute necrotis-
ing encephalomyelopathy, is one of the most com-
mon presentations of mitochondrial disease among 
the paediatric patients with an estimated prevalence 
of 1 in 40,000 live births [4]. Doctor Denis Archibald 
Leigh (1912–1998), a talented British psychiatrist, 
published the first case report of clinical details and 
pathological findings of subacute necrotising 
encephalomyelopathy in London in 1951. He 
described a 7-month-old boy who had a normal birth 
and early development for 6  weeks, subsequently 
presented with a constellation of neurological signs 
and symptoms including developmental regression, 
poor feeding, optic atrophy and limb spasticity. A 
postmortem examination revealed bilateral sym-
metrical subacute necrotic lesions in thalami, brain-
stem and the posterior columns of the spinal cord 
with relatively sparing of the caudate and lentiform 

nuclei [5]. Leigh made an interesting observation 
that these pathological findings were very similar to 
patients with Wernicke’s encephalopathy. The sub-
sequent links of Leigh disease and inborn error of 
gluconeogenesis [6], cytochrome c oxidase defi-
ciency (complex IV of respiratory chain) [7], pyru-
vate dehydrogenase complex deficiency [8] in the 
1960s and 1970s implicated that Leigh syndrome 
did not result from a single molecular defect [7]. 
Indeed, mutations in more than 75 genes have been 
linked to Leigh syndrome to date [9].

�Chronic Progressive External 
Ophthalmoplegia and Kearns-Sayre 
Syndrome

Chronic progressive external ophthalmoplegia 
(CPEO), characterised by eyelid ptosis and 
restricted eye movement, is now recognised as a 
common manifestation of mitochondrial disease 
(Fig.  2a) [10]. The German ophthalmologist, 

Fig. 1  Timeline summarises significant milestones and dis-
coveries in mitochondrial disease. AHS Alpers-Huttenlocher 
syndrome, ATP adenosine triphosphate, CPEO chronic pro-
gressive external ophthalmoplegia, COX cytochrome c oxi-
dase, LHON Leber hereditary optic neuropathy, LS Leigh 
syndrome, MELAS mitochondrial encephalomyopathy, lactic 
acidosis and stroke-like episodes, MERRF myoclonic epi-
lepsy and ragged-red fibres, mitoTALENS mitochondrially 

targeted transcription activator-like effector nucleases, 
MNGIE mitochondrial neurogastrointestinal encephalopa-
thy, NGS next-generation sequencing, NMDAS Newcastle 
Mitochondrial Disease Adult Scale, NPMDS Newcastle 
Paediatric Mitochondrial Disease Scale, PDHA1 pyruvate 
dehydrogenase E1 alpha 1 subunit, POLG polymerase 
gamma, SDH succinate dehydrogenase, SLC25A4 solute car-
rier family 25 member 4, TYMP thymidine phosphorylase

Y. S. Ng et al.
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Fig. 2  (a) Signs of chronic progressive external ophthal-
moplegia. This patient has bilateral ptosis, overactivity of 
frontalis, very limited upgaze, restricted abduction and 
adduction. (b) MRI head of a patient with MELAS syn-
drome. FLAIR sequence shows asymmetrical, bilateral 
stroke-like lesions with restricted diffusion involving the 
right temporal, parietal and occipital lobes. (c) Muscle 
biopsy. (1) A ragged-red fibre is highlighted with the mod-
ified Gomori Trichrome stain (asterisk, *); (2) COX-
deficient muscle fibres exhibit pale brown colour; (3) 
increased SDH activities in COX-deficient fibres (darker 

blue); (4) sequential COX/SDH histochemistry clearly 
highlights the COX-deficient fibres (blue); (5) electron 
microscopy shows a highly abnormal mitochondrial ultra-
structure. (d) Human mitochondrial DNA. Common point 
mutations including m.3243A>G, m.8344A>G, 
m.8993T>C/G, m.11778G>A and m.13513G>A and sin-
gle, large-scale mtDNA deletion (4977 base pairs) are 
highlighted. (e) The prevalence of mitochondrial disease 
in an adult population of North East England. Over 75% 
of adult patients with mitochondrial disease are caused by 
a primary mtDNA defect [2]

FLAIR

a

DWI

b
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c

(i) (ii)

(iii)

(v)

(iv)

Fig. 2  (continued)
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Albrecht von Graefe, described the first case in 
1868, and subsequently Sir Jonathan Hutchinson 
reported similar cases in the English literature 
around 10 years later. The underlying aetiology 
of CPEO had been widely but incorrectly 
accepted as a central brainstem disorder until his-
topathological and electromyographic evidence 
of myopathy in ocular muscles of affected indi-
viduals emerged in the early 1950s. In 1958, 
Kearns and Sayre from the Mayo Clinic reported 
two cases with triad of retinitis pigmentosa, 
CPEO and complete heart block, and they 
asserted that such association represented a true 
clinical syndrome rather than a coincidental find-
ing [11]; Kearns reported nine more cases and 
outlined the spectrum of clinical features a few 
years later. Moreover, Kearns also observed the 
lack of family history in patients affected by this 
syndrome.

�Luft Disease

The description of Luft disease in 1962 is often 
regarded as the beginning of the mitochondrial 
medicine [12]. The patient was a Swedish woman 
in her 30s presented with excessive perspiration, 
generalised muscle weakness and elevated meta-
bolic rate with normal thyroid function. Muscle 
biopsy showed excessive accumulation of mito-
chondria, many of which had gigantic size. 
Further biochemical analysis and electron 
microscopy (EM) studies of mitochondria iso-
lated from skeletal muscle directly linked the 
pathogenesis of disease to a defect involving in 
the coupling of oxidative phosphorylation [13].

A second case of Luft disease—with identical 
clinical, muscle pathology and biochemistry fea-
tures—was reported [14], but the molecular 
genetic defect in this unique mitochondrial 
myopathy remains a puzzle.

�Biochemical Classification 
of Mitochondrial Disease

The application of EM on studying muscle 
biopsies led to the discoveries that structurally 

abnormal mitochondria were identified in myopa-
thies after the first description of Luft disease [15]. 
The availability of biochemical assays led to better 
characterisation of myopathies caused by various 
metabolic defects such as carnitine deficiency 
[16], carnitine palmitoyltransferase (CPT) defi-
ciency [17], pyruvate dehydrogenase deficiency 
[18] and cytochrome c oxidase deficiency (com-
plex IV) [7, 19, 20] in the 1970s and in the early 
1980s. DiMauro and colleagues proposed to 
broadly classify mitochondrial disease into five 
major groups based on different steps of metabolic 
pathways in mitochondria [21]. Such classification 
encompassed a wide range of inborn metabolic 
disorders, which included pyruvate dehydroge-
nase deficiency, glycogen storage disorders, fatty 
acid oxidation defects and various mitochondrial 
respiratory chain deficiencies [21, 22].

�1980–1987

�The Mapping of Human 
Mitochondrial DNA

The presence of extranuclear DNA in mitochon-
dria (i.e. mitochondrial DNA) in chick embryos 
was first reported by Nass and Nass in 1963. 
Maternal inheritance of mitochondrial DNA was 
identified in yeast and amphibians in the late 
1960s and in mammals in 1974 [23]. Such 
inheritance pattern was confirmed in human in 
1980 [24].

Sanger and colleagues who were based in 
Cambridge, UK published the complete sequence 
of human mitochondrial DNA, which has 16,569 
base pairs, in 1981 [25]. They identified 22 
tRNAs, 2 rRNAs, cytochrome b, 3 genes encoded 
for cytochrome c oxidase (CO I-III), ATPase 6 
and 8 and 7 unidentified reading frames (URFs). 
They revealed that these genes were organised in 
a very compact fashion, and the noncoding region 
was located in the D-loop. The seven unidentified 
reading frames were subsequently identified to 
be subunits of complex I [26, 27]. It is highly 
remarkable that reanalysis of the Cambridge ref-
erence sequence only identified error frequency 
of 0.07% nearly 20 years later [28].

Y. S. Ng et al.
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�1989–2012

�Mitochondrial Encephalomyopathies 
with CoQ10 Deficiency

In 1989, Ogasawara and Engel discovered two sis-
ters with lipid storage myopathy, cerebellar ataxia, 
seizures and recurrent myoglobinuria and pro-
found deficiency of CoQ10 in muscle mitochondria 
[29]. In the following years, many patients were 
reported with muscle CoQ10 deficiency and vari-
able involvement of skeletal muscle, CNS, periph-
eral neuropathy, nephropathy and inconsistently 
responsive to CoQ10 supplementation.

It was suggested that various aetiologies of 
CoQ10 deficiencies should be attributed to genetic 
defects in the long series of enzymes involved in 
CoQ10 biosynthesis: in 2006 and 2007, the first 
molecular defects were identified in the genes 
(PDSS1, PDSS2 and COQ2) encoding the initial 
enzymes and causing severe infantile encephalo-
myopathies [30–32]. In the following years, 
mutations in COQ8 explained the cause of adult-
onset cerebellar ataxia, seizures, dystonia and 
spasticity [33–35], and several more genes have 
been associated with various forms of encephalo-
myopathies or nephropathies.

Secondary causes of CoQ10 deficiency have 
opened a new vista on ataxia, oculomotor apraxia 
(AOA1) due to mutations in aprataxin (APTX) 
[36] or on lipid storage myopathy due to muta-
tions in electron-transferring flavoprotein dehy-
drogenase [37].

�Mitochondrial Encephalomyopathy, 
Lactic Acidosis and Stroke-like 
Episodes (MELAS)

The acronym MELAS was first coined in 1984 
[38], and it has become one of the most well-
characterised syndromes in mitochondrial dis-
ease. Although the original case was presented at 
a paediatric neurology meeting in 1976, the full 
description of the original case of MELAS only 
became available 15 years later [39]. The diagnos-
tic criteria of MELAS were proposed based on the 
literature review of 69 cases [39]: (1) stroke-like 

episode occurred before the age 40  years; (2) 
encephalopathy characterised by seizures, demen-
tia or both; (3) lactic acidosis, ragged-red fibres or 
both; (4) normal early development; (5) recurrent 
headache; and (6) recurrent vomiting. Stroke-like 
lesions often do not confine to the vascular territo-
ries, with the predilection of occipital, parietal 
and temporal lobes involvement (Fig. 2b). These 
unique characteristics have been consistently 
observed in both the imaging [40–42] and neuro-
pathological [43–46] studies. The precise patho-
genesis remains debatable [47], and the leading 
hypotheses are angiopathy and endothelial dys-
function [48, 49], neuronal hyperexcitability [50] 
and inherent OXPHOS dysfunction caused com-
bined neuronal and vascular dysfunction [44].

�1988–1995

�Mutations in the Mitochondrial DNA

The clear demonstration of mutations in mito-
chondrial DNA that was responsible for human 
disease only occurred in 1988: sporadic form of 
CPEO caused by the single, large-scale mtDNA 
deletion [51, 52]. In the same year, Wallace and 
colleagues demonstrated that Leber hereditary 
optic neuropathy (LHON) was caused by the 
maternally inherited homoplasmic mtDNA point 
mutation (m.11778G>A) in multiple unrelated 
family pedigrees for the first time [53]. Following 
these breakthrough discoveries, many clinical 
syndromes were linked to specific mtDNA muta-
tions, such as m.8344A>G with myoclonic epi-
lepsy and ragged-red fibres (MERRF) [54], 
m.3243A>G with MELAS [55], single, large-
scale mtDNA deletion associated with Kearns-
Sayre syndrome (KSS) [56] and Pearson 
syndrome [57] and other common point muta-
tions causing LHON (Fig. 2d) [58].

Hammans and coworkers from Queen Square, 
London, demonstrated mtDNA mutations 
(m.3243A>G and m.8344A>G) were detectable 
in both blood and muscle and proposed to employ 
the molecular analysis of blood sample as a rapid 
screening and diagnostic tool for suspected cases 
in the early 1990s [59]. However, the mutant het-

Mitochondrial Medicine: A Historical Point of View
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eroplasmy level of several common point muta-
tions such as m.3243A>G [60] and m.13513A>G 
has subsequently been shown to decline with 
time in blood, highlighting the caveat of a false-
negative result by screening mtDNA mutations 
using blood sample alone. Other noninvasive tis-
sues such as urine, buccal mucosa and hair folli-
cles have since been proposed as alternative 
diagnostic samples to skeletal muscle and blood. 
Nevertheless, muscle biopsy (Fig. 2c) is impor-
tant in the investigation of primary mtDNA dis-
ease, especially among individuals without 
apparent maternal family because single, large-
scale deletion and sporadic point mutations in 
mtDNA can only be reliably detected in postmi-
totic tissues [61].

The advent of transmitochondrial cybrid cell 
study [62] and single muscle fibre analysis of 
mtDNA variant [63] have become the gold stan-
dard of ascertaining the pathogenicity of any 
novel mtDNA variants, given multiple polymor-
phisms are present in the mtDNA. The expansion 
of clinical spectrum associated with a given mito-
chondrial DNA mutation, for example, MELAS 
[55], MIDD [64] and CPEO [65] in patients with 
the m.3243A>G mutation, and genetic heteroge-
neity for the same clinical syndrome have been 
increasingly observed over time.

�The mtDNA Bottleneck and Challenge 
in Genetic Counselling

The variations in mutant heteroplasmy level 
between generations are frequently observed, 
and the degree of variations differs between the 
mutations. Such observation leads to the theory 
of the mitochondrial genetic bottleneck, which 
hypothesises that only a small proportion of the 
maternal mitochondrial genome is transmitted to 
the offspring [66]. It is increasingly evident that 
size of bottleneck varies between the mtDNA 
mutations, and a recent simulation study based 
upon a compilation of heteroplasmy levels from 
family pedigrees published in the literature and 
unpublished data clearly demonstrated that the 
rate of random genetic drift varies between muta-
tions [67]. Tighter genetic bottleneck, such as in 
the case of m.8993T>G/C mutation in MTATP6, 

indicates a more rapid segregation of mtDNA 
heteroplasmy between generations, which 
explains a common scenario encountered in the 
clinical practice that a severely affected child 
with very high/near homoplasmic mutant hetero-
plasmy born to an asymptomatic mother who 
carries very low mutant load [67].

�1996–2010

�Maintenance Defects 
of Mitochondrial DNA

The maintenance and replication of mtDNA are 
entirely dependent on machineries encoded by 
the nuclear genome. Defects in these machineries 
result in a myriad of human disease characterised 
by multiple deletions and/or depletion of the 
mtDNA copy number in postmitotic tissues [68]. 
Shortly after the report of sporadic, single large-
scale mtDNA deletion in 1988, there was an 
important observation of multiple deletions in 
muscle biopsies and late-onset, autosomal domi-
nant CPEO identified in several Italian families 
[69, 70]. The first nuclear gene reported to cause 
dominant, late-onset CPEO is SLC25A4, which 
encodes for the ADP/ATP translocase 1, in 2001 
[71]. On the following year, a major discovery 
made by Van Goethem and coworkers in Belgium 
was the identification of dominant and recessive 
mutations in POLG, encoding for mitochondrial 
polymerase gamma, caused multiple deletions in 
mtDNA and CPEO [72]. Mutations in POLG 
have also been associated with wider phenotypic 
spectrum including devastating infantile-onset 
Alpers syndrome, ataxia neuropathy spectrum 
and myoclonic epilepsy, myopathy and sensory 
ataxia [73], Parkinsonism and premature ovarian 
failure [74]. The link of POLG deficiency and 
mitochondrial disease is significant, as high-
lighted by further genetic studies that the p.
Trp748Ser pathogenic variant is the founder 
mutation of ancient European origin with the 
population carrier rate of 0.8% in Finland [75] 
whilst the p.Ala467Thr variant can be identified 
in 0.69% of the British population [76]. To date, 
at least 14 nuclear genes have been associated 

Y. S. Ng et al.
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with multiple deletions and CPEO phenotype of 
mitochondrial disease [77].

The reduction of the mtDNA copy number, 
also known as mtDNA depletion, was recognised 
as a distinctive cause of severe, infantile-onset 
mitochondrial disorder [78, 79] around the same 
time as the identification of multiple deletions in 
mtDNA. Broadly speaking, mitochondrial deple-
tion syndrome is associated with four major clin-
ical phenotypes: hepatocerebral syndrome, 
encephaalomyopathy, pure myopathy and neuro-
gastrointestinal involvement [80]. The underly-
ing molecular mechanisms include impairment in 
the mtDNA replication (e.g. POLG, POLG2 and 
TWNK) and defects in the mitochondrial deoxy-
nucleotide (dNTP) pool regulation (e.g. TK2, 
DGUOK, RRM2B and TYMP) [81]. The patho-
genesis of mtDNA depletion remains elusive in 
some genes such as MPV17 [82].

�Clinical Rating Scales 
for Longitudinal Study

Whilst there are subtypes of mitochondrial dis-
ease present with isolated tissue or organ involve-
ment such as LHON [83] and hypertrophic 
cardiomyopathy [84], multisystem involvement 
is evident in many patients when their disease 
progresses. However, longitudinal data detailing 
the disease trajectory has been generally lacking, 
hindering the effort of developing standardised 
guidelines for disease surveillance, genetic coun-
selling and patient enrolment for clinical trials. 
Clinical rating scales for both adult [85] and pae-
diatric [86] patients have been developed to 
address these unmet needs. The Newcastle 
Mitochondrial Disease Adult Scale (NMDAS) 
has been successfully applied on modelling dis-
ease progression of single, large-scale mtDNA 
deletion [87].

�Establishment of the Prevalence 
of Mitochondrial Disease

The estimated minimal birth prevalence of mito-
chondrial disease is 1 in 5000 in the population, 
based on findings derived from two separate 

studies performed based on North East England 
and South Eastern Australia populations in the 
early 2000s [88–90]. Studies consistently show 
that in adults mtDNA mutations are more preva-
lent, whilst autosomal recessive nuclear defects 
are more common in children (Fig. 2e) [91]. A 
subsequent study that screened over 3000 neona-
tal cord blood samples from sequential live births 
in Northern England showed that the carrier rate 
of common pathogenic mtDNA mutations is 1 in 
200 [92]. The discrepancy between the number of 
mutation carriers and clinically manifesting cases 
reflects that many people may harbour the mutant 
mtDNA heteroplasmy level below the expressing 
threshold and remain asymptomatic throughout 
their life; however, the maternal transmission of 
mtDNA mutations may continue inconspicu-
ously in several generations until a proband is 
identified clinically.

�2011–2017

�Revolution of Genetic Diagnosis 
with the Next-Generation 
Sequencing

There are more than 280 nuclear genes that have 
been associated with mitochondrial disease to 
date [93, 94]. It is anticipated that more disease-
causing genes will be discovered in the coming 
years because over 1100 proteins are localised to 
mitochondria, according to the inventory of 
mammalian mitochondrial proteins, MitoCarta 
2.0 [95]. The nuclear-related mitochondrial dis-
ease can be classified based upon our understand-
ing of the protein function, secondary defects in 
mtDNA and downstream biochemical defects in 
the OXPHOS [96, 97]. Isolated complex defi-
ciencies are usually secondary to the defects in 
the structural subunits or assembly factors; in 
stark contrast, combined mitochondrial respira-
tory chain deficiencies are associated with multi-
ple genes and pathways [98].

Next-generation sequencing (NGS), a new 
and high-throughput technique that allows 
sequencing of multiple candidate genes simulta-
neously, is leading to a more rapid diagnosis and 
increase the diagnostic yield [99]. The success of 
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whole exome sequencing (WES) in mitochon-
drial disease has been reported to range from 
17% to 55%, depending on the patient selection 
criteria [100–102]. One of the greatest challenges 
with the NGS is to provide proof of pathogenicity 
for novel variants in the known genes and per-
haps more so for the new genes that have not 
been previously linked to any disease. Segregation 
study of affected and unaffected family members 
would help to prioritise the analysis of variants of 
unknown significance (VUS). Detailed under-
standing of clinical phenotypes and identification 
of other affected individuals from different pedi-
grees are the pivotal step of validating the diag-
nosis [100]. Multicentre collaboration is often 
required to identify these patients because many 
of these VUS are rare. In the circumstance of pri-
vate mutations for which segregation study can-
not be performed, further in vitro studies such as 
Western blotting, mutant cell characterisation, 
rescue experiment and animal modelling are 
required [103].

Biopsies of affected tissues and biochemical 
measurement of these samples are invaluable 
when interpreting the WES findings, and they 
would continue to have a major role in the diag-
nostic workup in mitochondrial disease for the 
foreseeable future. However, it is also increas-
ingly recognised that other genetics or ‘acquired’ 
neuromuscular diseases could mimic mitochon-
drial disease in terms of their clinical manifesta-
tions and muscle biopsy findings [104–107], 
again highlighting the complexity of investigat-
ing patients with evidence of ‘mitochondrial dys-
function’ in some cases.

�Natural History and Cohort Studies

Improvement in the diagnostic strategies with the 
application of NGS has solved the diagnostic 
conundrum of many cases of mitochondrial dis-
ease. However, risk stratification and surveillance 
for complications, prediction of disease progres-
sion and prognostication remain extremely chal-
lenging in the clinical setting. The limitations in 
the longitudinal and natural history data have 
created significant barriers to developing medical 

management guidance, determining the timing of 
therapeutic trial and outcome measures, which 
are  patient-centred and clinically relevant. 
Furthermore, more stringent patient selection 
would restrict the patient recruitment from a sin-
gle source, and multicentre collaboration would 
be imperative to achieve sufficient sample size 
especially for randomised controlled trials (RCT) 
[108]. Leading mitochondrial research groups in 
the UK [109], Italy [110], Germany [111], the 
USA and Australia have established their respec-
tive national registry of mitochondrial diseases 
with the endeavour to elucidate the natural his-
tory of various genotypes better and prepare for 
patient enrolment to clinical trials since the late 
2000s.

�Treatment and Emerging Therapies 
for Mitochondrial Disease

The Cochrane review of published clinical trials 
concluded that there was no evidence-based 
treatment for mitochondrial disease in 2012 
[112]. Although there remains no cure for mito-
chondrial disease, there are organ-specific sup-
portive treatments [91] that could offer alleviation 
of symptoms (e.g. hearing aids and cochlear 
implant for sensorineural deafness, ptosis sur-
gery), reduction of disease burden (e.g. pharma-
cological therapy for cardiomyopathy, insulin for 
diabetes mellitus, antiepileptic drugs for stroke-
like episodes and/or seizures) and potentially 
life-saving treatment (e.g. solid organ transplant 
[113]). Targeted treatments are available for sev-
eral forms of mitochondrial disorders such as 
allogenic haematopoietic stem cell transplant 
[114] and liver transplant [115] for mitochondrial 
neurogastrointestinal encephalopathy caused by 
TYMP mutations, supplementation of 
N-acetylcysteine and metronidazole for the eth-
ylmalonic encephalopathy [91]. The dietary sup-
plementation of vitamins and cofactors such as 
riboflavin, thiamine and ubiquinone has shown 
clinical benefits for specific groups of mitochon-
drial disorder [116]; however, these findings are 
unlikely to be validated in large-scale RCTs 
given the inherent small number of patients.
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Idebenone, an antioxidant and inhibitor of 
lipid peroxidation, is the first orphan drug that 
was approved for the marketing authorisation by 
the European Medicines Agency (EMA) for 
patients affected by LHON in 2015, following 
the report of the largest, randomised controlled 
trial (n  = 85) [117] and additional data derived 
from the expanded access programme and case 
record survey [118]. Advancements in the thera-
peutic research for LHON are prominent in 
recent years, especially the gene therapy using 
the recombinant adeno-associated virus. In vitro 
study [119] and early-phase clinical trials [120] 
have demonstrated the safety profile and observa-
tion of visual improvement, phase III, multicen-
tre clinical trials are currently recruiting patients 
to confirm the therapeutic efficacy (ClinicalTrials.
gov Identifier: NCT02652780, NCT03293524).

Molecular bypass therapy aiming to restore 
deoxyribonucleoside triphosphate (dNTP) pools 
[121, 122] is emerging as a novel treatment for 
TK2-related mitochondrial depletion syndrome 
characterised by severe myopathy. Other nuclear 
gene defects implicated in the nucleoside metab-
olism such as RRM2B may also benefit from the 
molecular bypass therapy in theory; however, 
neither animal nor clinical data is currently avail-
able to support its efficacy. On the other hand, 
several ongoing clinical trials are evaluating 
small molecules including novel compounds and 
repurposing drugs that aim to promote mitochon-
drial biogenesis, stabilise mitochondrial mem-
brane or improve efficacy of scavenging reactive 
oxygen species [91, 98, 123]. Although small 
molecule therapy is generic and unlikely to be 
curative, it may be more cost-effective for the 
drug discovery and could potentially benefit 
more patients and have wider applications in 
other neurodegenerative disorders.

Zinc finger nucleases (ZFN) [124] and tran-
scription activator-like effector nucleases 
(TALENS) [125] have been used experimentally 
to manipulate the ratio of mutant and wild-type 
mtDNA in cell lines and have shown an impres-
sive reduction of mutant heteroplasmy level 
below the phenotypic expression threshold. 
Furthermore, the use of mitoTALEN has been 
attempted in the mouse germ line and provided 

proof of concept of its potential efficacy in pre-
venting mtDNA transmission [126]. However, 
neither technique would be applicable to homo-
plasmic mtDNA mutations nor substantial reduc-
tion in the mtDNA copy number in cell lines with 
subsequent recovery raises a severe concern of 
safety in vivo.

�Reproductive Options 
and Mitochondrial Donation

Nuclear gene-related mitochondrial disease fol-
lows the Mendelian inheritance rules, and the 
risk calculation of disease recurrence can be 
determined unequivocally. In contrast, the pre-
diction of transmission risk is exceptionally chal-
lenging for heteroplasmic mtDNA mutations 
because of the random nature of mtDNA genetic 
bottleneck. Several reproductive options are cur-
rently available for heteroplasmic mtDNA 
mutations such as prenatal diagnosis and preim-
plantation genetic diagnosis (PGD). The success 
of PGD predominantly relies on selecting 
embryos created via in vitro fertilisation (IVF) to 
harbour mutation load below the threshold level 
expected for the individual mtDNA mutation 
[94]. However, these options are not appropriate 
for women who harbour very high mutation load 
or homoplasmic mutation, which have led to the 
innovative development of mitochondrial dona-
tion (aka mitochondrial replacement therapy).

Mitochondrial donation is an IVF-based tech-
nique that requires healthy donor oocyte and can 
be performed before fertilisation using meta-
phase II oocytes (maternal spindle transfer, MST) 
or after fertilisation using pronucleate stage 
zygotes (pronuclear transfer, PNT). Both meth-
ods result in an embryo that contains wild-type 
mtDNA predominantly from the donor, hence 
significantly reducing the risk of transmitting 
mutated mtDNA whilst retaining nuclear DNAs 
from the biological parents [94, 127]. PNT is the 
technique pioneered in Newcastle [128], and a 
recent preclinical study with the refined method 
has affirmed its safety profile with a note of 
caution that the prevention of mutated mtDNA 
transmission is not guaranteed [129]. In the UK, 
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mitochondrial donation is now a feasible repro-
ductive option in the clinical setting after the 
extensive scientific and ethical scrutiny of the 
technique, but more crucially, the law change ini-
tiated by the active campaigning participated by 
patient groups, general public and the scientific 
community [130].

Nonhuman primate and more recent preclini-
cal data [131] using MST method have provided 
some encouraging results of its safety and effi-
cacy of preventing the transmission of mtDNA 
mutation. A healthy baby boy was born via the 
MST technique performed by the US-based med-
ical team in Mexico in 2016; the mutant hetero-
plasmy levels were reported to range from 2.36% 
to 9.23% in different tissues [132]. Whilst this 
news generated a global interest on the first suc-
cessful attempt of mitochondrial donation in 
human, this causes controversies in terms of ethi-
cal and legal considerations [133, 134].

�Conclusions

The field of mitochondrial medicine has grown 
exponentially in the last few decades. Clinical 
description and pathological characterisation of 
individual syndromes have laid a strong founda-
tion for the discovery of underlying genetic 
defects and uncovered the complexities of the 
dual genomic control of mtDNA, mtDNA repli-
cation and maintenance. Identification of the 
genetic mutations will no longer be an arduous 
undertaking for both patients and clinicians, with 
the advent of high-throughput next-generation 
sequencing technologies and bioinformatics. Our 
understanding of tissue specificity related to the 
underlying molecular genetic defect, phenotypic 
heterogeneity and epigenetics will hopefully be 
clarified further with better modelling systems 
and data derived from the omic technologies 
[135]. International, cross-disciplinary collabora-
tions such as sharing of genomic data [136] and 
the establishment of global patient registry would 
facilitate the elucidation of the natural history of 
many mitochondrial disorders, standardisation of 
patient care, finding better prognostic biomarkers 
and perhaps, more importantly, expediting patient 

recruitment for the increasing number of thera-
peutic trials. Selection of robust outcome mea-
sures [137] and innovation of trial design will be 
crucial to maximising the success of translating 
bench findings into the clinical practice but to 
also reduce the burden on patients. The availabil-
ity of various reproductive options including 
mitochondrial donation and potentially other 
mtDNA heteroplasmy-shifting techniques will 
lead to the reduction of the transmission of 
mtDNA mutations and eventually the prevalence 
of mtDNA disease.
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