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F O R E WO R D

Joel Tepper and I were approached by the senior medical editor of 
Churchill Livingstone in late 1995 about co-editing a textbook on clinical 
radiation oncology as a counterpart to the multidisciplinary textbook 
Clinical Oncology, edited by Abeloff, Armitage, Lichter, and Niederhuber. 
By May 1996, the decision had been made to proceed and a contract 
was signed in July. We were interested in producing a new radiation 
oncology textbook that was easily readable and useful to both residents 
and experienced radiation oncologists. As such, we introduced “Key 
Points” for each disease-site chapter, as well as algorithms for workup 
and treatment for each disease. We thought that, along with careful 
editing and organization, this would provide a new and valuable resource 
to the radiation oncology community. While providing a thorough 
coverage of all the topics, we made no attempt to cover all issues but 
rather emphasized what was important to the clinician.

Since Joel and I had similar disease-site interests, the decision was 
made to select associate editors for eight other disease-site sections/
chapters “to enhance the scientific content and comprehensiveness of 
the textbook” (breast, central nervous system, childhood, gynecologic, 
genitourinary, head and neck, lymphoma/hematologic, thoracic). 
Associate editors were involved in helping select appropriate senior 
authors for each of the disease-site chapters, in editing the chapters for 
scientific content and accuracy, and in writing a section overview for 
their respective disease-sites.

The first edition of Clinical Radiation Oncology (CRO), published 
in 2000 by Churchill Livingstone/Harcourt Science, was a 1300-page, 
black and white textbook containing 63 chapters in three major sec-
tions—Scientific Foundations of Radiation, Techniques and Modalities, 
Disease Sites. Subsequent editions (CRO2, CRO3, CRO4) were published 
in 2007 (Churchill Livingstone, Elsevier), 2012 (Saunders/Elsevier) and 
2016 (Elsevier), with Joel and I as the co-senior editors, plus section 
editors for gastrointestinal and sarcoma, while continuing to involve 
associate editors for the other eight disease-site sections. CRO2 was a 
full-color textbook and expanded to 76 chapters with approximately 
1800 pages. An exciting feature of CRO3 was the availability of an online 
version of the textbook that contained the entire print component of 
the textbook along with additional text, figures, tables, and a complete 

set of cited references. This allowed a reduction in the length of the 
printed textbook by limiting the number of critical references in 
the print version of each chapter to 50. For CRO4 an exciting new 
feature was the periodic update of chapters in the online version of 
the textbook. Periodic changes were made in chapter senior authors 
and co-authors and in the associate editors for subsequent editions,  
as appropriate.

While I was heavily involved in the clinical/content updates for CRO4, 
I promised my wife, Katheryn, that I would not edit further editions 
of CRO. Therefore, when the decision was made to proceed with CRO5, 
I conferred with Joel in selecting two new senior editors (Drs. Robert 
Foote and Jeff Michalski), which resulted in a more diverse group of 
senior editors by virtue of their respective disease-site expertise. At 
Joel’s request, I was involved with the three of them in the planning 
process for CRO5. As a group we decided to add six new chapters while 
keeping the length of the hardcopy textbook similar to CRO4 by reducing 
the number of critical references in the hardcopy version from 50  
to 25.

The intent of the first edition of CRO was “to be both comprehensive 
and authoritative, yet not exhaustive” by virtue of liberal use of tables, 
figures, and treatment algorithms as a supplement to the text. The 
comprehensive/authoritative intent of the print versions of the book 
persisted in subsequent editions, but the addition of an online version 
for CRO3 and subsequent editions has perhaps resulted in some “exhaus-
tive” chapters online for those readers who found the additional 
information useful. It has been both a privilege and a pleasure to be 
associated with Clinical Radiation Oncology planning and editing in 
conjunction with Joel and many other national and international experts 
for over 20 years! The contributions of outstanding authors, associate 
editors, and senior editors will allow CRO5 to be a valuable resource 
for many readers in the coming years.

Leonard L. Gunderson, MD, MS, FASTRO
Professor Emeritus and Consultant

Department of Radiation Oncology
Mayo Clinic Rochester/Arizona

Mayo Clinic College of Medicine and Science
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P R E FAC E

The radiation oncology community has received the four previous 
editions of Clinical Radiation Oncology very well, and it has become 
the standard radiation oncology textbook for many physicians. For the 
fifth edition of Clinical Radiation Oncology, the major change that has 
been made is that Len Gunderson has decided to step down as a senior 
editor, a position he has held since the inception of this textbook. His 
insight and efforts have been essential over the years in making this 
book successful. Drs. Gunderson and Tepper thought carefully about 
who could replace Dr. Gunderson as a senior editor and decided that 
two people were needed to fill that role. We have been fortunate to have 
recruited Robert Foote and Jeff Michalski to be senior editors. As the 
field of radiation oncology has expanded in its scope, having a third 
senior editor allows us to have broader expertise.

Despite this major change, our intent is to maintain the many excellent 
features of the previous editions while adding some new features, new 
chapters and chapter authors, and new associate editors.

The fifth edition has maintained three separate sections—Scientific 
Foundations of Radiation Oncology, Techniques and Modalities, and 
Disease Sites. Within Scientific Foundations of Radiation Oncology, 
four new chapters have been added: “Radiation Physics: Charged Particle 
Therapy,” “Tumor Ablation in Interventional Radiology,” “Radiation 
Therapy in the Elderly,” and “Palliative Radiation Medicine,” reflecting 
the increasing clinical interest in all of these issues within the oncologic 
community. In the section on Techniques and Modalities, two new 
chapters have been added: “Quality and Safety in Radiation Oncology” 
and “Immunotherapy with Radiotherapy.”

The associate editors for Disease Sites chapters were an important 
component of the success of the four previous editions and have been 
retained. Three associate editor positions have changed—Dr. Michalski 
has taken the lead on genitourinary diseases, Akila Viswanathan has 
become the associate editor for gynecologic tumors, and Abram Recht 
is the associate editor for breast tumors. Larry Kun functioned as the 
associate editor for pediatric tumors until his untimely death, and 
the remainder of his responsibilities were taken over by Christopher 
Tinkle and Jeff Michalski. Associate editors are involved in the selec-

tion of chapter authors and in editing the chapters for scientific 
content and accuracy. For most disease sites, the associate editors also 
wrote an overview in which they discuss issues common to various 
disease sites within the section and give their unique perspective on  
important issues.

Features that are retained within Disease Sites section include an 
opening page format summarizing the most important issues, a full-color 
format throughout each chapter, liberal use of tables and figures, and 
a closing section with a discussion of controversies and problems and 
a treatment algorithm that reflects the treatment approach of the authors. 
Chapters have been edited not only for scientific accuracy, but also for 
organization, format, and adequacy of outcome data (disease control, 
survival, and treatment tolerance).

We are again indebted to the many national and international experts 
who contributed to the fifth edition of Clinical Radiation Oncology as 
associate editors, senior authors, or co-authors. Their outstanding efforts 
combined with ours will hopefully make this new edition a valuable 
contribution and resource in the field in the coming years.
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The Biological Basis of Radiation Oncology
Elaine M. Zeman

PART A  Radiobiology

WHAT IS RADIATION BIOLOGY?
In the most general sense, radiation biology is the study of the effects 
of electromagnetic radiation on biological systems. Three aspects of this 
definition deserve special mention. First, effects may include everything 
from DNA damage to genetic mutations, chromosome aberrations, 
cell killing, disturbances in cell cycle transit and cell proliferation, 
neoplastic transformation, early and late effects in normal tissues, 
teratogenesis, cataractogenesis, and carcinogenesis, to name but a 
few. Electromagnetic radiation refers to any type of radiant energy in 
motion with wave and/or particulate characteristics that has the capacity 
to impart some or all of its energy to the medium through which it 
passes. The amount of energy deposited can vary over some 25 orders 
of magnitude, depending on the type of electromagnetic radiation. 
For example, 1 kHz radio waves have energies in the range of 10–11 
to 10–12 eV, whereas x-rays or γ-rays may have energies upwards of 
10 MeV or more. The more energetic forms of electromagnetic radiation, 
the ionizing radiations, deposit energy as they traverse the medium 
by setting secondary particles in motion that can go on to produce 
further ionizations. Finally, biological systems may be, for example, 
quite simple cell-free extracts of biomolecules, or increasingly complex, 
from prokaryotes to single-celled eukaryotes, to mammalian cells in 
culture, to tissues and tumors in laboratory animals or humans, to  
entire ecosystems.

Radiotherapy-oriented radiobiology focuses on that portion of the 
electromagnetic spectrum energetic enough to cause ionization of atoms. 
This ultimately results in the breaking of chemical bonds, which can 
lead to damage to important biomolecules. The most significant effect 
of ionizing radiation in this context is cell killing, which directly or 
indirectly is at the root of nearly all of the normal tissue and tumor 
responses noted in patients.

Cytotoxicity is not the only significant biological effect caused by 
radiation exposure, although it will be the main focus of this chapter. 
Other important radiation effects—carcinogenesis, for example—will 
also be discussed, although the reader should be aware that radiation 
carcinogenesis is a large discipline in and of itself, involving investiga-
tors from fields as diverse as biochemistry, toxicology, epidemiology, 
environmental sciences, molecular biology, tumor biology, health 
and medical physics, as well as radiobiology. Most radiation protec-
tion standards are based on minimizing the risks associated with 
mutagenic and carcinogenic events. Therefore radiological health 
professionals are de facto educators of and advocates for the general 

public when it comes to ionizing radiation, who need to be fully 
conversant in the potential risks and benefits of medical procedures  
involving radiation.

The majority of this chapter will be devoted to so-called “founda-
tional” radiobiology, that is, studies that largely predate the revolution 
in molecular biology and biotechnology during the 1980s and 1990s. 
While the reader might be tempted to view this body of knowledge as 
rather primitive by today’s standards, relying too heavily on phenomenol-
ogy, empiricism, and descriptive models and theories, the real challenge 
is to integrate the new biology into the already-existing framework of 
foundational radiobiology. Chapter 2 endeavors to do this.

RADIOTHERAPY-ORIENTED RADIOBIOLOGY:  
A CONCEPTUAL FRAMEWORK
Before examining any one aspect of radiobiology in depth, it is important 
to introduce several general concepts to provide a framework for putting 
the information in its proper perspective.

The Therapeutic Ratio
The most fundamental of these concepts is what is termed the therapeutic 
ratio—in essence, a risk-versus-benefit approach to planning a radio-
therapy treatment regimen. Many of the radiobiological phenomena 
to be discussed in this chapter are thought to play important roles in 
optimizing, or at least “fine tuning,” the therapeutic ratio. In theory, it 
should be possible to eradicate any malignant tumor simply by delivering 
a sufficiently high dose of radiation. Of course, in practice, the biological 
consequences for normal tissues that are necessarily irradiated along 
with the tumor limit the total dose that can be safely administered. As 
such, a balance must be struck between what is deemed an acceptable 
probability of a radiation-induced complication in a normal tissue and 
the probability of tumor control. Ideally, one would hope to achieve 
the maximum likelihood of tumor control that does not produce 
unacceptable normal tissue damage.

The concept of therapeutic ratio is best illustrated graphically, by 
comparing dose-response curves for both tumor control and normal 
tissue complication rates plotted as a function of dose. Examples of 
this approach are shown in Fig. 1.1 for cases in which the therapeutic 
ratio is either “unfavorable,” “favorable,” or “optimal,” bearing in mind 
that these are theoretical curves. Actual dose-response curves derived 
from experimental or clinical data are much more variable, particularly 
for tumors, which tend to show much shallower dose responses.1 This 
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axis (toward lower doses, i.e., radiosensitization) or shifting the normal 
tissue complication curve to the right (toward higher doses, i.e., 
radioprotection) or, perhaps, some combination of both. The key, 
however, is to shift these curves differentially, not necessarily an easy 
task given that there are not that many exploitable differences in the 
radiobiology of cells derived from tumors and those derived from normal 
tissues.

The Radiation Biology Continuum
There is a surprising continuity between the physical events that occur 
in the first few femtoseconds after ionizing radiation interacts with 
the atoms of a biomolecule and the ultimate consequences of that 
interaction on tissues. The consequences themselves may not become 
apparent until days, weeks, months, or even years after the radiation 
exposure. Some of the important steps in this radiobiology continuum 
are listed in Table 1.1. The orderly progression from one stage of the 
continuum to the next—from physical to physicochemical to biochemi-
cal to biological—is particularly noteworthy not only because of the 
vastly different time scales over which the critical events occur but 
also because of the increasing biological complexity associated with 
each of the endpoints or outcomes. Each stage of the continuum also 
offers a unique radiobiological window of opportunity: the potential 
to intervene in the process and thereby modify all of the events and 
outcomes that follow.

Levels of Complexity in Radiobiological Systems
Another important consideration in all radiobiological studies is the 
nature of the experimental system used to study a particular phenomenon, 
the assay(s) used, and the endpoint(s) assessed. For example, one 
investigator might be interested in studying DNA damage caused by 
ionizing radiation, in particular, the frequency of DNA double-strand 
breaks (DSBs) produced per unit dose. As an experimental system, the 
investigator might choose DNA extracted from irradiated mammalian 
cells and, as an endpoint, use pulsed field gel electrophoresis to measure 
the distance and rate at which irradiated DNA migrates through the 
gel compared with unirradiated DNA. The DNA containing more DSBs 
migrates farther than DNA containing fewer breaks, allowing a calibration 
curve to be generated that relates migration to the dose received. A 
second investigator, meanwhile, may be interested in improving the 
control rate of head and neck cancers with radiation therapy by employing 
a nonstandard fractionation schedule. In this case, the type of experiment 
would be a clinical trial. The experimental system would be a cohort 
of patients, some of whom are randomized to receive nonstandard 
fractionation and the rest receiving standard fractionation. The endpoints 
assessed could be one or more of the following: locoregional control, 
long-term survival, disease-free survival, normal tissue complication 
frequency, and so forth, evaluated at specific times after completion of 
the radiation therapy.

In considering both the strengths and weaknesses of these two 
investigators’ studies, any number of pertinent questions may be asked. 
Which is the more complex or heterogeneous system? Which is the more 
easily manipulated and controlled system? Which is more relevant for 
the day-to-day practice of radiation oncology? What kinds of results are 
gleaned from each and can these results be obtained in a timely manner? 
In this example, it is clear that human patients with spontaneously arising 
tumors represent a far more heterogeneous and complex experimental 
system than extracted mammalian DNA. However, the DNA system is 
much more easily manipulated, possible confounding factors can be 
more easily controlled, and the measurement of the desired endpoint 
(migration distance/rate) plus the data analysis can be completed within 
a day or two. Obviously, this is not the case with the human studies, 
in which numerous confounding factors can and do influence results, 

serves to underscore how difficult it can be in practice to assign a single 
numerical value to the therapeutic ratio in any given situation.

Many of the radiobiological properties of cells and tissues can have 
a favorable or adverse effect on the therapeutic ratio. Therefore, in 
planning a course of radiation therapy, the goal should be to optimize 
the therapeutic ratio as much as possible; in other words, using our 
graphical approach, increase the separation between the tumor control 
and normal tissue complication curves. This can be accomplished either 
by shifting the tumor control curve to the left with respect to the dose 
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Fig. 1.1  Illustrating the concept of therapeutic ratio under conditions 
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tumor control dose-response curves is unfavorable (A), favorable (B), 
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can include inherent radiosensitivity, genomic instability, gene expression 
patterns, DNA repair fidelity, mode(s) of cell death, cell cycle regulation, 
and how the tissue is structurally and functionally arranged. Extrinsic 
factors, on the other hand, are related to microenvironmental differences 
between tissues, such as the functionality of the vasculature, availability 
of oxygen and nutrients, pH, presence or absence of reactive oxygen 
species, cytokines and immune cells, energy charge, and cell-cell and 
cell-extracellular matrix interactions.

What are the practical implications of normal tissue and tumor 
heterogeneity? First, if one assumes that normal tissues are the more 
uniform and predictable in behavior of the two, then tumor heterogeneity 
is responsible, either directly or indirectly, for most radiotherapy failures. 
If so, this suggests that a valid clinical strategy might be to identify the 
radioresistant subpopulation(s) of tumor cells and then tailor therapy 
specifically to cope with them—although, admittedly, this approach is 
much easier said than done. Some clinical studies—both prospective 
and retrospective—now include one or more determinations of, for 
example, extent of tumor hypoxia4,5 or potential doubling time of tumor 
clonogens6 or specific tumor molecular/genetic factors. The hope is 
that these and other biomarkers can identify subsets of patients bearing 
tumors with different biological characteristics and that, accordingly, 
patients with particular characteristics can be assigned prospectively 
to different treatment groups.

Another consequence of tissue heterogeneity is that any radiobiologi-
cal endpoint measured in an intact tissue necessarily reflects the sum 
total of the individual radiosensitivities of all of the subsets of cells, 
plus all other intrinsic and extrinsic factors that contribute to the overall 
response of the tissue. Since data on normal tissue tolerances and tumor 
control probabilities are also averaged across large numbers of patients, 
heterogeneity is even more pronounced.

Powers of Ten
Tumor control is achieved only when all clonogenic cells are killed or 
otherwise rendered unable to sustain tumor growth indefinitely. In 
order to estimate the likelihood of cure, it is necessary to know, or at 
least have an appreciation for, approximately how many clonogenic 
cells the tumor contains, how radiosensitive these cells are (i.e., some 
measure of killing efficiency per unit radiation dose), and what the 
relationship is between the number of clonogenic cells remaining after 
treatment and the probability of recurrence. The latter is perhaps the 
easiest to ascertain given our knowledge of both the random and discrete 
nature of radiation damage and the general shape of dose-response 
curves for mammalian cells and tissues. For a given number of surviving 
cells per tumor, the probability of local control can be derived from 
Poisson statistics using the equation P = e−n, where P is the tumor 

manipulation of the system can be difficult, if not impossible, and the 
experimental results typically take years to obtain.

The issue of relevance is an even thornier one. Arguably, both studies 
are relevant to radiation oncology in so far as the killing of cells is at 
the root of radiation’s normal tissue and tumor toxicity, and that cell 
killing usually is, directly or indirectly, a consequence of irreparable 
damage to DNA. As such, any laboratory findings that contribute to 
the knowledge base of radiation-induced DNA damage are relevant. 
Clearly, however, clinical trials with human patients not only are a more 
familiar experimental system to radiation oncologists but also, efficacy 
in conducting trials with cancer patients is ultimately what leads to new 
standards of care in clinical practice and becomes the gold standard 
against which all newer therapeutic strategies are judged.

There is a time and place both for relatively simple systems and 
more complex ones. The relatively simple, homogeneous, and easily 
manipulated systems are best suited for the study of the mechanisms 
of radiation action, such as measuring DNA or chromosomal damage, 
changes in gene expression, activation of cell cycle checkpoints, or the 
survival of irradiated cells in vitro. The more complicated and hetero-
geneous systems, with their unique endpoints, are more clinically relevant, 
such as assays of tumor control or normal tissue complication rates. 
Both types of assay systems have inherent strengths and weaknesses, 
yet both are critically important if we hope to improve the practice of 
radiation therapy based on sound biological principles.

Heterogeneity
Why is radiation therapy successful at controlling one patient’s tumor 
but not another’s when the two tumors in all other clinical respects seem 
identical? Why are we generally more successful at controlling certain 
types of cancers than others? The short answer to such questions is 
that, although the tumors may appear identical “macroscopically,” their 
component cells may be quite different genotypically and phenotypically. 
Also, there could be important differences between the two patients’ 
normal tissues.

Because normal tissues by definition are composed of more than 
one type of cell, they are necessarily heterogeneous. However, tumors, 
owing both to the genomic instability of individual cells and to micro-
environmental differences, are much more so. Different subpopulations 
of cells isolated from human and experimental cancers can differ with 
respect to differentiation, invasive and metastatic potential, immunogenic-
ity, and sensitivity to radiation and chemotherapy, to name but a few. 
(For reviews, see Heppner and Miller2 and Suit et al.3) This heterogeneity 
is manifest both within a particular patient and, to a much greater 
extent, between patients with otherwise similar tumors. Both intrinsic 
and extrinsic factors contribute to this heterogeneity. Intrinsic factors 

TABLE 1.1  Stages in the Radiobiology Continuum

Time Scale of Events
(“Stage”) Initial Event Final Event Response Modifiers/Possible Interventions

10−16 to 10−12 second (“Physical”) Ionization of atoms Free radicals formed in biomolecules Type of ionizing radiation; shielding

10−12 to 10−2 second 
(“Physicochemical”)

Free radicals formed 
in biomolecules

DNA damage Presence or absence of free radical scavengers, molecular 
oxygen and/or oxygen-mimetic radiosensitizers

1.0 second to several hours 
(“Biochemical”)

DNA damage Unrepaired or misrejoined DNA damage Presence or absence of functioning DNA damage 
recognition and repair systems; repair-inhibiting drugs; 
altering the time required to complete repair processes

Hours to years (“Biological”) Unrepaired or 
misrejoined DNA 
damage

Clonogenic cell death, apoptosis, 
mutagenesis, transformation, 
carcinogenesis, “early and late effects” 
normal tissues, whole body radiation 
syndromes, tumor control, etc.

Cell-cell interactions, biological response modifiers, 
adaptive mechanisms, structural and functional 
organization of tissues, cell kinetics, etc.
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Finally, it should be noted that while the goal of curative radiation 
therapy is to reduce tumor cell survival by at least nine logs, even for 
the smallest tumor likely to be encountered, it is much less clear how 
many logs of cell killing a particular normal tissue can tolerate before 
it loses its structural and/or functional integrity. This would depend 
on how the tissue is organized structurally, functionally, and prolifera-
tively, which constituent cells are the most and least radiosensitive, and 
which cells are the most important to the integrity of the tissue. It is 
unlikely, however, that many normal tissues could tolerate a depletion 
of two logs (99%) of their cells, let alone nine or more logs.

RADIATION BIOLOGY AND THERAPY: THE FIRST  
50 YEARS
In fewer than 4 years after the discovery of x-rays by Roentgen,8 
radioactivity by Becquerel,9 and radium by the Curies,10 the new modality 
of cancer treatment known as radiation therapy claimed its first cure 
of skin cancer.11 Today, more than 120 years later, radiotherapy is most 
commonly given as a series of small daily dose fractions of approximately 
1.8 to 2.0 Gy each, 5 days per week, over a period of 5 to 7 weeks to 
total doses of 50 to 75 Gy. While it is true that the historical development 
of this conventional radiotherapy schedule was empirically based, there 
were a number of early radiobiological experiments that suggested this 
approach.

In the earliest days of radiotherapy, both x-rays and radium were 
used for cancer treatment. Due to the greater availability and convenience 
of using x-ray tubes and the higher intensities of radiation output achiev-
able, it was fairly easy to deliver one or a few large doses in short overall 
treatment times. Thus, from about 1900 into the 1920s, this “massive 
dose technique”12 was a common way of administering radiation therapy. 
Normal tissue complications were often quite severe and, to make matters 
worse, the rate of local tumor recurrence was still unacceptably high.

Radium therapy was used more extensively in France. Because of 
the low activities available, radium applications necessarily involved 
longer overall treatment times in order to reach comparable total doses. 
Although extended treatments were less convenient, clinical results were 
often superior. Perceiving that the change in overall time was the critical 
factor, physicians began to experiment with the use of multiple, smaller 
x-ray doses delivered over extended periods. By that time, there was 
already a radiobiological precedent for expecting improvement in tumor 
control when radiation treatments were protracted.

As early as 1906, Bergonié and Tribondeau observed histologically 
that the immature, dividing cells of the rat testis showed evidence of 
damage at lower radiation doses than the mature, nondividing cells of 
the stroma.13 Based on these observations, they put forth some basic 
“laws” stating that x-rays were more effective on cells that were (1) 
actively dividing, (2) likely to continue to divide indefinitely, and (3) 
undifferentiated.13 Since tumors were already known to contain cells 
that were not only less differentiated but also exhibited greater mitotic 
activity, they reasoned that several radiation exposures might prefer-
entially kill these tumor cells but not their slowly proliferating, differenti-
ated counterparts in the surrounding normal tissues.

The end of common usage of the massive dose technique in favor 
of fractionated treatment came during the 1920s as a consequence of 
the pioneering experiments of Claude Regaud.14 Using the testes of the 
rabbit as a model tumor system (since the rapid and unlimited prolifera-
tion of spermatogenic cells simulated to some extent the pattern of cell 
proliferation in malignant tumors), Regaud showed that only through 
the use of multiple, smaller radiation doses could animals be completely 
sterilized without producing severe injury to the scrotum.15 Regaud 
suggested that the superior results afforded the multifraction irradiation 
scheme were related to alternating periods of relative radioresistance 
and sensitivity in the rapidly proliferating germ cells.16 These principles 

control probability and n is the average number of surviving clonogenic 
tumor cells. For example, when an average of one clonogenic cell per 
tumor remains at the end of radiation therapy, the tumor control rate 
will be about 37%. This means that about 6 out of 10 tumors of the 
same size and relative radiosensitivity will recur. Should the treatment 
reduce clonogenic cell numbers to an average of 0.1 per tumor, the 
tumor control probability would increase to 90%; 0.05 per tumor, 95%; 
and 0.01 per tumor, 99%, respectively.

The tumor control probability for a given fraction of surviving cells 
is not particularly helpful when the total number of cells at risk is 
unknown; this is where an understanding of logarithmic relationships 
and exponential cell killing is useful. For example, estimates are that a 
1-cm3 (1-g) tumor mass contains approximately 109 cells,7 admittedly 
a theoretical (and incorrect) value that assumes that all cells are perfectly 
packed and uniformly sized and that the tumor contains no stroma. A 
further assumption, that all such cells are clonogenic (rarely, if ever, 
the case), suggests that at least 9 logs of cell killing would be necessary 
before any appreciable tumor control (about 37%) would be achieved, 
and 10 logs of cell killing would be required for a high degree of tumor 
control (i.e., 90%).

After the first log or two of cell killing, however, some tumors respond 
by shrinking, a so-called partial response. After two to three logs of cell 
killing, the tumor may shrink to a size below the current limits of 
clinical detection, that is, a complete response. While partial and complete 
responses are valid clinical endpoints, a complete response does not 
necessarily equal a tumor cure. At least six more logs of cell killing 
would still be required before any significant probability of cure would 
be expected. This explains why radiation therapy is not halted if the 
tumor disappears during the course of treatment; this concept is 
illustrated graphically in Fig. 1.2.
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Fig. 1.2  The relationship between radiation dose and tumor cell survival 
during fractionated radiotherapy of a hypothetical 1-g tumor containing 
109 clonogenic cells. Although a modest decrease in cell-surviving fraction 
can cause the tumor to shrink (partial response) or disappear below the 
limits of clinical detection (complete response), few if any cures would 
be expected until at least 9 logs of clonogenic cells have been killed. 
In this example, a total dose of at least 60 Gy delivered as daily 2-Gy 
fractions would be required to produce a tumor control probability of 
0.37, assuming that each dose reduced the surviving fraction to 0.5. 
(Modified from Steel G, Adams G, Peckham M, eds. The Biological 
Basis of Radiotherapy. New York: Elsevier; 1983.)
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one, or a few, large doses) for the preferential eradication of tumors 
while simultaneously sparing normal tissues.25 It was somewhat ironic 
that the Strandqvist curves were so popular in the years that followed, 
when it was already known that the therapeutic ratio did increase (at 
least to a point) with prolonged, as opposed to very short, overall 
treatment times. However, the overarching advantage was that these 
isoeffect curves were quite reliable at predicting skin reactions, which 
were the dose-limiting factors at that time.

THE “GOLDEN AGE” OF RADIATION BIOLOGY AND 
THERAPY: THE SECOND 50 YEARS
Perhaps the defining event that ushered in the golden age of radiation 
biology was the publication of the first survival curve for mammalian 
cells exposed to graded doses of x-rays. This first report of a quantitative 
measure of intrinsic radiosensitivity of a human cell line (HeLa, derived 
from a cervical carcinoma26) was published by Puck and Marcus in 
1956.27 In order to put this seminal work in the proper perspective, it 
is first necessary to review the physicochemical basis for why ionizing 
radiation is toxic to biological materials.

The Interaction of Ionizing Radiation  
With Biological Materials
As mentioned in the introductory section of this chapter, ionizing 
radiation deposits energy as it traverses the absorbing medium through 
which it passes. The most important feature of the interaction of ionizing 
radiation with biological materials is the random and discrete nature 
of the energy deposition. Energy is deposited in increasingly energetic 
packets referred to as spurs (≤100 eV deposited), blobs (100–500 eV), 
or short tracks (500–5000 eV), each of which can leave from approximately 
three to several dozen ionized atoms in its wake. This is illustrated in 
Fig. 1.4, along with a segment of (interphase) chromatin shown to scale. 
The frequency distribution and density of the different types of energy 
deposition events along the track of the incident photon or particle are 
measures of the radiation’s linear energy transfer (LET; see also the 
“Relative Biological Effectiveness” section to come). Because these energy 
deposition events are discrete, it follows that while the average energy 
deposited in a macroscopic volume of biological material is small, the 
distribution of this energy on a microscopic scale may be quite large. 
This explains why ionizing radiation is so efficient at producing biological 
damage; the total amount of energy deposited in a 70-kg human that 
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Fig. 1.3  Isoeffect curves relating the log of the total dose to the log of 
the overall treatment time for various levels of skin reaction, and the 
cure of skin cancer. (A) Isoeffect curves constructed by Cohen in 1966, 
based on a survey of earlier published data on radiotherapy “equiva-
lents.”19–22 See text for details. The slope of the curves for skin complica-
tions was 0.33 and that for tumor control, 0.22. (B) Strandqvist’s isoeffect 
curves, first published in 1944. All lines were drawn parallel and had a 
common slope of 0.33. (A, Modified from Cohen L. Radiation response 
and recovery: Radiobiological principles and their relation to clinical 
practice. In: Schwartz E, ed. The Biological Basis of Radiation Therapy. 
Philadelphia: J.B. Lippincott; 1966:208; B, modified from Strandqvist M. 
Studien uber die kumulative Wirkung der Roentgenstrahlen bei Frak-
tionierung. Acta Radiol Suppl. 1944;55:1.)
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Fig. 1.4  Hypothetical α-particle track through an absorbing medium, 
illustrating the random and discrete energy deposition “events” along 
the track. Each event can be classified according to the amount of 
energy deposited locally, which, in turn, determines how many ionized 
atoms will be produced. A segment of chromatin is also shown, 
approximately to scale. (Modified from Goodhead DT. Physics of radiation 
action: microscopic features that determine biological consequences. 
In: Hagen U, Harder D, Jung H, et al., eds. Radiation Research 1895-1995, 
Proceedings of the 10th International Congress of Radiation Research. 
Volume 2: Congress Lectures. Wurzburg: Universitatsdruckerei H. Sturtz 
AG; 1995:43–48.)

were soon tested in the clinic by Henri Coutard, who first used fraction-
ated radiotherapy for the treatment of head and neck cancers, with 
spectacularly improved results, comparatively speaking.17,18 Largely as 
a result of these and related experiments, fractionated treatment sub-
sequently became the standard form of radiation therapy.

Time-dose equivalents for skin erythema published by Reisner,19 
Quimby and MacComb,20 and others21,22 formed the basis for the calcula-
tion of equivalents for other tissue and tumor responses. By plotting 
the total doses required for each of these “equivalents” for a given level 
of effect in a particular tissue, as a function of a treatment parameter—
such as overall treatment time, number of fractions, dose per fraction, 
and so forth—an isoeffect curve could be derived. All time-dose combina-
tions that fell along such a curve theoretically would produce tissue 
responses of equal magnitude. Isoeffect curves, relating the total dose 
to the overall treatment time, derived in later years from some of these 
data,23 are shown in Fig. 1.3.

The first published isoeffect curves were produced by Strandqvist 
in 194424 and are also shown in Fig. 1.3. When transformed on log-log 
coordinates, isoeffect curves for a variety of skin reactions and the cure 
of skin cancer were drawn as parallel lines, with common slopes of 
0.33. These results implied that there would be no therapeutic advantage 
to using prolonged treatment times (i.e., multiple small fractions versus 
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compared with the time scale of the initial ionization events but are 
still fast relative to normal enzymatic processes in a typical mammalian 
cell. For all intents and purposes, free radical reactions are complete 
within milliseconds of irradiation. The •OH radical is capable of both 
abstraction of hydrogen atoms from other molecules and addition across 
carbon-carbon or other double bonds. More complex macromolecules 
that have been converted to free radicals can undergo a series of 
transmutations in an attempt to rid themselves of unpaired electrons, 
many of which result in the breakage of nearby chemical bonds. In the 
case of DNA, these broken bonds may result in the loss of a base or an 
entire nucleotide, or a frank scission of the sugar phosphate backbone, 
involving either one or both DNA strands. In some cases, chemical 
bonds are broken initially but then rearranged, exchanged, or rejoined 
in inappropriate ways. Bases in DNA may be modified by the addition 
of one or more hydroxyl groups (e.g., the base thymine converted to 
thymine glycol), pyrimidines may become dimerized, and/or the DNA 
may become cross-linked to itself or to associated proteins. Again, because 
the initial energy deposition events are discrete, the free radicals produced 
also are clustered and, therefore, undergo their multiple chemical 
reactions and produce multiple damages in a highly localized area. This 
has been termed the locally multiply damaged site32 or cluster33 hypothesis. 
Examples of the types of damage found in irradiated DNA are shown 
in Fig. 1.5.

Biochemical Repair of DNA Damage
DNA is unique insofar as it is the only cellular macromolecule with its 
own repair system. Until as recently as 35 years ago, little was known 
about DNA repair processes in mammalian cells, particularly because 
of the complexities involved and the relative lack of spontaneously 
occurring mutants defective in genes involved with DNA repair. As 
a consequence, most studies of DNA repair were carried out either 
in bacteria or yeasts and usually employed UV radiation as the tool 
for producing DNA damage. Although these were rather simple 
and relatively clean systems in which to study DNA repair, their 
relevance to mammalian repair systems and to the broader spectrum 
of DNA damage produced by ionizing radiation ultimately limited  
their usefulness.

The study of DNA repair in mammalian cells received a significant 
boost during the late 1960s with publications by Cleaver34,35 that identified 
the molecular defect responsible for the human disease xeroderma 
pigmentosum (XP). Patients with XP are exquisitely sensitive to sunlight 
and highly (skin) cancer prone. Cleaver showed that cells derived from 
such patients were likewise sensitive to UV radiation and defective in 
the nucleotide excision repair pathway (see later discussion). These cells 
were not especially sensitive to ionizing radiation, however. Several 
years later, Taylor et al.36 reported that cells derived from patients with 
a second cancer-proneness disorder called ataxia telangiectasia (AT) 
were extremely sensitive to ionizing radiation and radiation-mimetic 
drugs, but not UV. In the years that followed, cell cultures derived from 
patients with these two conditions were used to help elucidate the 
complicated processes of DNA repair in mammalian cells. Today, dozens 
of other clinical syndromes associated with radiosensitivity, cancer 
proneness, or both have been identified.37,38

Today, many rodent and human genes involved in DNA repair have 
been cloned and extensively characterized.39 Some 30 to 40 proteins 
participate in excision repair of base damage; about half that many are 
involved in the repair of strand breaks.37 Many of these proteins function 
as component parts of larger repair complexes. Some are interchangeable 
and participate in other DNA repair and replication pathways as well. 
It is also noteworthy that some are not involved with the repair process 
per se, but rather link DNA repair to other cellular functions, including 
transcription, cell cycle arrest, chromatin remodeling, and apoptosis.40 

will result in a 50% probability of death is only about 70 calories, about 
as much energy as is absorbed by drinking one sip of hot coffee.28 The 
key difference is that the energy contained in the sip of coffee is uniformly 
distributed, not random and discrete.

Those biomolecules receiving a direct hit from a spur or blob receive, 
relatively speaking, a huge radiation dose, that is, a large energy deposition 
in a very small volume. For photons and charged particles, this energy 
deposition results in the ejection of orbital electrons from atoms, causing 
the target molecule to be converted first into an ion pair and then into 
a free radical. Further, the ejected electrons—themselves energetic charged 
particles—can go on to produce additional ionizations. For uncharged 
particles such as neutrons, the interaction is between the incident particles 
and the nuclei of the atoms in the absorbing medium, causing the 
ejection of recoil protons (charged) and lower-energy neutrons. The 
cycle of ionization, free radical production, and release of secondary 
charged particles continues until all of the energy of the incident photon 
or particle is expended. These interactions are complete within a 
picosecond after the initial energy transfer. After that time, the chemical 
reactions of the resulting free radicals predominate the radiation response 
(see later discussion).

Any and all cellular molecules are potential targets for the localized 
energy deposition events that occur in spurs, blobs, or short tracks. 
Whether the ionization of a particular biomolecule results in a measurable 
biological effect depends on a number of factors, including how probable 
a target the molecule represents from the point of view of the ionizing 
particle, how important the molecule is to the continued health of the 
cell, how many copies of the molecule are normally present in the cell 
and to what extent the cell can react to the loss of working copies, how 
important the cell is to the structure or function of its corresponding 
tissue or organ, and so on. DNA, for example, is obviously an important 
cellular macromolecule, and one that is present only as a single, double-
stranded copy. On the other hand, other molecules in the cell may be 
less crucial to survival, yet are much more abundant than DNA and, 
therefore, have a much higher probability of being hit and ionized. By 
far, the most abundant molecule in the cell is water, comprising at least 
70% to 80% of the cell on a per weight basis. The highly reactive free 
radicals formed by the radiolysis of water are capable of augmenting 
the DNA damage resulting from direct energy absorption by migrating 
to the DNA and damaging it indirectly. This mechanism is referred to 
as indirect radiation action to distinguish it from the aforementioned 
direct radiation action.29 The direct and indirect action pathways for 
ionizing radiation are illustrated below.
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The most highly reactive and damaging species produced by the radiolysis 
of water is the hydroxyl radical (•OH), although other free radical species 
are also produced in varying yields.30,31 Cell killing by indirect action 
constitutes some 70% of the total damage produced in DNA for low 
LET radiation.

How do the free radicals produced by the direct and indirect action 
of ionizing radiation go on to cause the myriad lesions that have been 
identified in irradiated DNA? Since they contain unpaired electrons, 
free radicals are highly reactive chemically and will undergo multiple 
reactions in an attempt to either acquire new electrons or rid themselves 
of remaining unpaired ones. These reactions are considered quite slow 
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with other cellular activities is termed the DNA Damage Response 
(DDR).37,41 For example, the defect responsible for the disease AT is 
not in a gene that codes for a repair protein but rather in a gene that 
acts in part as a damage sensor and signal transducer but also participates 
in a related pathway that normally prevents cells from entering S phase 
and beginning DNA synthesis while residual DNA damage is present. 
This is termed the G1 cell cycle checkpoint response.42 Because of this 
genetic defect, AT cells do not experience the normal G1 arrest after 
irradiation and enter S phase with residual DNA damage. This accounts 
both for the exquisite radiosensitivity of AT cells and the resulting 
genomic instability that can lead to cancer.

The molecular and biochemical intricacies of DNA repair in mam-
malian cells are described in detail in Chapter 2. A brief overview is 
also presented next.

Base Excision Repair
The repair of base damage is initiated by DNA repair enzymes called 
glycosylases, which recognize specific types of damaged bases and excise 
them without otherwise disturbing the DNA strand.43 The action of 
the glycosylase results in the formation of another type of damage 
observed in irradiated DNA—an apurinic or apyrimidinic (AP) site. 
The AP site is then recognized by another repair enzyme, an endonuclease 
that nicks the DNA adjacent to the lesion, in effect creating a DNA 
single-stranded break. This break then becomes the substrate for an 
exonuclease, which removes the abasic site, along with a few additional 
bases. The small gap that results is patched by DNA polymerase using 
the opposite, hopefully undamaged, DNA strand as a template. Finally, 
DNA ligase seals the patch in place.

Nucleotide Excision Repair
The DNA glycosylases that begin the process of base excision repair do 
not recognize all known forms of base damage, however, particularly 
bulky or complex lesions.43 In such cases, another group of enzymes, 
termed structure-specific endonucleases, initiate the excision repair process. 
These repair proteins do not recognize the specific lesion but rather 
the structural distortions in DNA that necessarily accompany a complex 
base lesion. The structure-specific endonucleases incise the affected 
DNA strand on both sides of the lesion, releasing an oligonucleotide 
fragment made up of the damage site and several bases on either side 
of it. After this step, the remainder of the nucleotide excision repair 
process is similar to that of base excision repair. The gap is then filled 
by DNA polymerase and sealed by DNA ligase.

For both types of excision repair, active genes in the process of 
transcription are repaired preferentially and more quickly. This has 
been termed transcription-coupled repair.44

Single-Strand Break Repair
Single-strand breaks (SSBs) in the DNA backbone are common lesions, 
produced in the tens of thousands per cell per day as part of normal 
metabolism and respiration45 on top of any additional breaks introduced 
by radiation exposure. These are repaired using the machinery of excision 
repair, that is, gap filling by DNA polymerase and sealing by DNA ligase.

Double-Strand Break Repair
Despite the fact that unrepaired or misrejoined double-strand breaks 
(DSBs) often have the most catastrophic consequences for the cell in 
terms of loss of reproductive integrity,46 how mammalian cells repair 
these lesions has been more difficult to elucidate than how they  
repair base damage. Much of what was originally discovered about 
these repair processes is derived from studies of x-ray-sensitive rodent 
cells that were later discovered to harbor specific defects in strand break 
repair.47 Since then, dozens of other rodent and human cells characterized 

This attests to the fact that the maintenance of genomic integrity results 
from a complex interplay between not only the repair proteins themselves 
but also others that serve as damage sensors, signaling mediators and 
transducers, and effectors. Collectively, this complex network of proteins 
that sense, initiate, and coordinate DNA damage signaling and repair 
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Fig. 1.5  Types of DNA damage produced by ionizing radiation. (A) 
Segment of irradiated DNA containing single- and double-stranded breaks, 
cross-links, and base damage. (B) Two types of modified bases observed 
in irradiated DNA include thymine glycol, which results from the addition 
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In normal cells, little or no toxicity caused by PARP inhibition would 
be expected, as all DDR pathways are intact and salvage repair pathways 
to bypass PARP inhibition are active. In tumor cells already harboring 
defects in HR, however, PARP inhibition would be preferentially toxic. 
One clinical example is the targeting of breast cancers harboring cellular 
defects in the BRCA1/2 proteins—which either orchestrate or are directly 
involved in HR—for PARP inhibition. This overall approach of using 
the combined lethal effect of two genetic defects (one inherent HR 
defect plus one synthetic one induced by PARP inhibition) that are 
otherwise nonlethal singly is termed synthetic lethality.54,55,58 Synthetic 
lethality approaches targeting DDR proteins (including those other 
than PARP) likely will play increasingly important roles in the future.

Cytogenetic Effects of Ionizing Radiation
When cells divide following radiation exposure, chromosomes frequently 
contain visible structural aberrations that are the result of any unrepaired 
or misrejoined DNA damage that persists from the time of irradiation. 
Most chromosome aberrations are lethal to the cell. In some cases, 
these aberrations physically interfere with the processes of mitosis and 
cytokinesis, resulting in prompt cell death. In other cases, cell division 
can occur but the loss or uneven distribution of genetic material between 
the cell’s progeny is ultimately lethal as well, although the affected cells 
may linger for several days before they die, with some even be able to 
go through a few more cell divisions in the interim.

Most chromosome aberrations result from an interaction between 
two damage sites; therefore, they can be grouped into three different 
types of “exchange” categories. A fourth category is reserved for those 
chromosome aberrations that are thought to result from a single damage 
site.59 These categories are described here; representative types of aber-
rations from each category are shown in Fig. 1.6:
1.	 Intra-arm Exchanges: An interaction between lesions on the same 

arm of a single chromosome (example: interstitial deletion).
2.	 Inter-arm Exchanges: An interaction between lesions on opposite 

arms of the same chromosome (example: centric ring).
3.	 Interchanges: An interaction between lesions on different chromo-

somes (example: dicentric).
4.	 “Single Hit” Breaks: The complete severance of part of one arm of 

a single chromosome not obviously associated with any more than 
a single lesion (example: terminal deletion).

These four categories can be further subdivided according to whether 
the initial radiation damage occurred before or after the DNA is replicated 
(a chromosome- vs. chromatid-type aberration, respectively) and, for 
the three exchange categories, whether the lesion interaction is sym-
metrical or asymmetrical. Asymmetrical exchanges always lead to the 
formation of acentric fragments that are usually lost in subsequent cell 
divisions and, therefore, are nearly always fatal to the cell. These fragments 
may be retained transiently in the cell’s progeny as extranuclear chromatin 
bodies called micronuclei. Symmetrical exchanges are more insidious 
in that they do not lead to the formation of acentric fragments and the 
accompanying loss of genetic material at the next cell division; thus, 
they do not always kill the cell. As such, they will be transmitted to all 
progeny of the original cell. Some types of symmetrical exchanges (e.g., 
a reciprocal translocation) have been implicated in radiation carcino-
genesis insofar as they have the net effect of either bringing new combina-
tions of genes together or separating preexisting groups of genes.28 
Depending on where in the genome the translocation takes place, genes 
normally active could be turned off or vice versa, potentially with adverse 
consequences.

Quantitation of the types and frequencies of chromosome aberrations 
in irradiated cells can be used to probe dose-response relationships for 
ionizing radiation and, to a first approximation, also can serve as a 
radiation dosimeter. For example, the dose-response curve for the 

by DDR defects have been identified and are also used to help probe 
these fundamental processes.

With respect to the repair of DSBs, the situation is more complicated 
in that the damage on each strand of DNA may be different and, therefore, 
no intact template would be available to guide the repair process. Under 
these circumstances, cells must rely on a somewhat error-prone process 
that rejoins the break(s) regardless of the loss of intervening base pairs 
for which there is no template (nonhomologous end joining [NHEJ]) 
or depend on genetic recombination in which a template for presumably 
error-free repair is obtained from recently replicated DNA of a sister 
chromatid (homologous recombination [HR]48) to cope with the damage. 
NHEJ occurs throughout the cell cycle, but predominates in cells that 
have not yet replicated their DNA, that is, cells in the G1 or G0 phases 
of the cell cycle. NHEJ involves a heterodimeric enzyme complex consist-
ing of the proteins Ku-70 and Ku-80, the catalytic subunit of DNA 
protein kinase (DNA-PKCS), and DNA ligase IV. Cells that have already 
replicated most or all of their DNA—in the late S or G2 phases of the 
cell cycle—depend on HR to repair DSBs. HR involves the assembly of 
a nucleoprotein filament that contains, among others, the proteins Rad51 
and Rad52. This filament then invades the homologous DNA sequence 
of a sister chromatid, which becomes the template for repair. The BRCA2 
protein is also implicated in HR as it interacts with the Rad51 protein.38 
Defects in either the BRCA1 (which helps determine which DSB repair 
pathway will be used in a particular situation) or BRCA2 genes are 
associated with hereditary breast and ovarian cancer.49

Mismatch Repair
The primary role of mismatch repair (MMR) is to eliminate from newly 
synthesized DNA errors such as base/base mismatches and insertion/
deletion loops caused by DNA polymerase.50 This process consists of 
three steps: mismatch recognition and assembly of the repair complex, 
degradation of the error-containing strand, and repair synthesis. In 
humans, MMR involves at least five proteins, including hMSH2 and 
hMLH1, as well as other members of the DNA repair and replication 
machinery.

Radiation-induced DNA lesions are not targets for mismatch repair 
per se. However, one manifestation of a defect in mismatch repair is 
germane to any study of oncogenesis: genomic instability,51 which renders 
affected cells hypermutable. This “mutator phenotype” is associated with 
several cancer predisposition syndromes, in particular, hereditary non-
polyposis colon cancer (HNPCC, a.k.a. Lynch syndrome).52,53 Genomic 
instability is considered one of the main enablers of normal cells to 
accumulate cancer-causing mutations and also drives tumor progression 
to more aggressive and potentially treatment-resistant phenotypes.

The DDR as a Clinical Target
Historically, attempts to inhibit the repair of radiation-induced DNA 
damage were of interest to researchers probing these fundamental 
processes. However, clinical translation was typically lacking, mostly 
out of concern that normal tissues would also be affected in an adverse 
way. More recently, it has become clear that the cells of many tumors 
harbor one or more defects in the DDR (as a consequence of genomic 
instability) that are not present in normal cells and that this difference 
might be exploitable clinically.

One approach along these lines is the use of inhibitors of the protein 
poly(ADP-ribose) polymerase (PARP).54,55 As of 2018, dozens of trials 
were underway using PARP inhibitors in combination with chemo- and 
immunotherapies.56,57 PARP is a damage sensor involved in both base 
excision and SSB repair that, if inhibited, leads to the persistence of 
SSBs. If left unrejoined, these breaks can cause the collapse of replication 
forks in DNA that then impede DNA replication, transcription, and 
HR repair,55 leading to radiosensitization and, ultimately, cell death.58
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preclude the possibility that a cell may remain physically intact, metaboli-
cally active, and continue its tissue-specific functions for some time 
after irradiation.60

Compared with nearly 65 years ago, when the term clonogenic death 
was first coined and used as an endpoint in assays of cellular radiosensitiv-
ity,27,61 by today’s standards it is clearly an operationally defined term 
that encompasses several distinct mechanisms by which cells die, all of 
which result in a cell losing its ability to divide indefinitely. These modes 
of cell death include mitotic catastrophe, apoptosis, necrosis, senescence, 
and autophagy. Strictly speaking, differentiation is included as well, 
because differentiated cells lose their ability to divide.62,63

Mitotic catastrophe is the major mode of radiation-induced death for 
most mammalian cells, occurring secondary to chromosome aberrations 
and/or spindle defects that interfere with the cell division process.64,65 
Accordingly, this type of cell death occurs during or soon after an 
attempted cell division postirradiation (although not necessarily during 
the very first division attempt), leaving in its wake large, flattened, 
and multinucleated cells that are typically aneuploid. Apoptosis, or 
programmed cell death, is a type of nonmitotic or interphase death 
commonly associated with embryonic development and normal tissue 
remodeling and homeostasis.66 However, certain normal tissue and tumor 
cells also undergo apoptosis following irradiation, including normal cells 
of hematopoietic or lymphoid origin, crypt cells of the small intestine, 
salivary gland cells, plus a few tumor cell lines of gynecological and 
hematological origin.67 Cells undergoing apoptosis exhibit a number of 
characteristic morphological (nuclear condensation and fragmentation, 
membrane blebbing, etc.) and biochemical (DNA degradation) changes 
that culminate in the fragmentation of the cell, typically within 12 to 

induction of exchange-type aberrations after exposure to low-LET 
radiation tends to be linear-quadratic in shape, whereas that for single-hit 
aberrations tends to be linear. In mathematical terms, the incidence, I, 
of a particular aberration as a function of radiation dose, D, can be 
expressed as

I D D c for exchange-type aberrations

I D c for single-hi

= + +
= +
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where α and β are proportionality constants related to the yields of the 
particular type of aberration and c is the spontaneous frequency of 
that aberration in unirradiated cells. For fractionated doses or continuous 
low dose rates of low-LET radiation, the yield of exchange-type aber-
rations decreases relative to that for acute doses, and the dose-response 
curve becomes more linear. For high-LET radiations, dose-response 
curves become steeper (higher aberration yields per unit dose) and 
more linear compared with those for low-LET radiations.

Cell Survival Curves and Survival Curve Theory
What Is Meant by “Cell Death”?
The traditional definition of death as a permanent, irreversible cessation 
of vital functions is not the same as what constitutes “death” to the 
radiation biologist or oncologist. For proliferating cells—including those 
maintained in vitro, the stem cells of normal tissues, and tumor 
clonogens—cell death in the radiobiological sense refers to a loss of 
reproductive integrity, that is, an inability to sustain proliferation 
indefinitely. This type of “reproductive” or “clonogenic” death does not 
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Fig. 1.6  Types of radiation-induced chromosome aberrations that are the result of unrepaired or misrejoined 
DNA damage. Aberrations are classified according to whether they involve a single or multiple chromosomes, 
whether the damage is thought to be caused by the passage of a single charged particle track (“one-hit” 
aberration), or by the interaction of damages produced by two different tracks (“two-hit” aberration), and 
whether the irradiation occurred prior to or after the chromosomes had replicated (chromosome- vs. chromatid-
type aberrations, respectively; only chromosome-type aberrations are shown). The aberrations can be further 
subdivided according to whether broken pieces of the chromosome rearrange themselves symmetrically 
(with no net loss of genetic material) or asymmetrically (acentric fragments produced). 
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activity. A mathematical expression used to fit this type of dose-response 
relationship is

S e D D= − 0

In this equation, S is the fraction of cells that survive a given dose, 
D, and D0 is the dose increment that reduces the cell survival to 37% 
(1/e) of some initial value on the exponential portion of the curve 
(i.e., a measure of the reciprocal of the slope). Target theory could 
also be applied to survival curves with shoulders at low doses if one 
assumed that either multiple targets or multiple hits in a single target 
were necessary for radiation inactivation. A mathematical expression 
based on target theory that provided a fairly good fit to survival  
data was

S e D D n= − − −1 1 0( )

with n being the back extrapolation of the exponential portion of the 
survival curve to zero dose. Implicit in this multitarget model was that 
damage had to accumulate before the overall effect was registered.

It soon became apparent that some features of this model were 
inadequate.77 The most obvious problem was that the single-hit, 
multitarget equation predicted that survival curves should have initial 
slopes of zero, that is, that for vanishingly small doses (e.g., repeated, 
small doses per fraction or continuous low dose rate exposure), the 
probability of cell killing would approach zero. This is not what was 
observed in practice for either mammalian cell survival curves or as 
inferred from clinical studies in which highly fractionated or low dose 
rate treatment schedules were compared to more conventional frac-
tionation. There was no fractionation schedule that produced essentially 
no cell killing, all other radiobiological factors being equal.

A somewhat different interpretation of cell survival was proposed 
by Kellerer and Rossi78 in the late 1960s and early 1970s. The linear-
quadratic or “alpha-beta” equation,

S e D D= − +( )α β 2

was shown to fit many survival data quite well, particularly in the low-
dose region of the curve, and also provided for the negative initial 
slope that investigators had described.77 In this expression, S is again 
the fractional cell survival following a dose D, α is the rate of cell 
kill by a single-hit process, and β is the rate of cell kill by a two-hit 
mechanism. The theoretical derivation of the linear-quadratic equa-
tion is based on two sets of observations. Based on microdosimetric 
considerations, Kellerer and Rossi78 proposed that a radiation-induced 
lethal lesion resulted from the interaction of two sublesions. According 
to this interpretation, the αD term is the probability of these two suble-
sions being produced by a single event (the “intra-track” component), 
whereas βD2 is the probability of the two sublesions being produced 
by two separate events (the “inter-track” component). Chadwick and 
Leenhouts79 derived the same equation based on a different set of 
assumptions, namely, that a DSB in DNA was a lethal lesion and that 
such a lesion could be produced by either a single energy deposition 
involving both strands of DNA or by two separate events, each involving  
a single strand.

A comparison of the features and parameters of the target theory 
and linear-quadratic survival curve expressions is shown in Fig. 1.7.

Clonogenic Assays In Vitro
As mentioned previously, it was not until the mid-1950s that mammalian 
cell culture techniques were sufficiently refined to allow quantitation 
of the radiation responses of single cells.61,80 Puck and Marcus’s acute 

24 hours of irradiation and prior to the first postirradiation mitosis. 
The remains of apoptotic cells are phagocytized by neighboring cells; 
therefore, they do not elicit the type of inflammatory response, tissue 
destruction, and disorganization characteristic of necrosis. Apoptosis 
is an active and carefully regulated pathway that involves multiple 
proteins and an appropriate stimulus that activates the pathway. The 
molecular biology of apoptosis, the apoptosis-resistant phenotype noted 
for many types of tumor cells, and the role that radiation may play 
in the process are discussed in detail in Chapter 2. Senescence refers 
to a type of genetically controlled cellular growth arrest that, while 
not necessarily eliminating damaged cells, does halt permanently their 
continued movement through the cell cycle even in the presence of 
growth factors.68 Radiation can also induce senescence, presumably 
due to the permanent triggering of cell cycle checkpoints. However, 
it might better be termed radiation-induced permanent growth arrest 
to distinguish it from the normal process of cell age-related senes-
cence.69 Autophagy is defined as the controlled lysosomal degradation 
of cytoplasmic organelles or other cytoplasmic components70,71 in 
response to cellular stressors, including nutrient deprivation, hypoxia, 
DNA damage, or an excess of reactive oxygen species. Likewise, 
necrosis—characterized by cell swelling followed by membrane rupture 
and the release of cellular contents into the extracellular space—can 
occur as a somewhat passive response to nutrient deprivation but 
also can follow a molecular program initiated by immune cells or  
various toxins.72,73

Most assays of radiosensitivity of cells and tissues, including those 
described later, use reproductive integrity, either directly or indirectly, 
as an endpoint. While such assays have served the radiation oncology 
community well in terms of elucidating dose-response relationships for 
normal tissues and tumors, the interrelationships between the different 
modes of cell death can be quite complex. For example, Meyn67 has 
suggested that a tumor with a high spontaneous apoptotic index may 
be inherently more radiosensitive because cell death might be triggered 
by lower doses than are usually required to cause mitotic catastrophe. 
Also, tumors that readily undergo apoptosis may have higher rates of cell 
loss, the net effect of which would be to partially offset cell production, 
thereby reducing the number of tumor clonogens. On the other hand, 
recent studies suggest that the very enzymes that orchestrate the removal 
of radiation-damaged cells via apoptosis also may stimulate tumor 
cell repopulation during and after radiotherapy.74 Studies also suggest 
that senescent cells can produce inflammatory cytokines that further 
contribute to immunosuppression in the tumor microenvironment.68

Cell Survival and Dose-Response Curve Models
Survival curve theory originated in a consideration of the physics of 
energy deposition in matter by ionizing radiation. Early experiments 
with macromolecules and prokaryotes established that dose-response 
relationships could be explained by the random and discrete nature of 
energy absorption if it was assumed that the response resulted from 
critical “targets” receiving random “hits.”75 With an increasing number 
of shouldered survival and dose-response curves being described for 
cells irradiated both in vitro and in vivo, various equations were developed 
to fit these data. Target theory pioneers studied a number of different 
endpoints in the context of target theory, including enzyme inactivation 
in cell-free systems,29 cellular lethality, chromosomal damage, and 
radiation-induced cell cycle perturbations in microorganisms.29,76 Survival 
curves, in which the log of the “survival” of a certain biological activity 
was plotted as a function of the radiation dose, were found to be either 
exponential or sigmoid in shape, the latter usually noted for the survival 
of more complex organisms.29

Exponential survival curves were thought to result from the single-hit, 
“all or nothing” inactivation of a single target, resulting in the loss of 
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endpoint for HeLa cells than for prokaryotes or primitive eukaryotes. 
The value of the extrapolation number, n, was approximately 2.0, 
indicating that the survival curve did have a small shoulder but, again, 
much smaller than typically observed for microorganisms. Puck and 
Marcus suggested that the n value was a reflection of the number of 
critical targets in the cell, each requiring a single hit before the cell 
would be killed, and further postulated that the targets were, in fact, 
the chromosomes themselves.27 However, the potential pitfalls of deducing 
mechanisms of radiation action from parameters of a descriptive survival 
curve model were soon realized.81,82

Survival curves for other types of mammalian cells, regardless of 
whether they were derived from humans or laboratory animals, or from 
tumors or normal tissues, have been shown to be qualitatively similar 
to the original HeLa cell survival curve.

Clonogenic Assays In Vivo
In order to bridge the gap between the radiation responses of cells 
grown in culture and in an animal, Hewitt and Wilson developed an 
ingenious method to assay single-cell survival in vivo.83 Lymphocytic 
leukemia cells obtained from the livers of donor CBA mice were harvested, 
diluted, and inoculated into disease-free recipient mice. By injecting 
different numbers of donor cells, a standard curve was constructed that 
allowed a determination of the average number of injected cells necessary 
to cause leukemia in 50% of the recipient mice. It was determined that 
the endpoint of this titration, the 50% take dose (TD50), corresponded 
to an inoculum of a mere two leukemia cells. Using this value as a refer-
ence, Hewitt and Wilson then injected leukemia cells harvested from 
γ-irradiated donor mice into recipients and again determined the TD50 
following different radiation exposures. In this way, the surviving fraction 
after a given radiation dose could be calculated from the ratio of the 
TD50 for unirradiated cells to that for the irradiated cells. Using this 
technique, a complete survival curve was constructed that had a D0 of 
162 R and an n value close to 2.0, values quite similar to those generated 
for cell lines irradiated in vitro. For the most part, in vivo survival 
curves for a variety of cell types were also similar to corresponding in 
vitro curves.

dose, x-ray survival curve for the human tumor cell line HeLa is shown 
in Fig. 1.8. Following graded x-ray doses, the reproductive integrity of 
single HeLa cells was measured by their ability to form macroscopic 
colonies of at least 50 cells (corresponding to approximately 6 successful 
postirradiation cell divisions) on petri dishes. Several features of this 
survival curve were of particular interest. First, qualitatively at least, 
the curve was similar in shape to those previously determined for many 
microorganisms, being characterized by a shoulder at low doses and a 
roughly exponential region at high doses. Of note, however, was the 
finding that the D0 for HeLa cells was only 96 R, some 10- to 100-fold 
less than D0s determined for microorganisms and 1000- to 10,000-fold 
less than D0s for the inactivation of isolated macromolecules.60 Thus, 
cellular reproductive integrity was found to be a much more radiosensitive 
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Dose-response curves are generated by plotting the amount of growth 
delay as a function of radiation dose.

The tumor control assay is a logical extension of the growth delay 
assay. The endpoint of this assay is the total radiation dose required to 
achieve a specified probability of local tumor control—usually 50% 
(TCD50)—in a specified period of time after irradiation. The TCD50 
value is obtained from a plot of the percentage of tumors locally 
controlled as a function of total dose. The slope of the resulting dose-
response curve may be used for comparative purposes as a measure of 
the tumor’s inherent “radiosensitivity” and/or its degree of heterogeneity. 
More heterogeneous tumors tend to have shallower dose response curves 
than more homogeneous ones, as do spontaneous tumors relative to 
experimental ones maintained in inbred strains of mice.

Cellular “Repair”: Sublethal and Potentially Lethal 
Damage Recovery
Taking the cue from target theory that the shoulder region of the radiation 
survival curve indicated that “hits” had to accumulate prior to cell 
killing, Elkind and Sutton94,95 sought to better characterize the nature 
of the damage caused by these hits and how the cell processed this 
damage. Even in the absence of any detailed information about DNA 
damage and repair at the time, a few things seemed obvious. First, those 
hits or damages that were registered as part of the accumulation process 
yet did not in and of themselves produce cell killing were, by definition, 
sublethal. Second, sublethal damage (SLD) became lethal only when it 
interacted with additional sublethal damage, that is, when the total 
amount of damage had accumulated to a sufficient level to cause cell 
killing. But what would be the result of deliberately interfering with 
the damage accumulation process by, for example, delivering part of 
the intended radiation dose, inserting a radiation-free interval, and 
then delivering the remainder of the dose? The results of such “split-dose” 
experiments turned out to be crucial to the understanding of why and 
how fractionated radiation therapy works as it does. The discovery and 
characterization of SLD, as low tech and operational the concept may 
be by today’s standards, still stands as arguably the single most important 
contribution that radiation biology has made to the practice of radiation 
oncology.

By varying the time interval between two doses of approximately 
5.0 Gy and plotting the log of the surviving fraction of cells after both 
doses (i.e., 10 Gy total dose) as a function of the time between the 
doses, the resulting split-dose recovery curve was observed to rise to a 
maximum after about 2 hours and then level off. In other words, the 
overall surviving fraction of cells following 10 Gy was higher if the dose 
was split into two fractions with a time interval in between than delivered 
as a single dose. Elkind interpreted these results as indicating that the 
cells that survived the initial dose fraction had “repaired” some of the 
damage during the radiation-free interval and, as such, this damage 
was no longer available to interact with the damage inflicted by the 
second dose. At the time, Elkind referred to this phenomenon as sublethal 
damage repair (SLDR). In retrospect, it is perhaps preferable to call it 
sublethal damage recovery, since biochemical DNA repair processes were 
not actually measured, only changes in cell survival.

Of additional interest was the observation that the shape of the 
split-dose recovery curve varied with the temperature during the 
radiation-free interval (Fig. 1.9). When the cells were maintained at 
room temperature between the split doses, the SLDR curve rose to a 
maximum after about 2 hours and then leveled off. When the cells were 
returned to a 37° C incubator for the radiation-free interval, a different 
pattern emerged. Initially, the split-dose recovery curve rose to a 
maximum after 2 hours; then, the curve exhibited a series of oscillations, 
dropping to a second minimum for a split of about 4 to 5 hours, and 
then rising again to a higher maximum for split-dose intervals of 10 

A similar trend was apparent when in vivo survival curves for 
nontumorigenic cells were first produced. The first experiments by Till 
and McCulloch84,85 using normal bone marrow stem cells were inspired 
by the knowledge that failure of the hematopoietic system was a major 
cause of death following total body irradiation and that lethally irradiated 
animals could be “rescued” by a bone marrow transplant. The trans-
planted, viable bone marrow cells were observed to form discrete nodules 
or colonies in the otherwise sterilized spleens of irradiated animals. 
Subsequently, these authors transplanted known quantities of irradiated 
donor bone marrow into lethally irradiated recipient mice. They were 
able to count the resulting splenic nodules and then calculate the surviving 
fraction of the injected cells in much the same way as was done for in 
vitro experiments. The D0 for mouse bone marrow was 0. 95 Gy.84 Other 
in vivo assay systems based on the counting of colonies or nodules 
included the skin epithelium assay of Withers,86 the intestinal crypt 
assays of Withers and Elkind,87,88 and the lung colony assay of Hill and 
Bush.89 During the late 1960s and early 1970s, it also became possible 
to do excision assays, in which tumors irradiated in vivo were removed, 
enzymatically dissociated, and single cells plated for clonogenic survival 
in vitro. This allowed more quantitative measurement of survival, 
avoiding some of the pitfalls of in vivo assays (e.g., Rockwell and 
Kallman90).

Nonclonogenic Assays In Vivo
Some normal tissues and tumors are not amenable to clonogenic assays. 
Thus, new assays were needed that had clinical relevance yet did not 
rely on reproductive integrity as an endpoint. Use of such assays required 
one leap of faith—namely, that the endpoints assessed would have to 
be a consequence of the killing of clonogenic cells, although not neces-
sarily in a direct, one-to-one manner. Because nonclonogenic assays 
do not directly measure cell survival as an endpoint, data derived from 
them and plotted as a function of radiation dose are properly called 
dose-response curves rather than cell survival curves, although such 
data are often analyzed and interpreted similarly.

Historically, among the first nonclonogenic assays was the mean 
lethal dose or LD50 assay, in which the (whole body) radiation dose to 
produce lethality in approximately 50% of the test subjects is determined, 
usually at a fixed time after irradiation, such as 30 (LD50/30) or 60 days 
(LD50/60). Clearly, the LD50 assay is not very specific in that the cause of 
death can result from damage to a number of different tissues.

Another widely used nonclonogenic method to assess normal tissue 
radioresponse is the skin reaction assay, originally developed by Fowler 
et al.91 Pigs were often used because their skin is similar to that of 
humans in several respects. An ordinate scoring system was used to 
compare and contrast different radiation schedules, which was derived 
from the average severity of the skin reaction noted during a certain 
time period (specific to the species and whether the endpoint occurs 
early or late) following irradiation. For example, for early skin reactions, 
a skin score of 1 might correspond to mild erythema, whereas a score 
of 4 might correspond to confluent moist desquamation over more 
than half of the irradiated area.

Finally, two common nonclonogenic assays for tumor response are 
the growth delay/regrowth delay assay92 and the tumor control dose 
assay.93 Both assays are simple and direct, are applicable to most solid 
tumors, and are clinically relevant. The growth delay assay involves 
measurements of a tumor’s dimensions or volume as a function of time 
after irradiation. For tumors that regress rapidly during and after 
radiotherapy, the endpoint scored is typically the time in days that it 
takes for the tumor to regrow to its original volume at the start of 
irradiation. For tumors that regress more slowly, a more appropriate 
endpoint might be the time that it takes for the tumor to grow or 
regrow to a specified size, such as three times its original volume. 
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LET) and the oxygenation status of the cells (recovery reduced or 
absent at extremely low oxygen tensions).28

2.	 The half-time for SLDR in mammalian cells in culture is, on average, 
about 1 hour, although there is evidence that it may be somewhat 
longer for late-responding normal tissues in vivo.28

3.	 The survival increase between split doses is a manifestation of the 
“regeneration” of the shoulder of the radiation survival curve. After 
an initial radiation dose and an adequate time interval for SLDR, 
the response of surviving cells to graded additional doses is nearly 
identical to that obtained from cells without previous radiation 
exposure. Thus, the width of the shoulder of the survival curve came 
to be associated with the capacity of the cells for recovery from 
sublethal damage. This concept is illustrated in Fig. 1.10.

4.	 Cells are able to undergo repeated cycles of damage and recovery 
without a change in recovery capacity. As such, one would predict 
an equal effect per dose fraction during the course of fractionated 
radiotherapy. In a more practical sense, this means that a multi-
fraction survival curve can be generated using the formula SFn = 
(SF1)

n, where SF1 is the surviving fraction of cells after a single-dose 
fraction (determined from a single-dose survival curve), and SFn is 
the surviving fraction of cells after n dose fractions. Accordingly, 
multifraction survival curves are shoulderless and exponential  
(Fig. 1.11).

5.	 Sublethal damage recovery is largely responsible for the dose rate 
effect for low-LET radiation, which will be discussed in detail later 
in this chapter. As the dose per fraction (intermittent radiation) 
or dose rate (continuous irradiation) is decreased and the overall 
treatment time increased, the biological effectiveness of a given total 
dose is reduced. (Note that SLDR also occurs during continuous 
irradiation, i.e., that a radiation-free interval is not required per se.)

A second type of cellular recovery following irradiation is termed 
potentially lethal damage repair or recovery (PLDR), and was first 
described for mammalian cells by Phillips and Tolmach98 in 1966. PLD 
is, by definition, a spectrum of radiation damage that may or may not 
result in cell killing depending on the cell’s postirradiation environment. 
Environmental conditions that favor PLDR include maintenance of cells 
in overcrowded conditions (plateau phase or contact-inhibited99,100) and 

hours or more. The interpretation of this pattern of SLDR was that 
other radiobiological phenomena operated simultaneously with cellular 
recovery. In this case, the fine structure of the split-dose recovery curve 
was not caused by an oscillating repair process but rather by a super-
imposed cell cycle effect: the so-called radiation “age response” through 
the cell cycle. This is discussed later in the “Ionizing Radiation and the 
Cell Cycle” section (see also Fig. 1.14).

Since Elkind and Sutton’s original work, SLDR kinetics have been 
described for many different types of mammalian cells in culture,60 and 
for most normal and tumor tissues in vivo (e.g., Belli et al.96 and Emery 
et al.97). Pertinent findings include the following:
1.	 The amount of SLD capable of being repaired for a given cell type 

varies both with the radiation quality (less for radiations of increasing 
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Repair in Tissues
When considering the repair phenomenon in intact tissues, it is important 
to remember that both the magnitude of the repair (related both to the 
shape of the shoulder region of the corresponding dose-response curve 
and the dose delivered) and the rate of the repair can influence how 
the tissue behaves during a course of radiation therapy. For example, a 
particular tissue—normal or tumor—may be quite capable of repairing 
most damage produced by each dose fraction, but if the interfraction 
interval is so short as to not allow all the damage to be repaired prior 
to the next dose, the tolerance of that tissue will be less than otherwise 
anticipated. Second, while the sparing effect of dose fractionation for 

incubation following irradiation at either reduced temperature101 in the 
presence of certain metabolic inhibitors98 or in balanced salt solutions 
rather than complete culture medium.101 What these treatment conditions 
have in common is that they are suboptimal for continued growth of 
cells. This gives resting cells more opportunity to repair DNA damage 
prior to cell division than cells that continue traversing the cell cycle 
immediately after irradiation. Phillips and Tolmach98 were the first to 
propose this repair-fixation or competition model to explain PLDR.

While, admittedly, some of these postirradiation conditions are not 
likely to be encountered in vivo, slow growth of cells in general, with 
or without a large fraction of resting cells, is a common characteristic 
of many tissues. As might be expected, tumors (and, subsequently, select 
normal tissues amenable to clonogenic assay) were shown to repair 
PLD.100 Experiments using rodent tumors were modeled after comparable 
studies using plateau phase cells in culture, that is, a delayed-plating 
assay was used. For such an experiment, irradiated cell cultures or animal 
tumors are left in a confluent state (either in the overcrowded cell 
culture or in the intact tumor in the animal) for varying lengths of 
time before removing them, dissociating them into single-cell suspensions 
and plating the cells for clonogenic survival at a low density. The longer 
the delay between irradiation and the clonogenic assay, the higher the 
resulting surviving fraction of individual cells, even though the radiation 
dose is the same. In general, survival rises to a maximum within 4 to 
6 hours and levels off thereafter (Fig. 1.12).

The kinetics and extent of recovery from both SLD and PLD are 
correlated with the molecular repair of DNA and the rejoining of 
chromosome breaks.102,103 For the purposes of radiation therapy, however, 
the most important consideration is that both processes have the potential 
to increase the surviving fraction of cells between subsequent dose 
fractions. Such a survival increase could be manifest clinically as either 
increased normal tissue tolerance or decreased tumor control. It is also 
important to appreciate that small differences in recovery capacity 
between normal and tumor cells after a single-dose fraction are magnified 
into large differences after 30 or more dose fractions.
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a “1X” DNA content would correspond to cells in G1 phase, cells with 
a “2X” DNA content in G2 or M phase, and cells with DNA contents 
between “1X” and “2X” in the S phase of the cell cycle. By performing 
a mathematical fit to the DNA histogram, the proportion of cells in 
each phase of the cell cycle can be determined, the phase durations can 
be derived, and differences in DNA ploidy can be identified. DNA flow 
cytometry is quite powerful in that a static measure of cell cycle distribu-
tion can be obtained for a cell population of interest and dynamic 
studies of, for example, transit through the various cell cycle phases or 
treatment-induced kinetic perturbations can be monitored over time 
(Fig. 1.13). Flow cytometers are often outfitted with a cell-sorting feature. 
In this case, cells analyzed for a property of interest can be collected in 

both normal and tumor tissues can be explained largely by SLD recovery 
between fractions, at sufficiently small doses per fraction, the degree of 
sparing will reach a maximum below which no further sparing occurs, 
all other radiobiological factors being equal. This is a reflection of the 
fact that some radiation damage is necessarily lethal and not modifiable 
by either further fractionation or changing postirradiation conditions.

Ionizing Radiation and the Cell Cycle
Another basic feature of the cellular response to ionizing radiation is 
perturbation of the cell cycle. Such effects can modify the radioresponsive-
ness of tissues either directly or indirectly depending on the fraction 
of cycling cells present in the tissue, their proliferation rates, and the 
kinetic organization of the tissue or tumor.

Advances in techniques for the study of cell cycle kinetics during 
the 1950s and 1960s paved the way for the generation of survival curves 
as a function of cell “age.” Using a technique known as autoradiography, 
Howard and Pelc104 were able to identify the S, or DNA synthesis, phase 
of the cell cycle. When combined with the other obvious cell cycle 
marker, mitosis, they were able to discern the four phases of the cell 
cycle for actively growing cells: G1, S, G2, and M.

Methodology
Several techniques were subsequently developed for the collection 
of synchronized cells in vitro. One of the most widely used was the 
mitotic harvest or “shake-off” technique first described by Terasima 
and Tolmach.105,106 By agitating cultures, mitotic cells, which tend to 
round up and become loosely attached to the culture vessel’s surface, 
can be dislodged, collected along with the overlying growth medium, 
and inoculated into new culture flasks. By incubating these flasks at 
37° C, cells begin to proceed synchronously into G1 phase (and semi-
synchronously thereafter). Thus, by knowing the length of the various 
phase durations for the cell type being studied and then delivering a 
radiation dose at a time of interest after the initial synchronization, 
the survival response of cells in different phases of the cell cycle can 
be determined.

A second synchronization method involved the use of DNA synthesis 
inhibitors such as fluorodeoxyuridine107 and, later, hydroxyurea108 to 
selectively kill S phase cells yet allow cells in other phases to continue 
cell cycle progression until they become blocked at the border of G1 
and S phases. By incubating cells in the presence of these inhibitors for 
times sufficient to collect nearly all cells at the block point, large numbers 
of cells can be synchronized. The inhibitor technique has two other 
advantages: that some degree of synchronization is possible in vivo109 
as well as in vitro and that, by inducing synchrony at the end of the G1 
phase, a higher degree of synchrony can be maintained for longer periods 
than if synchronization had been at the beginning of G1. On the other 
hand, the mitotic selection method does not rely on the use of drugs 
that could perturb the normal cell cycle kinetics of the population.

Developments in the early 1970s provided what is now considered 
among the most valuable tools for the study of cytokinetic effects: the 
flow cytometer and its offshoot, the fluorescence-activated cell sorter.110 
These have largely replaced the aforementioned longer and more labor-
intensive cell cycle synchronization methods. Using this powerful 
technique, single cells are stained with a fluorescent probe that binds 
stoichiometrically to a specific cellular component, DNA in the case of 
cell cycle distribution analysis. The stained cells are then introduced 
into a pressurized flow cell and forced to flow single file and at a high 
rate of speed through a focused laser beam that excites the fluorescent 
dye. The resulting light emission from each cell is collected by photo-
multiplier tubes, recorded, and output as a frequency histogram of cell 
number as a function of relative fluorescence, with the amount of fluo-
rescence directly proportional to DNA content. Accordingly, cells with 
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Fig. 1.13  The analytical technique of flow cytometry has revolutionized 
the study of cell cycle kinetics by allowing rapid determination of DNA 
content in cells stained with a fluorescent dye that binds stoichiometrically 
to cellular DNA. (A) Frequency distribution for a population of exponentially 
growing cells. The large and small peaks correspond to cells with G1 
(“1X”) and G2/M (“2X”) phase DNA content, respectively; those cells 
in S phase have an intermediate DNA content. (B–D) DNA histograms 
for a cell population synchronized initially in mitosis and then allowed 
to progress into G1 (B), S and G2/M (C and D). See text for details. 
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Following a single dose of 5 Gy of x-rays, cells were found to be most 
radioresistant in late S phase. Cells in G1 were resistant at the beginning 
of the phase, but became sensitive toward the end of the phase, and G2 
cells were increasingly sensitive as they moved toward the most sensitive 
M phase. In subsequent experiments by Sinclair,111,112 age-response curves 
for synchronized Chinese hamster V79 cells showed that the peak in 
resistance observed in G1 HeLa cells was largely absent for V79 cells. This 
is also illustrated in Fig. 1.14 (upper panel). Otherwise, the shapes of the 
age-response curves for the two cell lines were similar. The overall length 
of the G1 phase determines whether the resistant peak in early G1 will 
be present; in general, this peak of relative radioresistance is observed 
only for cells with long G1 phases. For cells with short G1 phases, the 
entire phase is often of intermediate radiosensitivity. An analysis of 
the complete survival curves for synchronized cells111,113 confirms that 
the most sensitive cells are those in the M and late G2 phases, in which 
survival curves are steep and largely shoulderless, and the most resistant 
cells are those in late S phase. The resistance of these cells is conferred 
by the presence of a broad survival curve shoulder rather than by a 
significant change in survival curve slope (Fig. 1.15). When high-LET 
radiations are used, the age-response variation through the cell cycle 
is significantly reduced or eliminated, since survival curve shoulders 
are either decreased or removed altogether by such exposures (see also 
“Relative Biological Effectiveness” section to come). Similar age-response 
patterns have been identified for cells synchronized in vivo.109

The existence of a cell cycle age response for ionizing radiation 
provided an explanation for the unusual pattern of SLDR observed for 
cells maintained at 37° C during the recovery interval (see Fig. 1.9). In 
Elkind and Sutton’s experiments, exponentially growing cells were used, 
that is, cells that were asynchronously distributed across the different 
phases of the cell cycle. The cells that survived irradiation tended to be 
those most radioresistant. Thus, the remaining population became 
enriched with the more resistant cells. For low-LET radiation, those 
cells that were most resistant were in S phase at the time of the first 
radiation dose. However, at 37° C, cells continued to progress through 
the cell cycle; those surviving cells in S phase at the time of the first 
dose may have moved into G2 phase by the time the second dose was 
delivered. Thus, the observed survival nadir in the SLDR curve was not 
due to a loss or reversal of repair but rather because the population of 
cells was now enriched in G2 phase cells, which are inherently more 
radiosensitive. For even longer radiation-free intervals, it is possible 
that the cells surviving the first dose would transit from G2 to M and 

separate “bins” after they pass through the laser beam and, if possible, 
used for other experiments.

Age Response Through the Cell Cycle
Results of Terasima and Tolmach’s106 age response experiment using 
synchronized HeLa cells are shown in the lower panel of Fig. 1.14. 
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cell killing in a representative rodent cell line (V79, top) having a short 
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from Sinclair W. Dependence of radiosensitivity upon cell age. In: Proceed-
ings of the Carmel Conference on Time and Dose Relationships in 
Radiation Biology as Applied to Radiotherapy. BNL Report 50203. Upton, 
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the criteria used by these genes to help make the decision whether to 
continue traversing the cell cycle or to pause—either temporarily or, in 
some cases, permanently. Cell cycle checkpoint genes are discussed in  
Chapter 2.

Redistribution in Tissues
Because of the age response through the cell cycle, an initially asyn-
chronous population of cells surviving a dose of radiation becomes 
enriched with S phase cells. Owing to variations in the rate of further 
cell cycle progression, however, this partial synchrony decays rapidly. 
Such cells are said to have “redistributed,”118 with the net effect of sensitiz-
ing the population as a whole to a subsequent dose fraction (relative 
to what would have been expected had the cells remained in their 
resistant phases). A second type of redistribution also has a net sensitizing 
effect, in which cells accumulate in G2 phase (in the absence of cell 
division) during the course of multifraction or continuous irradiation 
because of a buildup of radiation-induced cell cycle blocks and delays. 
This has been observed during continuous irradiation by several 
investigators.119 In some of these cases, a net increase in radiosensitivity 
is seen at certain dose rates. This so-called “inverse dose rate effect,” 
where certain dose rates are more effective at cell killing than other, 
higher dose rates, was extensively studied by Mitchell, Bedford and 
associates (for a review, see Bedford et al.120). The magnitude of the 
sensitizing effect of redistribution varies with cell type depending on 
what dose rate is required to stop cell division. For dose rates below 
the critical range that causes redistribution, some cells can escape the 
G2 block and proceed on to cell division.

Densely Ionizing Radiation
Linear Energy Transfer
The total amount of energy deposited in biological materials by ionizing 
radiation (usually expressed in units of keV, ergs or joules per g or kg) 
is in and of itself insufficient to describe the net biological consequences 
of those energy deposition events. For example, 1 Gy of x-rays, while 
physically equivalent in terms of total energy imparted per unit mass 
to 1 Gy of neutrons or α-particles, does not produce equivalent biological 
effects. It is the microdosimetric pattern of that energy deposition, that 
is, the spacing or density of the ionization events, that determines 
biological effectiveness. This quantity—the average energy deposited 
locally per unit length of the ionizing particle’s track—is termed its 
linear energy transfer (LET).

LET is a function both of the charge and mass of the ionizing particle. 
Photons set in motion fast electrons that have a net negative charge 
but a negligible mass. Neutrons, on the other hand, give rise to recoil 
protons or α-particles that possess one or two positive charges, respec-
tively, and are orders of magnitude more massive than electrons. 
Neutrons, therefore, have a higher LET than photons and are considered 
densely ionizing, whereas the x-rays or γ-rays are considered sparsely 
ionizing. The LET concept is illustrated in Fig. 1.16 for both densely 

back into G1 phase, dividing and doubling their numbers. In this case, 
the SLDR curve again shows a surviving fraction increase because the 
number of cells has increased. None of these cell cycle-related phenomena 
occur when the cells are maintained at room temperature during the 
radiation-free interval, because continued movement through the cell 
cycle is inhibited under such conditions. In that case, all that is noted 
is the initial survival increase due to SLDR.

Radiation-Induced Cell Cycle Blocks and Delays
Radiation is also capable of disrupting the normal proliferation kinetics 
of cell populations. This was recognized by Canti and Spear in 1927114 
and studied in conjunction with radiation’s ability to induce cellular 
lethality. With the advent of mammalian cell culture and synchronization 
techniques along with time-lapse cinemicrography, it became possible 
for investigators to study mitotic and division delay phenomena in 
greater detail.

Mitotic delay, defined as a delay in the entry of cells into mitosis, is 
a consequence of “upstream” blocks or delays in the movement of cells 
from one cell cycle phase to the next. Division delay, a delay in the time 
of appearance of new cells at the completion of mitosis, is caused by 
the combined effects of mitotic delay and any further lengthening of 
the mitosis process itself. Division delay increases with dose and is, on 
average, about 1 to 2 hours per gray106 depending on the cell line.

The cell cycle blocks and delays primarily responsible for mitotic 
and division delay are, respectively, a block in the G2-to-M phase transi-
tion, and a block in the G1-to-S phase transition. The duration of the 
G2 delay, like the overall division delay, varies with cell type, but for a 
given cell type is both dose and cell cycle age dependent. In general, 
the length of the G2 delay increases linearly with dose. For a given dose, 
the G2 delay is longest for cells irradiated in S or early G2 phase, and 
shortest for cells irradiated in G1 phase.115 Another factor contributing 
to mitotic and division delay is a block in the flow of cells from G1 into 
S phase. For x-ray doses of at least 6 Gy, there is a 50% decrease in the 
rate of tritiated thymidine uptake (indicative of entry into S phase) in 
exponentially growing cultures of mouse L cells. Little116 reached a 
similar conclusion from G1 delay studies using human liver LICH cells 
maintained as confluent cultures.

A possible role for DNA damage and its repair in the etiology of 
division delay was bolstered by the finding that certain cell types that 
either did not exhibit the normal cell cycle delays associated with radiation 
exposure (such as AT cells42) or, conversely, were treated with chemicals 
that ameliorated the radiation-induced delays117 tended to contain higher 
amounts of residual DNA damage and to show increased radiosensitivity.

It is now known that the radiation-induced perturbations in cell 
cycle transit are under the control of cell cycle checkpoint genes, 
whose products normally govern the orderly (and unidirectional) 
flow of cells from one phase to the next. The checkpoint genes are 
responsive to feedback from the cell as to its general condition and 
readiness to transit to the next cell cycle phase. DNA integrity is one of 
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Fig. 1.16  Variation in the density of ionizing events along an incident particle’s track for radiations of differing 
linear energy transfer. The more closely spaced the ionizing events, the more energy will be deposited in 
the target volume and, to a point, the more biologically effective per unit dose the type of radiation will be. 
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Factors That Influence Relative Biological Effectiveness
RBE is highly variable and depends on several parameters, including 
the type of radiation, total dose, dose rate, dose fractionation pattern, 
and the biological effect being assayed. Therefore, when quoting an 
RBE value, the exact experimental conditions used to measure it must 
be stated. Because increasing LET differentially reduces the shoulder 
region of the radiation survival curve compared to its exponential or 
near-exponential high-dose region, the single-dose RBE increases with 
decreasing dose (Fig. 1.18). Second, the RBE determined by comparing 

and sparsely ionizing radiations. For a given ionizing particle, the rate 
of energy deposition in the absorbing medium increases as the particle 
slows down. Therefore, a beam of radiation can only be described as 
having an average value for LET.

Representative LET values for types of radiation that have been used 
for radiation therapy include 0.2 keV/µm for 60Co γ-rays; 2.0 keV/µm 
for 250 kVp x-rays; approximately 0.5 to 5.0 keV/µm for protons of 
different energies; approximately 50 to 150 keV/µm for neutrons; 100 
to 150 keV/µm for α-particles; and anywhere from 100 to 2500 keV/µm 
for “heavy ions.”

Relative Biological Effectiveness
Insofar as the “quality” (LET) of the type of radiation influences its 
biological effectiveness, two questions immediately come to mind. First, 
why do seemingly subtle differences in microdosimetric energy deposition 
patterns lead to vastly different biological consequences? Second, how 
is this differing biological effectiveness manifest in terms of the commonly 
used assays and model systems of foundational radiobiology, and how 
can this difference be expressed in a quantitative way?

Because high-LET radiations are more densely ionizing than their 
low-LET counterparts, it follows that energy deposition in a particular 
“micro”-target volume will be greater and therefore, more severe damage 
to biomolecules would be expected. In this case, the fraction of cell 
killing attributable to irreparable and unmodifiable DNA damage 
increases in relation to that caused by the accumulation of sublethal 
damage. Because of this, a number of radiobiological phenomena 
commonly associated with low-LET radiation are decreased or eliminated 
when high-LET radiation is used. For example, there is little, if any, 
sublethal60 or potentially lethal damage recovery.115 This is manifest as 
a reduction or loss of the shoulder of the acute dose survival curve, 
little or no sparing effect of dose fractionation or dose rate, and a 
corresponding reduction in the tolerance doses for normal tissue 
complications, particularly for late-responding tissues.121 Variations in 
the age response through the cell cycle also are reduced or eliminated 
for high-LET radiation,109 and the oxygen enhancement ratio (OER), 
a measure of the differential radiosensitivity of poorly versus well-
oxygenated cells (see later discussion), decreases with increasing LET.122 
The dependence of OER on LET is illustrated in Fig. 1.17; at an LET 
of approximately 100 keV/µm, the relative radioresistance of hypoxic 
cells is eliminated.

In light of these differences between high- and low-LET radia-
tions, the term relative biological effectiveness (RBE) has been coined 
to compare and contrast two radiation beams of different LET. RBE 
is defined as the ratio of doses of a known type of low-LET radiation 
(historically, 250 kVp x-rays were the standard) to that of a higher-LET 
radiation to yield the same biological endpoint. RBE does not increase 
indefinitely with increasing LET, however, but rather reaches a maximum 
at approximately 100 keV/µm and then decreases again, yielding an 
approximately bell-shaped curve.

One interpretation as to why the RBE reaches a maximum at an 
LET of approximately 100 keV/µm is that, at this ionization density, 
the average separation between ionizing events corresponds roughly to 
the diameter of the DNA double helix (approximately 2 nm). As such, 
radiations of this LET have the highest probability of producing DSBs 
in DNA, the putative lethal lesion, by the passage of a single charged 
particle. Lower-LET radiations have a smaller likelihood of producing 
such “two-hit” lesions from a single particle track and, therefore, are 
less biologically effective. Radiation beams of higher LET than the 
optimum are less efficient because some of the energy is wasted as 
more ionization events than minimally necessary to kill a cell are 
deposited in the same local area. This phenomenon has been termed the  
overkill effect.
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Fig. 1.17  Relative biological effectiveness (RBE, left Y-axis) as a function 
of linear energy transfer (LET) for a number of biological endpoints, 
including production of chromosomal aberrations, cell killing, and tissue 
reactions. The RBE rises to a maximum corresponding to an LET of 
approximately 100 keV/µm and then decreases as the LET continues 
to rise. Shown below the X-axis are the ranges of LET for photons plus 
several different types of particulate radiations that have been used 
clinically. Also shown is the dependence of the oxygen enhancement 
ratio (OER, right Y-axis) on LET. 

S
u

rv
iv

in
g

 f
ra

ct
io

n

Dose (Gy)

100

10�1

10�2

10�3

10�4

10�5

0 2 4 6 8 10 12 14

Neutrons X-rays

RBE0.5�5.6

RBE0.05�3.6

RBE0.0005�2.8
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decreasing dose. This occurs because higher linear energy transfer radia-
tions preferentially decrease or eliminate the shoulder on cell survival 
curves. (Modified from Nias A. Clinical Radiobiology. 2nd ed. New York: 
Churchill Livingstone; 1988.)
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Tolmach125 in 1963. These authors used the dilution assay to generate 
an in vivo survival curve for mouse lymphosarcoma cells. The survival 
curve for this solid tumor was biphasic, having an initial D0 of about 
1.1 Gy and a final D0 of 2.6 Gy (Fig. 1.20). Since the survival curve for 
lymphoid cells is shoulderless, it was simple to back-extrapolate the 
shallower component of the curve to the surviving fraction axis and 
determine that the resistant fraction of cells constituted about 1.5% of 
the total population. This was considered compelling evidence (yet did 
not unambiguously prove) that this subpopulation of cells was both 
hypoxic and clonogenic.

The question then became how to prove that this small fraction 
of tumor cells was radioresistant because of hypoxia as opposed to 
being radioresistant for other reasons. An elegant, if somewhat macabre, 
method was developed to address this dilemma, called the paired survival 
curve technique.125,126 In this assay, laboratory animals bearing tumors 
were divided into three treatment groups, one group irradiated while 
breathing air, a second group irradiated while breathing 100% oxygen, 
and a third group killed first by cervical dislocation and then irradiated. 
Within each group, animals received graded radiation doses so that 
complete survival curves were generated for each treatment condition. 
When completed, the paired survival curve method yielded three differ-
ent tumor cell survival curves: a fully oxic curve (most radiosensitive), a 
fully hypoxic curve (most radioresistant), and the survival curve for air-
breathing animals which, if the tumor contained viable hypoxic cells, was 
biphasic and positioned between the other two curves. It was then pos-
sible to mathematically strip the fully aerobic and hypoxic curves from 
the curve for air-breathing animals and determine the radiobiologically  
hypoxic fraction.

two isoeffective acute doses is less than the RBE calculated from two 
isoeffective (total) doses given either as multiple fractions or at a low 
dose rate. This occurs because the sparing effect of fractionation magnifies 
differences in the initial slope or shoulder region of cell survival or 
tissue dose-response curves (Fig. 1.19).

The Oxygen Effect
Perhaps the best-known chemical modifier of radiation action is 
molecular oxygen. As early as 1909, Schwarz recognized that applying 
pressure to skin and thereby decreasing blood flow (and oxygen supply) 
caused a reduction in radiation-induced skin reactions.123 For many 
decades thereafter, radiation oncologists and biologists continued to 
suspect that the presence or absence of oxygen was capable of modifying 
radiosensitivity. In 1955, however, Thomlinson and Gray124 brought 
this idea to the forefront of radiation biology and therapy by proposing 
that tumors contain a fraction of still-clonogenic, hypoxic cells that, if 
persistent throughout treatment, would adversely affect clinical outcome. 
Although commonly considered a negative prognostic indicator for 
radiation therapy, hypoxia nevertheless has one particularly attractive 
feature: built-in specificity for tumors, to the extent that normal tissues 
contain few, if any, hypoxic cells.

By studying histological sections of a human bronchial carcinoma, 
Thomlinson and Gray noted that necrosis was always seen in the centers 
of cylindrical tumor cords having a radius in excess of approximately 
200 µm.124 Further, regardless of how large the central necrotic region 
was, the sheath of apparently viable cells around the periphery of this 
central region never had a radius greater than about 180 µm. The authors 
went on to calculate the expected maximum diffusion distance of oxygen 
from blood vessels and found that the value of 150 to 200 µm agreed 
quite well with the radius of the sheath of viable tumor cells observed 
histologically. With the advent of more sophisticated and quantitative 
methods for measuring oxygen utilization in tissues, the average diffusion 
distance of oxygen has since been revised downward to approximately 
70 µm.28 Thus, the inference was that the oxygenation status of tumor 
cells varied from fully oxic to completely anoxic depending on where 
the cells were located in relation to the nearest blood vessels. Accordingly, 
tumor cells at intermediate distances from the blood supply would be 
hypoxic and radioresistant, yet remain clonogenic.

The first unambiguous demonstration that a solid rodent tumor 
did contain clonogenic, radioresistant hypoxic cells was by Powers and 
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Fig. 1.20  Cell survival curve for a murine lymphosarcoma growing 
subcutaneously and irradiated in vivo. The biphasic curve suggests the 
presence of a small but relatively radioresistant subpopulation of cells, 
determined in accompanying experiments to represent the tumor’s 
clonogenic hypoxic fraction. (Modified from Powers WE, Tolmach LJ. 
A multicomponent x-ray survival curve for mouse lymphosarcoma cells 
irradiated. Nature. 1963;197:710.)
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radioprotector, glutathione, tip the scales in favor of either fixation 
(more damage, more cell killing, greater radiosensitivity) or restitution 
(less damage, less cell killing, greater radioresistance), respectively.

Consistent with this free radical–based interpretation of the oxygen 
effect is the finding that, for all intents and purposes, oxygen need only 
be present during the irradiation (or no more than a few milliseconds 
after irradiation) in order to produce an aerobic radioresponse.129,130 
The concentration of oxygen necessary to achieve maximum sensiti-
zation is quite small, evidence for the high efficiency of oxygen as a 
radiosensitizer. A sensitivity midway between a fully hypoxic and fully 
aerobic radioresponse is achieved at an oxygen tension of about 3 mm 
of mercury, corresponding to about 0.5% oxygen, much lower than 
partial pressures of oxygen usually encountered in normal tissues. This 
value of 0.5% has been termed oxygen’s k-value and is obtained from 
an oxygen k-curve of relative radiosensitivity plotted as a function of 
oxygen tension131 (Fig. 1.23).

Across a variety of rodent tumors evaluated to date using the paired 
survival curve method, the percentage of hypoxic cells was found to 
vary between 0% and 50%, with an average of about 15%.126

Mechanistic Aspects of the Oxygen Effect
A more rigorous analysis of the nature of the oxygen effect is possible 
with cells or bacteria grown in vitro. Historically, oxygen had been 
termed a dose-modifying agent, that is, that the ratio of doses to achieve 
a given survival level under hypoxic and aerobic conditions was constant 
regardless of the survival level chosen. This dose ratio to produce the 
same biological endpoint is termed the oxygen enhancement ratio (OER), 
and is used for comparative purposes (Fig. 1.21). The OER typically 
has a value of between 2.5 and 3.0 for large single doses of x-rays or 
γ-rays, 1.5 to 2.0 for radiations of intermediate LET, and 1.0 (i.e., no 
oxygen effect) for high-LET radiations.

Increasingly, there is evidence that oxygen is not strictly dose modify-
ing. Several studies have shown that the OER for sparsely ionizing 
radiation is lower at lower doses than at higher doses. Lower OERs 
for doses per fraction in the range commonly used in radiotherapy 
have been inferred indirectly from clinical and experimental tumor 
data and more directly in experiments with cells in culture.127,128 It has 
been suggested that the lower OERs result from an age response for the 
oxygen effect, not unlike the age responses for inherent radiosensitivity 
and cell cycle delay.28 Assuming that cells in G1 phase of the cell cycle 
have a lower OER than those in S phase and since G1 cells are also 
more radiosensitive, they would tend to dominate the low-dose region 
of the cell survival curve.

While the exact mechanism(s) of the oxygen effect are obviously 
complex, a fairly simplistic model can be used to illustrate our current 
understanding of this phenomenon (Fig. 1.22). The radical competition 
model holds that oxygen acts as a radiosensitizer by forming peroxides 
in important biomolecules (including, but not necessarily limited to, 
DNA) already damaged by radiation exposure, thereby “fixing” the 
radiation damage. In the absence of oxygen, DNA can be restored to 
its preirradiated condition by hydrogen donation from endogenous 
reducing species in the cell, such as the free radical scavenger glutathione, 
a thiol compound. In essence, this can be considered a type of very fast 
chemical restitution or repair. These two processes, fixation and restitu-
tion, are considered to be in a dynamic equilibrium, such that changes 
in the relative amounts of either the radiosensitizer, oxygen, or the 
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common cause of acute hypoxia) from, for example, vascular shunting, 
longitudinal oxygen gradients, decreased red cell flux or overall blood 
flow rate, abnormal vascular geometry, and so on.136 Because of this, 
the name perfusion-limited hypoxia is perhaps misleading; a better 
moniker might be fluctuant or intermittent hypoxia. While intermittent 
hypoxia would explain the rapid reoxygenation observed for some 
tumors, it does not preclude the simultaneous existence of chronic, 
diffusion-limited hypoxia.

Intermittent hypoxia has since been demonstrated for rodent tumors 
by Chaplin et al.137 and human tumors by Lin et al.138 It is still not clear 
how many human tumors contain regions of hypoxia (although most 
do—see next section), what type(s) of hypoxia is present, whether this 
varies with tumor type or site, and whether and how rapidly reoxygen-
ation occurs. However, the knowledge that tumor hypoxia is a diverse 
and dynamic process opens up a number of possibilities for the develop-
ment of novel interventions designed to cope with, or even exploit, 
hypoxia.

Measurement of Hypoxia in Human Tumors
Despite prodigious effort directed at understanding tumor hypoxia and 
developing strategies to combat the problem, it was not until the late 
1980s that these issues could be addressed for human tumors because 
there was no way to measure hypoxia directly. Before that time, the 
only way to infer that a human tumor contained treatment-limiting 
hypoxic cells was by using indirect, nonquantitative methods. Some 
indirect evidence supporting the notion that human tumors contained 
clonogenic, radioresistant hypoxic cells includes the following:
1.	 An association between anemia and poor local control rates that, in 

some cases, could be mitigated by preirradiation blood transfusions139

2.	 Success of some clinical trials in which hyperbaric oxygen breathing 
was used to better oxygenate tumors140,141

3.	 Success of a few clinical trials of oxygen-mimetic hypoxic cell sensitiz-
ers combined with radiation therapy139,142

In 1988, one of the first studies showing a strong association between 
directly measured oxygenation status in tumors and clinical outcome 
was published by Gatenby et al.143 An oxygen-sensing electrode was 
inserted into the patient’s tumor, and multiple readings were taken 
at different depths along the probe’s track. The electrode was also 
repositioned in different regions of the tumor to assess intertrack 
variability in oxygen tension. Both the arithmetic mean Po2 value for 
a particular tumor and the tumor volume-weighted Po2 value directly 
correlated with local control rate. A high tumor oxygen tension was 
associated with a high complete response rate, and vice versa. In a 
similar prospective study, Höckel et al.4,144 concluded that pretreat-
ment tumor oxygenation was a strong predictor of outcome among 
patients with intermediate and advanced-stage cervical carcinoma  
(Fig. 1.24).

The use of oxygen electrodes has its limitations. One weakness is 
that relative to the size of individual tumor cells, the electrode is large, 
averaging an outer diameter of 300 µm, a tip recess of 120 µm, and a 
sampling volume of about 12 µm in diameter.145 Thus, not only is the 
oxygen tension measurement regional, but the insertions and removals 
of the probe no doubt perturb the oxygenation status. Another problem 
is that there is no way to determine whether the tumor cells are clonogenic 
or not. If such cells were hypoxic yet not clonogenic, they would not 
be expected to impact radiotherapy outcome.

A second direct technique for measuring oxygenation status takes 
advantage of a serendipitous finding concerning how hypoxic cell radio-
sensitizers are metabolized. Certain classes of radiosensitizers, including 
the nitroimidazoles, undergo a bioreductive metabolism in the absence 
of oxygen that leads to their becoming covalently bound to cellular 
macromolecules.146,147 Assuming that the bioreductively bound drug 

Reoxygenation in Tumors
After the convincing demonstration of hypoxic cells in a mouse tumor,125 
it was assumed that human tumors contained a viable hypoxic fraction 
as well. However, if human tumors contained even a tiny fraction of 
clonogenic hypoxic cells, simple calculations suggested that tumor 
control would be nearly impossible with radiation therapy.132 Since 
therapeutic successes obviously do occur, some form of reoxygenation 
must take place during the course of multifraction irradiation. This was 
not an unreasonable idea since the demand for oxygen by sterilized 
cells would gradually decrease as they were removed from the tumor, 
and a decrease in tumor size, a restructuring of tumor vasculature, or 
intermittent changes in blood flow could make oxygen available to 
these previously hypoxic cells.

The reoxygenation process was extensively studied by van Putten 
and Kallman,133 who serially determined the fraction of hypoxic cells 
in a mouse sarcoma during a course of clinically relevant multifraction 
irradiation. The fact that the hypoxic fraction was about the same at 
the end of treatment as at the beginning of treatment was strong evidence 
for a reoxygenation process because, otherwise, the hypoxic fraction 
would be expected to increase over time due to repeated enrichment 
with resistant cells after each dose fraction. Reoxygenation of hypoxic, 
clonogenic tumor cells during an extended multifraction treatment 
would increase the therapeutic ratio assuming that normal tissues 
remained well oxygenated. This is thought to be another major factor 
in the sparing of normal tissues relative to tumors during fractionated 
radiation therapy.

What physiological characteristics would lead to tumor reoxygenation 
during a course of radiotherapy, and at what rate would this be expected 
to occur? One possible cause of tumor hypoxia and, by extension, a 
possible mechanism for reoxygenation, was suggested by Thomlinson 
and Gray’s pioneering work.124 The type of hypoxia that they described 
is what is now called chronic or diffusion-limited hypoxia. This results 
from the tendency of tumors both to have high oxygen consumption 
rates and to outgrow their blood supply. It follows that natural gradients 
of oxygen tension should develop as a function of distance from blood 
vessels. Cells situated beyond the diffusion distance of oxygen would 
be expected to be dead or dying secondary to anoxia; yet, in regions of 
chronically low oxygen tension, clonogenic and radioresistant hypoxic 
cells could persist. Should the tumor shrink as a result of radiation 
therapy or if the cells killed by radiation cause a decreased demand for 
oxygen, it is likely that this would allow some of the chronically hypoxic 
cells to reoxygenate. However, such a reoxygenation process could be 
quite slow—days at minimum—depending on how quickly tumors 
regress during treatment. The patterns of reoxygenation in some 
experimental rodent tumors are consistent with this mechanism of 
reoxygenation, but others are not.

Other rodent tumors reoxygenate very quickly, from minutes to 
hours.134 This occurs in the absence of any measurable tumor shrinkage 
or change in oxygen utilization by tumor cells. In such cases, the model 
of chronic, diffusion-limited hypoxia, and slow reoxygenation does not 
fit the experimental data. During the late 1970s, Brown135 proposed 
that a second type of hypoxia must exist in tumors, an acute, perfusion-
limited hypoxia. Based on the growing understanding of the vascular 
physiology of tumors, it was clear that tumor vasculature was often 
abnormal in both structure and function secondary to abnormal 
angiogenesis. If tumor vessels were to close transiently from temporary 
blockage, vascular spasm, or high interstitial fluid pressure in the sur-
rounding tissue, the tumor cells in the vicinity of those vessels would 
become acutely hypoxic almost immediately. Then, assuming that blood 
flow resumed in minutes to hours, these cells would reoxygenate. 
However, this type of hypoxia also can occur in the absence of frank 
closure or blockage of tumor vessels (which is now considered a less 
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the processes of tumor invasion and metastasis169,170), and osteopontin 
(OPN, a glycoprotein that facilitates tumor invasion and metastasis171–173).

Clearly, although aberrant expression of some individual hypoxia 
markers has been associated with poor clinical outcome, no one marker 
is likely to be sufficiently robust or reproducible to either be diagnostic 
for the presence of a malignancy (or, at least, the presence of hypoxia 
in an already diagnosed tumor) or prognostic of treatment outcome. 
Thus, there has been increasing interest in the study of patterns of 
hypoxia-associated gene or protein expression for multiple markers 
simultaneously, for example, Le et al.,5 Erpolat et al.,173 and Toustrup 
et al.174

Radiosensitizers, Radioprotectors, and  
Bioreductive Drugs
The perceived threat that tumor hypoxia posed spawned much research 
into ways of overcoming the hypoxia problem. One of the earliest 
proposed solutions was the use of high-LET radiations,175 which were 
less dependent on oxygen for their biological effectiveness. Other agents 
enlisted to deal with the hypoxia problem included hyperbaric oxygen 
breathing140; artificial blood substitutes with increased oxygen-carrying 
capacity176; oxygen-mimetic hypoxic cell radiosensitizers, such as misoni-
dazole or etanidazole139; hyperthermia177; normal tissue radioprotectors, 
such as amifostine178; vasoactive agents that modify tumor blood flow, 
such as nicotinamide179; agents that modify the oxygen-hemoglobin 
dissociation curve, such as pentoxifylline180; and bioreductive drugs 
designed to be selectively toxic to hypoxic cells, such as tirapazamine.181,182

Radiosensitizers
Radiosensitizers are loosely defined as chemical or pharmacological 
agents that increase the cytotoxicity of ionizing radiation. “True” 
radiosensitizers meet the stricter criterion of being relatively nontoxic 
in and of themselves, acting only as potentiators of radiation toxicity. 
“Apparent” radiosensitizers still produce the net effect of making the 
tumor more radioresponsive, yet the mechanism is not necessarily 
synergistic nor is the agent necessarily nontoxic when given alone. Ideally, 
a radiosensitizer is only as good as it is selective for tumors. Agents that 
show little or no differential effect between tumors and normal tissues 
do not improve the therapeutic ratio and, therefore, may not be of 
much clinical utility. Table 1.2 summarizes some of the classes of 
radiosensitizers (and radioprotectors—see later discussion) that have 
been used in the clinic.

Hypoxic cell radiosensitizers.  The increased radiosensitivity of cells 
in the presence of oxygen is believed to be due to oxygen’s affinity for 
the electrons produced by the ionization of biomolecules. Molecules 
other than oxygen also have this chemical property, known as electron 
affinity,183 including some agents that are not otherwise consumed by 
the cell. Assuming that such an electron-affinic compound is not used 
by the cell, it should diffuse further from capillaries and reach hypoxic 
regions of a tumor and, acting in an oxygen-mimetic fashion, sensitize 
hypoxic cells to radiation.

One class of compounds that represented a realistic trade-off between 
sensitizer efficiency and diffusion effectiveness was the nitroimidazoles, 
which include such drugs as metronidazole, misonidazole, etanidazole, 
pimonidazole, and nimorazole. The nitroimidazoles consist of a 
nitroaromatic imidazole ring, a hydrocarbon side chain that determines 
the drug’s lipophilicity, and a nitro group that determines the drug’s 
electron affinity. Misonidazole was extensively characterized in cellular 
and animal model systems, culminating in its use in clinical trials. 
Clinical experiences with misonidazole and some of its successor 
compounds are discussed in Chapter 3.

The relative efficacy of a particular hypoxic cell radiosensitizer is 
most often described in terms of its sensitizer enhancement ratio (SER), 

could be quantified by radioactive labeling148 or tagged with an isotope 
amenable to detection using positron emission tomography149 or magnetic 
resonance spectroscopy,150 a direct measure of hypoxic fraction can be 
obtained. Another approach to detecting those cells containing bound 
drug was developed by the Raleigh group (e.g., Cline et al.151 and Kennedy 
et al.152). This immunohistochemical method involved the development 
of antibodies specific for the bound nitroimidazole metabolites. After 
injecting the parent drug, allowing time for the reductive metabolism 
to occur, taking biopsies of the tumor, and preparing histopathology 
slides, the specific antibody is then applied to the slides and regions 
containing the bound drug are visualized directly. This immunostaining 
method has the distinct advantages that hypoxia can be studied at the 
level of individual tumor cells,153 spatial relationships between regions 
of hypoxia and other tumor physiological parameters can be assessed,154 
and the drug does not perturb the tumor microenvironment. However, 
the method remains an invasive procedure, is labor intensive, does not 
address the issue of the clonogenicity of stained cells (although such 
cells do have to be metabolically active), and requires that multiple 
samples be taken because of tumor heterogeneity.

One hypoxia marker based on the immunohistological method 
detects reductively bound pimonidazole hydrochloride and has been 
used in experimental and clinical studies around the world (e.g., Bussink 
et al.,155 Nordsmark et al.156). Human tumor specimens stained with 
the marker were found to have a wide range of hypoxic fractions (similar 
to that for experimental rodent tumors), with a mean value of approxi-
mately 15%.152,157 This marker can also be used to probe disease states 
other than cancer that may have the induction of tissue hypoxia as part 
of their etiology, such as cirrhosis of the liver158,159 and ischemia-
reperfusion injury in the kidney.160

There is also considerable interest in endogenous markers of 
tissue hypoxia161,162 that could reduce to some extent the procedural 
steps involved in, and the invasive aspects of, detecting hypoxia using 
exogenous agents. Among the endogenous cellular proteins being 
investigated in this regard are the hypoxia-inducible factor 1-alpha 
(HIF-1α, which acts as a transcription factor for hypoxia-regulated 
genes163), the enzyme carbonic anhydrase IX (CA-9 or CAIX, involved 
in respiration and maintenance of the proper acid–base balance in 
tissues164,165), glucose transporter-1 (GLUT-1, which facilitates glucose 
transport into cells and glycolysis166–168), lysyl oxidase (LOX, which 
oxidizes lysine residues in extracellular matrix proteins that can enhance 
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Fig. 1.24  The disease-free survival probability of a small cohort of cervical 
cancer patients stratified according to pretreatment tumor oxygenation, 
as measured using an oxygen electrode. (Modified from Höckel M, 
Knoop C, Schlenger K, et al. Intratumoral pO2 predicts survival in advanced 
cancer of the uterine cervix. Radiother Oncol. 1993;26:45.)
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results have prompted a rethinking of the hypoxia problem and novel 
approaches to dealing with it as well as consideration of other factors 
that may have contributed to the lack of success of the nitroimidazole 
radiosensitizers.185 Among the more obvious questions raised are the 
following:
1.	 Did the patients entered in the various clinical trials actually have 

tumors that contained clonogenic hypoxic cells? At the time of most 
of these studies, hypoxia markers were not yet available; thus, it was 
not possible to triage patients into subgroups in advance of 
treatment.

2.	 Do hypoxic cells really matter to the outcome of radiotherapy? If 
reoxygenation is fairly rapid and complete during radiotherapy, the 
presence of hypoxic cells prior to the start of treatment may be of 
little consequence.

3.	 Given that the OER is lower for small doses versus large doses, it 
follows that the SER would be reduced as well. If so, a benefit in a 
subgroup of patients might not be readily observed, at least not at 
a level of statistical significance.
Bioreductive drugs.  In the wake of the failure of most hypoxic cell 

radiosensitizers to live up to their clinical potential, a new approach to 
combating hypoxia emerged: the use of bioreductive drugs that are 
selectively toxic to hypoxic cells. While these agents kill rather than 
sensitize hypoxic cells, the net effect of combining them with radiation 
therapy is an apparent sensitization of the tumor due to the elimination 
of an otherwise radioresistant subpopulation. Such drugs have been 
shown to outperform the nitroimidazole radiosensitizers in experimental 
studies with clinically relevant fractionated radiotherapy.188 To the extent 
that hypoxic cells are also resistant to chemotherapy because of tumor 

a parameter similar in concept to the OER. Whereas the OER is the 
ratio of doses to produce the same biological endpoint under hypoxic 
versus aerobic conditions, the SER is the dose ratio for an isoeffect 
under hypoxic conditions alone versus hypoxic conditions in the presence 
of the hypoxic cell sensitizer. If a dose of a sensitizer produces an SER 
of 2.5 to 3.0 for large single doses of low-LET radiation, it can be 
considered to a first approximation “as effective as oxygen.” This statement 
can be very misleading, however, in that the dose of the sensitizer required 
to produce the SER of 3.0 would be higher than the comparable “dose” 
of oxygen, high enough in some cases to preclude its use clinically. 
Finally, since the primary mechanism of action of the nitroimidazoles 
is substitution for oxygen in radiation-induced free-radical reactions, 
these drugs need only be present in hypoxic regions of the tumor at 
the time of irradiation.

The nitroimidazoles also have characteristics that decrease their 
clinical usefulness. The hydrocarbon side chain of the molecule deter-
mines its lipophilicity; this chemical property affects the drug’s phar-
macokinetics, which is a primary determinant of drug-induced side 
effects.184 The dose-limiting toxicity of the fairly lipophilic agent 
misonidazole is peripheral neuropathy, an unanticipated and serious 
side effect.139,185 Etanidazole was specifically designed to be less lipophilic186 
in hopes of decreasing neurological toxicity. Although this goal was 
accomplished as a proof of concept, clinical results with etanidazole 
were otherwise disappointing187 (see also Chapter 3).

Finally, in considering the prodigious amount of research and clinical 
effort that has gone into the investigation of hypoxic cell radiosensitizers 
over the past 50 years, it is difficult not to be discouraged by the pre-
dominantly negative results of the clinical trials. However, these negative 

TABLE 1.2  Selected Chemical Modifiers of Radiation Therapy

Chemical Structure
Name (Type of 
Compound) Mechanism of Action Clinic Status

O

O

NHBr

OH

HO
O

N

5-Bromodeoxyuridine 
(halogenated 
pyrimidine)

Radiosensitizer of rapidly proliferating 
cells through incorporation into 
DNA during S phase. Uptake 
results in decrease or removal of 
the shoulder of the radiation 
survival curve.

No clear evidence of clinical efficacy has 
been established to date. The drug 
continues to be used in a research 
setting.

OH

NN O

O2N

Misonidazole 
(2-nitroimidazole)

Radiosensitizer of hypoxic cells. 
Principal mechanism of action is 
mimicry of oxygen’s ability to “fix” 
free radical damage caused by 
exposure to radiation and some 
toxic chemicals.

Clinical trial results were disappointing 
overall except in selected sites, most 
notably, head and neck cancer. The drug’s 
failure largely has been ascribed to a 
dose-limiting toxicity, peripheral 
neuropathy.

O

O

N

N

NH2N

Tirapazamine (organic 
nitroxide)

Bioreductive drug selectively
toxic to hypoxic cells. The drug is 

reduced to a toxic intermediate 
capable of producing DNA strand 
breaks only in the relative absence 
of oxygen.

Phase II and Phase III clinical trials to date 
have been disappointing overall, except in 
select subsets of patients with head and 
neck or lung cancer. Some trials are still 
ongoing for the drug combined with 
radiotherapy and cis-platinum.

P

HO

HO
O

S
N
H

NH2

Amifostine (thiol free 
radical scavenger)

Radioprotector capable of 
“restituting” free radical damage 
caused by exposure to radiation 
and some toxic chemicals.

FDA-approved indications for amifostine 
include protection against the nephro- 
and ototoxicity of platinum drugs and to 
reduce the incidence and severity of 
xerostomia in patients receiving 
radiotherapy for head and neck cancer.

FDA, U.S. Food and Drug Administration.
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choice of head and neck tumors for this study was far from ideal, 
because the oral mucosa is also a rapidly proliferating tissue and was 
similarly radiosensitized, causing severe mucositis and a poor therapeutic 
ratio overall. In later years, tumors selected for therapy with halogenated 
pyrimidines were chosen in the hopes of better exploiting the differential 
radiosensitization between tumors and normal tissues.203 Aggressively 
growing tumors surrounded by slowly growing or nonproliferating 
normal tissues, such as high-grade brain tumors or some sarcomas, 
have been targeted, for example.204,205 Later strategies for further improv-
ing radiosensitization by BrdUdR and IdUdR involved changing the 
schedule of drug delivery: giving the drug as a long, continuous infusion 
both before and during radiotherapy206; and administering the drug as 
a series of short, repeated exposures.207 Overall, however, the use of 
halogenated pyrimidines in the clinic has remained experimental and 
has not become mainstream.

Chemotherapy drugs as radiosensitizers.  Several chemotherapy 
agents have long been known to increase the effectiveness of radiotherapy 
despite not being “true” radiosensitizers, like the nitroimidazoles. This 
has driven the clinical practice of treating many more patients today 
than in the past with chemotherapy and radiation therapy concurrently. 
Two drugs in particular used for chemoradiotherapy are 5-fluorouracil 
(5-FU, effective against gastrointestinal malignancies208) and cisplatinum 
(effective against head and neck209 and cervix cancers210).

Based on these clinical successes in combining radiation with concur-
rent chemotherapy, and with ever-increasing numbers of molecularly 
targeted drugs and biologics available today, it is naturally of interest 
whether any of these novel compounds could also act as radiosensitizers. 
Two classes of such drugs already have entered the clinical mainstream 
as sensitizers: the antiepidermal growth factor receptor (EGFR) inhibitors 
and the antivascular endothelial growth factor (VEGF) inhibitors. 
Cetuximab is a monoclonal antibody raised against the EGFR that has 
been shown to improve outcomes in advanced head and neck cancers 
when combined with radiation therapy211 and bevacizumab is a human-
ized monoclonal antibody raised against VEGF that prolongs overall 
and progression-free survival in patients with advanced colorectal cancer 
when combined with standard chemotherapy.212 It is hoped that these 
and other targeted agents will play greater roles in cancer therapy in 
the future.

Normal Tissue Radioprotectors
Amifostine (WR 2721, see Table 1.2), is a phosphorothioate compound 
developed by the US Army for use as a radiation protector. Modeled 
after naturally occurring radioprotective sulfhydryl compounds such 
as cysteine, cysteamine, and glutathione,213 amifostine’s mechanism of 
action involves the scavenging of free radicals produced by ionizing 
radiation, radicals that otherwise could react with oxygen and “fix” the 
chemical damage. Amifostine can also detoxify other reactive species 
through the formation of thioether conjugates; in part because of this, 
the drug can also be used as a chemoprotective agent.214 Amifostine is 
a prodrug that is dephosphorylated by plasma membrane alkaline 
phosphatase to the free thiol WR 1065, the active metabolite. As is the 
case with the hypoxic cell radiosensitizers, amifostine need only be 
present at the time of irradiation to exert its radioprotective effect.

In theory, if normal tissues could be made to tolerate higher total 
doses of radiation through the use of radioprotectors, then the relative 
radioresistance of hypoxic tumor cells would be less likely to limit 
radiation therapy. However, encouraging preclinical studies demonstrating 
radioprotection of a variety of cells and tissues notwithstanding,215,216 
radioprotectors such as amifostine would not be expected to increase 
the therapeutic ratio unless they could be introduced selectively into 
normal tissues but not tumors. The pioneering studies of Yuhas 
et al.178,217,218 addressed this issue by showing that the drug’s active 

microenvironmental differences in drug delivery, pH, or the cell’s 
proliferative status, complementary tumor-cell killing might be antici-
pated for combinations of bioreductive agents and anticancer drugs as 
well.189

Most hypoxia-specific cytotoxic drugs fall into three categories: the 
nitroheterocyclics, the quinone antibiotics, and the organic nitroxides.190 
All require bioreductive activation by nitroreductase enzymes such as 
cytochrome P450, DT-diaphorase, and nitric oxide synthase to reduce 
the parent compound to its cytotoxic intermediate, typically an oxidizing 
free radical capable of damaging DNA and other cellular macromolecules. 
The active species is either not formed or immediately back-oxidized 
to the parent compound in the presence of oxygen, which accounts for 
its preferential toxicity under hypoxic conditions. Examples of nitro-
heterocyclic drugs with bioreductive activity include misonidazole and 
etanidazole191,192 and dual-function agents such as RSU 1069.193 The 
latter drug is termed “dual function” because its bioreduction also 
activates a bifunctional alkylating moiety capable of introducing cross-
links into DNA. Mitomycin C and several of its analogs (including 
porfiromycin and EO9) are quinones with bioreductive activity that 
have been tested in randomized clinical trials in head and neck tumors 
(e.g., Haffty et al.194).

The lead compound for the third class of bioreductive drugs, the 
organic nitroxides, is tirapazamine (SR 4233, Table 1.2).181,182,188 The 
dose-limiting toxicity for single doses of tirapazamine is a reversible 
hearing loss; other effects observed include nausea and vomiting, and 
muscle cramps.195

Tirapazamine is particularly attractive because it both retains its 
hypoxia-selective toxicity over a broader range of (low) oxygen concentra-
tions than the quinones and nitroheterocyclic compounds196 and its 
“hypoxic cytotoxicity ratio,” the ratio of drug doses under hypoxic 
versus aerobic conditions to yield the same amount of cell killing, averages 
an order of magnitude higher than for the other classes of bioreductive 
drugs.189 Laboratory and clinical data also support a tumor-sensitizing 
role for tirapazamine in combination with cisplatinum.195

To date, clinical trials with tirapazamine combined with radiotherapy 
and/or chemotherapy have yielded mixed results,195,197,198 although it 
has improved outcomes for some standard treatments. While it is disap-
pointing that tirapazamine has not made a more significant impact on 
clinical practice, the search for more effective agents from the same or 
similar chemical class continues.199

Proliferating cell radiosensitizers.  Another source of apparent 
radioresistance is the presence of rapidly proliferating cells. Such cells 
may not be inherently radioresistant but rather have the effect of making 
the tumor seem refractory to treatment because the production of new 
cells outpaces the cytotoxic action of the therapy.

Analogs of the DNA precursor thymidine, such as bromodeoxyuridine 
(BrdUdR) or iododeoxyuridine (IdUdR), can be incorporated into the 
DNA of actively proliferating cells in place of thymidine because of 
close structural similarities between the compounds. Cells containing 
DNA substituted with these halogenated pyrimidines are more radiosensi-
tive than normal cells, with the amount of sensitization directly pro-
portional to the fraction of thymidine replaced.200 In general, the 
radiosensitization takes the form of a decrease in or elimination of the 
shoulder region of the radiation survival curve. To be maximally effective, 
the drug must be present for at least several rounds of DNA replication 
prior to irradiation. Although the mechanism by which BrdUdR and 
IdUdR exert their radiosensitizing effect remains somewhat unclear, it 
is likely that both the formation of more complex radiation-induced 
lesions in the vicinity of the halogenated pyrimidine molecules and 
interference with DNA damage sensing or repair are involved.201

The clinical use of halogenated pyrimidines began in the late 1960s 
with a major clinical trial in head and neck cancer.202 In retrospect, the 
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limited number of cell divisions. Myelocytes of the bone marrow 
and spermatocytes of the testis are examples of Type II cells.

Type III or reverting postmitotic cells (RPMs) are relatively radioresistant, 
consisting of those few types of cells that are fully differentiated 
and do not divide regularly yet under certain conditions can revert 
to a stem cell–like state and divide as needed. Examples of Type 
III cells include hepatocytes and lymphocytes, although the latter 
are unique in that they are a notable exception to the Rubin and 
Casarett classification system—an RPM cell type that is exquisitely 
radiosensitive.

Type IV or fixed postmitotic cells (FPMs) are the most radioresistant, 
consisting of the terminally differentiated, irreversibly postmitotic 
cells characteristic of most normal tissue parenchyma, such as neurons 
and muscle cells. Should such cells be killed by radiation, they typically 
cannot be replaced.
A second, simpler classification system, based on anatomical and 

histological considerations, has been proposed by Michalowski.229 Using 
this system, tissues are categorized on the basis of whether the tissue 
stem cells, if any, and the functional cells are compartmentalized (so-called 
Type H or hierarchical tissues, such as skin, gut epithelium, testis, etc.) 
or intermixed (Type F or flexible tissues, such as lung, liver, kidney, and 
spinal cord).

Growth Kinetic Parameters and Methodologies
In order to predict the response of an intact tissue to radiation therapy 
in a more quantitative way, a number of kinetic parameters have been 
described that provide a better picture of the proliferative organization 
of tumors and normal tissues (Table 1.3).

Growth fraction.  Among the first kinetic characteristics described 
was the growth fraction (GF). The presence of a fraction of slowly 
cycling or noncycling cells in experimental animal tumors was first 
noted by Mendelsohn et al.230,231 and, subsequently, in human tumors 
by other investigators. While normal tissues do not grow and therefore 
do not have a GF per se, many are composed of noncycling cells that 
have differentiated in order to carry out tissue-specific functions. Some 
normal tissues do contain a small fraction of actively proliferating stem 
cells. Others contain apparently dormant or “resting” cells that are 
temporarily out of the traditional four-phase cell cycle but are capable 
of renewed proliferation in response to appropriate stimuli. Lajtha gave 
these resting but recruitable cells of normal tissues the designation 
G0.

232 While a tumor counterpart of the G0 cell may or may not exist, 
the majority of slowly cycling or noncycling tumor cells are thought 
to be in such a state because of nutrient deprivation, not because of a 
normal cell cycle regulatory mechanism. Thus, Dethlefsen233 has suggested 
that the term Q cell be reserved for quiescent cells in tumors to distinguish 
them from the G0 cell of normal tissues.

Measurement of a tumor’s GF is problematic,234,235 but an estimate 
can be obtained with a technique known as continuous thymidine labeling. 
Using this method, the tumor receives a continuous infusion of radio-
labeled thymidine for a period of time long enough for all proliferating 
cells to have gone through at least one round of DNA synthesis and 
incorporated the radioactive label. Then, a biopsy of the tumor is obtained 
and tissue sections prepared for autoradiography. Once the slides are 
processed and scored, the continuous labeling index, that fraction of 
the total population of tumor cells containing tritiated thymidine, is 
calculated. This value is a rough estimate of the tumor’s GF.

Cell cycle and volume doubling times.  The percent labeled mitosis 
(PLM) technique of Quastler and Sherman236 was a key development 
in the study of the cell cycle in vivo because it provided a unique window 
into the behavior of that fraction of cells within a tissue that was actively 
proliferating. By focusing on cells in mitosis, the assay allowed both 
the overall cell cycle time (Tc) and the durations of the individual cell 

metabolite reached a higher concentration in most normal tissues than 
in tumors and that this mirrored the extent of radio- or chemoprotection. 
The selective protection of normal tissues results from slower tumor 
uptake of the drug and tumor cells being both less able to convert 
amifostine to WR 1065 (owing to lower concentrations of the required 
phosphatases) and less able to transport this active metabolite throughout 
the cell.

Dose-reduction factors (DRFs; the ratio of radiation doses to produce 
an isoeffect in the presence vs. absence of the radioprotector) in the 
range of 1.5 to 3.5 are achieved for normal tissues, whereas the cor-
responding DRFs for tumors seldom exceed 1.2. Those normal tissues 
exhibiting the highest DRFs include bone marrow, gastrointestinal tract, 
liver, testes, and salivary glands.178 The brain and spinal cord are not 
protected by amifostine, and oral mucosa only marginally so.178 Com-
parable protection factors are obtained for some chemotherapy agents, 
including cyclophosphamide and cisplatin.219,220 The dose-limiting 
toxicities associated with the use of amifostine include hypotension, 
emesis, and generalized weakness or fatigue.221

Amifostine is currently indicated for the reduction of renal toxicity 
associated with repeated cycles of cisplatin chemotherapy in patients 
with advanced ovarian and non–small cell lung cancer. It is also approved 
for use in patients receiving radiotherapy for head and neck cancer in 
the hopes of reducing xerostomia secondary to exposure of the parotid 
glands.

Finally, just as there are apparent radiosensitizers, there are also 
apparent radioprotectors that have the net effect of allowing normal 
tissues to better tolerate higher doses of radiation and chemotherapy but 
through mechanisms of action not directly related to the scavenging of 
free radicals. Various biological response modifiers, including cytokines, 
prostaglandins (such as misoprostol222,223), anticoagulants (such as 
pentoxifylline224,225), and protease inhibitors are apparent radioprotectors 
because they can interfere with the chain of events that normally follows 
the killing of cells in tissues by, for example, stimulating compensatory 
repopulation or preventing the development of fibrosis. Finally, there 
is also growing interest in the use of biologics that inhibit apoptosis 
as normal tissue radioprotectors.226,227 Such agents should have little or 
no effect on tumor cells, most of which are already apoptosis resistant.

CLINICAL RADIOBIOLOGY
Growth Kinetics of Normal Tissues and Tumors
In the simplest sense, normal tissues are normal because the net produc-
tion of new cells, if it occurs at all, exactly balances the loss of old cells 
from the tissue. In tumors, the production of new cells exceeds cell loss, 
even if only by a modest amount. Although the underlying radiobiology 
of cells in vitro applies equally to the radiobiology of tissues, the imposi-
tion by growth kinetics of this higher level of organizational behavior 
makes the latter far more complex systems.

Descriptive Classification Systems
Two qualitative classification systems based loosely on the prolifera-
tion kinetics of normal tissues are in use. Borrowing heavily from the 
pioneering work of Bergonié and Tribondeau,13 Rubin and Casarett’s228 
classification system for tissue “radiosensitivity” consists of four main  
categories:
Type I or vegetative intermitotic cells (VIMs) are considered the most 

radiosensitive, consisting of regularly dividing, undifferentiated stem 
cells such as are found in the bone marrow, intestinal crypts, and 
the basal layer of the epidermis of the skin.

Type II or differentiating intermitotic cells (DIMs) are somewhat less 
radiosensitive, consisting of progenitor cells that are in the process 
of developing differentiated characteristics yet are still capable of a 
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cell production. Pathologists and tumor biologists, meanwhile, had 
ample evidence that tumors routinely lost large numbers of cells, the 
result of cell death, maturation, and/or emigration.234,238,239 It is now 
clear that the overall rate of tumor growth, as reflected by its Td, is 
governed by the competing processes of cell production and cell loss. 
In fact, the cell loss factor, ϕ, the rate of cell loss expressed as a fraction 
of the cell production rate, is surprisingly high for both experimental 
and human tumors, as high as 0.9 or more for carcinomas and lower, 
on average, for sarcomas.234 Cell loss is usually the most important 
factor governing the overall volume Td of solid tumors.

The clinical implications of tumors having high rates of cell loss 
are obvious. First, any attempts at making long-term predictions of 
treatment outcome based on short-term regression rates of tumors 
during treatment are misleading. Second, although regression rate may 
not correlate well with eventual outcome, it may be a reasonable indicator 
of when best to schedule subsequent therapy on the assumption that 
a smaller tumor will be more radio- and chemosensitive, as well as 
easier to remove surgically.

Potential doubling time and “effective” doubling time.  With the 
recognition that cell loss plays a major role in the overall growth rate 
of tumors and can mask a high cell production rate, a better measure 
of the potential repopulation rate of normal tissues and tumors was 
needed.240 One indicator of regenerative capacity is the potential doubling 
time (Tpot).234,241 By definition, Tpot is an estimate of the time that would 
be required to double the number of clonogenic cells in a tumor in the 
absence of cell loss. It follows that Td will usually be much longer than 
Tpot because of cell loss, and Tc will be shorter than Tpot because of the 
presence of nonproliferating cells.237

Tpot can be estimated from a comparison of the S phase pulse labeling 
index (LI) and the duration of S phase (TS) by using the following 
equation:

T T LIpot S= λ

where λ is a correction factor related to the nonuniform distribution 
of cell “ages” in a growing population (usually, λ ≈ 0.8). TS and LI can 

cycle phases to be determined without the uncertainties introduced by 
the presence of noncycling cells in the population. Today, flow cytometric 
methods have largely replaced the arduous and time-consuming PLM 
assay.

Briefly, the PLM technique involves tracking over time a cohort of 
proliferating cells that initially was in S phase (and exposed briefly to 
tritiated thymidine) and then proceeded through subsequent mitoses. 
Serial biopsy samples from the tissue of interest are obtained at regular 
intervals following labeling, and the fraction of cells both in mitosis 
(identified cytologically) and carrying the radioactive label is determined. 
A first peak of labeled mitoses is observed within 24 hours after labeling, 
and as cells pass through their second division, a second wave of labeled 
mitoses is noted. The average Tc for the population of proliferating 
cells corresponds to the peak-to-peak interval of the resulting PLM 
curve, a plot of the fraction of labeled mitoses as a function of time 
following the radioactive pulse. With sufficiently robust data, the dura-
tions of the individual cell cycle phases can be obtained as well. The 
PLM technique is illustrated schematically in Fig. 1.25.

Historically, the interpretation of PLM curves was sometimes 
hampered by technical artifacts and by the fact that proliferating cell 
populations have distributed cell cycle times.234,235,237 Despite these 
limitations, it is clear that most cells in vivo proliferate more slowly 
than their in vitro counterparts. Although the variation in intermitotic 
times is quite large, a median value for Tc of 2 to 3 days is a reasonable 
estimate.234

While the cycle times of proliferating cells in vivo are long by cell 
culture standards, they are quite short when compared with the cor-
responding volume doubling times (Td) for human tumors. Although 
highly variable from tumor type to tumor type and somewhat difficult 
to measure, the Td for human solid tumors averages about 3 to 4 
months.234 In many cases, sample calculations further suggest that the 
discrepancy between Tc for proliferating tumor cells and Td for the 
tumor as a whole cannot be accounted for solely by the tumor having 
a low GF.

Cell loss factor.  Cell kineticists initially adhered to the notion that 
the continued growth of tumors over time reflected abnormalities in 

TABLE 1.3  Estimated Cell Cycle Kinetic Parameters for Human Tumors

Parameter Definition How Measured
Representative Values for 
Human Solid Tumors Notes

Tc (Average) Cell 
cycle time

Percent labeled mitosis technique; 
flow cytometry

0.5–6.5 days (median ≈ 2.5) Tc in vivo usually longer than for 
comparable cells cultured in vitro.

GF Growth fraction Estimated from continuous 
labeling technique

0.05–0.90 days (median ≈ 0.40?) Difficult to measure directly; not much 
data available.

Tpot Potential doubling 
time

Flow cytometry (relative movement 
method: Tpot = λTs/LI)

2–19 days (median ≈ 5) Tpot ≈ Tc as GF approaches 1.0.

ϕ Cell loss factor 1 − Tpot/Td 0.30–0.95 days (median ≈ 0.90?) Thought to be the major cause of long 
Tds for human tumors; particularly 
high in carcinomas.

Td Volume doubling 
time

Direct measurement of tumor 
dimensions over time

5–650 days (median ≈ 90) Increases with increasing tumor size, 
often because of increases in Tc and 
f, and a decrease in GF.

Teff/Tp Effective clonogen 
doubling time

Estimated from clinical data on the 
loss of local control with 
increasing overall treatment time

4–8 days Tp approaches Tpot toward the end of a 
course of fractionated radiotherapy.

Data from Steel GG. Growth Kinetics of Tumours. Oxford: Clarendon Press; 1977, and Joiner M, van der Kogel A. Basic Clinical Radiobiology. 
4th ed. London: Hodder Arnold; 2009.



28 SECTION I  Scientific Foundations of Radiation Oncology

advocated.245–247 Estimates of Tp can be obtained from two types of 
experiments. In an experimental setting, Tp can be inferred from the 
additional dose necessary to keep a certain level of tissue reaction constant 
as the overall treatment time is increased. (When expressed in terms 
of dose rather than time, the proper term would be Deff, although the 
underlying concept is the same.) For example, acute skin reactions 
usually both develop and begin to resolve during the course of radiation 
therapy, suggesting that the production of new cells in response to 
injury gradually surpasses the killing of existing cells by each subsequent 
dose fraction. By intensifying treatment once this repopulation begins, 
it theoretically should be possible to reach a steady state wherein the 
tissue reaction remains constant. In a clinical setting, Tp can be estimated 
from a comparison of tumor control rates for treatment schedules in 
which the dose per fraction and total dose used were held approximately 
constant but the overall treatment time varied. In some cases, the loss 
of local control with increasing overall treatment time provides an 
estimate not only of Tp but also of the delay time before the repopulation 
begins, sometimes referred to as Tk, the repopulation “kickoff” time.248–250

Repopulation in tumors and normal tissues.  As discussed earlier, 
both normal tissues and tumors are capable of increasing their cell 
production rate in response to radiation-induced cell killing, a process 
known as regeneration or repopulation. The time of onset of the 
regenerative response varies with the turnover rate of the tissue or 
tumor since cell death (and depopulation) following irradiation is usually 
linked to cell division. Generally, tissues that naturally turn over fairly 
rapidly repopulate earlier and more vigorously than tissues that turn 
over slowly. However, it has been shown that the repopulation patterns 
of normal tissues and tumors following the start of irradiation tend to 
be characterized by a delay (of at least several weeks in many cases; see 
Tk discussed earlier) prior to the rapid proliferative response.248–250 Once 
this proliferative response begins, however, it can be quite vigorous. 
While this is clearly desirable for early-responding normal tissues 
attempting to recover from radiation injury, rapid proliferation in tumors 

be determined by the relative movement method.241,242 This technique 
involves an injection of a thymidine analog, usually BrdUrd, which is 
promptly incorporated into newly synthesized DNA and whose presence 
can be detected using flow cytometry. The labeled cohort of cells is 
then allowed to continue movement through the cell cycle and a biopsy 
of the tumor is taken several hours later, at which point the majority 
of the BrdUrd-containing cells have progressed into G2 phase or beyond. 
A value for LI is determined from the fraction of the total cell population 
that contains BrdUrd, and TS is calculated from the rate of movement 
of the labeled cohort during the interim between injection of the tracer 
and biopsy.

Values for Tpot for human tumors have been measured and, although 
quite variable, typically range between 2 and 20 days.234,240,243 These 
findings lend support to the important notion that slowly growing 
tumors can contain subpopulations of rapidly proliferating cells. To 
the extent that these cells retain unlimited reproductive potential, they 
may be considered the tumor’s stem cells (in a generic sense, at least) 
capable of causing recurrences after treatment. These cells represent a 
serious threat to local control of the tumor by conventional therapies, 
especially protracted treatments (that provide them additional time to 
proliferate).

The use of a cell kinetic parameter such as Tpot as either a predictor 
of a tumor’s response to therapy or as a means of identifying subsets 
of patients particularly at risk for recurrence has been attempted, with 
some positive, but mostly negative, results.6,141,244 Lest these negative 
findings suggest that proliferation in tumors is unimportant, bear in 
mind that it is unlikely that a pretreatment estimate of Tpot—or any 
other single cell kinetic parameter (e.g., LI) for that matter—would be 
relevant once treatment commences and the growth kinetics of the 
tumor are perturbed.

One approach to dealing with this problem is to measure proliferative 
activity during treatment. Although not without other limitations, the 
use of an “effective clonogen doubling time” (Teff or Tp) has been 
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Fig. 1.25  The technique of labeled mitoses (PLM) for an idealized cell population with identical cell cycle 
times (left panels) and for a representative normal tissue or tumor with a dispersion in cell cycle times (right 
panel). Top left: Following a brief exposure to tritiated thymidine or equivalent at time = “a,” the labeled 
cohort of S phase cells continues (dark shading) around the cell cycle and is sampled at times = “b,” “c,” 
“d,” and “e,” respectively. Bottom left panel: For each sample, the percentage of cells both in mitosis and 
containing the thymidine label is determined and plotted as a function of time; from such a graph, individual 
cell cycle phase durations can be derived. Right panel: In this more realistic example, a mathematical fit to 
the PLM data would be needed to calculate the (average) cell cycle phase durations. 
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The mean lethal dose (LD50) is defined as the (whole body) dose 
that results in mortality for 50% of an irradiated population. The LD50 
value is often expressed in terms of the time scale over which the deaths 
occur, such as at either 30 or 60 days postirradiation. For humans, the 
single-dose LD50/60 for x-rays or γ-rays is approximately 3.5 Gy in the 
absence of medical intervention and about twice that with careful medical 
management.28,255 The LD50 increases with decreasing dose rate of low-LET 
radiation and decreases for radiations of higher LET.

The prodromal syndrome.  The prodromal syndrome consists of one 
or more transient, neuromuscular, and gastrointestinal symptoms that 
begin soon after irradiation and persist for up to several hours. The 
symptoms, which can include anorexia, nausea, vomiting, diarrhea, 
fatigue, disorientation, and hypotension, and their severity and duration, 
increase with increasing dose. Because in most radiation accident situ-
ations the dose that victims received is unknown initially, careful attention 
to the prodromal syndrome can be used as a crude dosimeter.

The cerebrovascular syndrome.  The cerebrovascular syndrome 
occurs for total body doses in excess of 50 Gy. The onset of signs and 
symptoms is almost immediate following exposure, consisting of severe 
gastrointestinal and neuromuscular disturbances—including nausea 
and vomiting, disorientation, ataxia, and convulsions.28,255 The cerebro-
vascular syndrome is invariably fatal; survival time is seldom longer 
than about 48 hours. Only a few instances of accidental exposure to 
such high doses have occurred, two of which (a nuclear criticality accident 
at Los Alamos National Laboratory in 1958 and a 235U reprocessing 
plant accident in Rhode Island in 1964) have been extensively documented 
in the medical literature.256,257

The immediate cause of death for the cerebrovascular syndrome is 
likely vascular damage leading to progressive brain edema, hemorrhage, 
and/or cardiovascular shock.255 Following such high doses delivered 
acutely, even cells traditionally considered radioresistant, such as neurons 
and the parenchymal cells of other tissues and organs, will be killed 
along with the more radiosensitive vascular endothelial cells and the 
various glial cells of the central nervous system.

The gastrointestinal syndrome.  For doses upwards of about 8 Gy, 
the gastrointestinal syndrome predominates, characterized by lethargy, 
vomiting and diarrhea, dehydration, electrolyte imbalance, malabsorption, 
weight loss, and, ultimately, sepsis. These symptoms begin to appear 
within a few days of irradiation and are progressive in nature, culminating 
in death after 5 to 10 days. The target cells for the gastrointestinal 
syndrome are principally the crypt stem cells of the gut epithelium. As 
mature cells of the villi are lost over a several-day period, no new cells 
are available to replace them; thus, the villi begin to shorten and eventually 
become completely denuded. This greatly increases the risk of bleeding 
and sepsis, both of which are aggravated by declining blood counts.

Prior to the Chernobyl accident, in which approximately a dozen 
firefighters received total doses sufficient to succumb to the gastrointestinal 
syndrome, there was only one other documented case of a human dying 
of gastrointestinal injury.28,255 To date, no human has survived a docu-
mented whole body dose of 10 Gy of low-LET radiation.

The hematopoietic syndrome.  Acute doses of approximately 2.5 Gy 
or more are sufficient to cause the hematopoietic syndrome, a conse-
quence of the killing of bone marrow stem cells and lymphocytes. This 
syndrome is characterized by a precipitous (within 1–2 days) reduction 
in the peripheral blood lymphocyte count, followed by a more gradual 
reduction (over a period of 2–3 weeks) in the numbers of circulating 
leukocytes, platelets, and erythrocytes. The granulocytopenia and 
thrombocytopenia reach a maximum within 30 days after exposure; 
death, if it is to occur, is usually a result of infection and/or hemor-
rhage.28,255 Theoretically, the use of antibiotics, blood transfusions, and 
bone marrow transplantation can save the lives of individuals who 
receive doses at or near the LD50. In practice, however, the exact dose 

is obviously undesirable.251 For example, clinical studies of local control 
of head and neck tumors indicate that an average of about 0.6 Gy per 
day is lost to repopulation.245 Attempts to counteract this accelerated 
proliferation by dose intensification during the latter part of a treatment 
course can be problematic because late-responding normal tissues do 
not benefit from accelerated repopulation during treatment and risk 
incurring complications.

EARLY AND LATE EFFECTS IN NORMAL TISSUES
“Early” Versus “Late”
Normal tissue complications observed following radiation therapy are 
the result, either directly or indirectly, of the killing of critical target 
cells within the tissue that are crucial to the tissue’s continued functional 
and/or structural integrity. The loss of these cells can occur either as a 
direct consequence of the cytotoxic action of the radiation or indirectly 
due to the radiation injury or killing of other cells. In some cases, the 
tissue’s response to the depletion of its component cells can exacerbate 
the injury, for example, when a hyperproliferation of fibroblasts and 
the resulting collagen deposition replace a tissue’s parenchymal cells, 
resulting in fibrosis.

It is important to realize that a particular tissue or organ may contain 
more than one type of target cell, each with its own radiosensitivity. One 
tissue may manifest more than one complication following radiation 
therapy, with the severity of each determined by the radiosensitivity 
of the particular target cell and the time-dose-fractionation schedule 
employed. It follows from this that the severity of one complication 
does not necessarily predict the severity of another complication, even 
within the same tissue (although “consequential” late effects secondary 
to severe early reactions are possible in some cases252). For example, 
dry or moist desquamation of the skin results from the depletion 
of the basal cells of the epidermis, fibrosis results from damage to 
dermal fibroblasts, and telangiectasia results from damage to small 
blood vessels in the dermis. For many tissues, however, the cell(s) 
whose death is (are) responsible for a particular normal tissue injury  
remain(s) unclear.

While the radiosensitivity of the putative target cells determines the 
severity of an early or late effect in a normal tissue, the “earliness” or 
“lateness” of the clinical manifestation of that injury is related to the 
tissue’s proliferative organization (discussed above). The distinction 
between the radiosensitivity of a tissue’s cells and the radioresponsiveness 
of the tissue as a whole can be a source of confusion. Bergonié and 
Tribondeau’s “laws,”13 for example, confused the concepts of radiosensitiv-
ity and radioresponsiveness to some extent, referring to tissues that 
responded to damage early as “radiosensitive,” when this is not necessarily 
the case.

Whole Body Radiation Syndromes
Many human beings have been exposed to total body irradiation, 
including the survivors of Hiroshima and Nagasaki, Polynesian Islanders 
and military personnel present during above ground nuclear tests during 
the 1950s, and victims of accidental exposures in the workplace (e.g., 
Chernobyl). Of the latter, about 100 fatalities due to radiation accidents 
have been documented since the mid-1940s.253–255

The whole body radiation syndromes described here only occur 
when most or all of the body is irradiated. Also, although total body 
irradiation (TBI) is a prerequisite for the manifestation of these syn-
dromes, neither the dose received nor its biological consequences are 
necessarily uniform. The radiosensitivities of the respective target cells 
determine the effective threshold dose below which the syndrome does 
not occur, whereas the onset time of individual symptoms is governed 
more by the proliferative organization of the tissue.
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threshold, the frequency and severity of cataracts increases with increasing 
dose.258,259 For low-LET radiation, the single-dose threshold for a cataract 
in humans is approximately 2 Gy, which increases to about 4 Gy for 
fractionated exposures. These dose thresholds apply to any detectable 
cataract, although not necessarily a symptomatic one, which generally 
requires a fractionated dose of at least 10 Gy. Neutrons are also known 
to be quite effective at inducing cataracts, with RBEs of about 5 to 10 
commonly observed in laboratory rodents.255

Radiation Carcinogenesis
Unrepaired or misrejoined DNA damage caused by radiation exposure 
is usually lethal to the cell, although this is not invariably the case, 
particularly when the genetic material is simply rearranged rather than 
deleted. Whether such changes have further implications for the cell 
bearing them depends on the location of the damage in the genome, 
the nature and extent of the mutational event, whether working copies 
of proteins can still be produced from the gene or genes involved, what 
function these proteins normally have, and the type of cell. There is 
compelling evidence that some of these radiation-induced genetic 
rearrangements—particularly ones that activate oncogenes or inactivate 
tumor suppressor genes—either alone or in combination with other 
such changes predispose a cell to neoplastic transformation, a necessary 
early step in the process of tumor induction.254,260

Laboratory studies.  Although ionizing radiation is one of the most 
studied and best understood carcinogens, it is not a particularly potent 
one. This fact hampers studies of radiation carcinogenesis in humans, 
because investigators must identify a modest radiogenic increment of 
excess risk with a long latency period against a high background 
spontaneous cancer rate and multiple confounding factors. Nevertheless, 
from a public health perspective, carcinogenesis is the most important 
somatic effect of radiation for doses of 1.5 Gy or less.28

The use of cell cultures and laboratory rodents to study carcinogenesis 
avoids some of the pitfalls of human epidemiological studies but have 
their own inherent limitations. Cell culture systems employ neoplastic 
transformation as the endpoint, which is a prerequisite for, but by no 
means equal to, carcinogenesis in vivo. Neoplastic transformation is 
defined as the acquisition of one or more phenotypic traits in nontu-
morigenic cells that are usually associated with malignancy, such as 
immortalization, reduced contact inhibition of growth, increased 
anchorage-independent growth, reduced need for exogenously supplied 
nutrients and growth factors, various morphological and biochemical 
changes, and, in nearly all cases, the ability to form tumors in histo-
compatible animals.237 Such systems can be used to study relatively 
early events in the carcinogenesis process, have much greater sensitivity 
and statistical resolution than in vivo assays, and can be used to measure 
dose-response relationships. Laboratory animal studies, however, are 
considered more relevant in that tumor formation is the endpoint, 
latency periods are shorter, statistical variability is reduced, and the 
carcinogen exposure conditions can be carefully controlled.

Pertinent results from laboratory studies of radiation carcinogenesis 
include the following:
1.	 Carcinogenesis is a stochastic effect, that is, a probabilistic function 

of the dose received, with no evidence of a dose threshold. Increasing 
the radiation dose increases the probability of the effect, but not its 
severity.254,260

2.	 The neoplastic transformation frequency increases linearly with dose, 
at least over the low-dose range (about 1.5 Gy or less).

3.	 There is a dose rate effect for transformation and carcinogenesis 
(for low-LET radiations); protracted exposures carry a reduced risk 
relative to acute exposures.

4.	 The processes of neoplastic transformation and carcinogenesis are 
necessarily in competition with the cell-killing effects of ionizing 

is seldom known, and should it be high enough to reach the threshold 
for the gastrointestinal syndrome, such heroic measures would be in 
vain. This was the case for all but 2 of the 13 Chernobyl accident victims 
who received bone marrow transplants.28 Of the two survivors, only 
one technically had his life saved by the transplant; the other survivor 
showed autologous bone marrow repopulation.

Teratogenesis
One of the most anxiety-provoking risks of irradiation in the eyes of 
the general public is prenatal exposure of the developing embryo or 
fetus.254,255 In part, such concern is warranted because teratogenic effects 
are quite sensitive to induction by ionizing radiation, with readily 
measurable neurological abnormalities noted in individuals exposed 
prenatally to doses as low as approximately 0.06 Gy.28 The radiation-
induced excess relative risk of teratogenesis during the most sensitive 
phase of gestation is approximately 40% per Gy.28 By comparison, the 
spontaneous incidence of a congenital abnormality occurring during 
an otherwise normal pregnancy is about 5% to 10%.255

Information on the teratogenic effects of radiation in humans come 
from two major sources, the Japanese atomic bomb survivors and patients 
who received diagnostic or therapeutic irradiation either prior to the 
establishment of modern radiation protection standards or in clinical 
emergency situations. While a range of abnormalities have been identified 
in individuals irradiated in utero (including anecdotal reports of miscar-
riages and stillbirths, cataracts and other ocular defects, gross malforma-
tions, sterility, etc.), the most commonly reported are microcephaly, 
intellectual/cognitive impairment, and growth retardation.28,254,255 Each 
of these teratogenic effects has a temporal relationship to the stage of 
gestation at the time of irradiation as well as a radiation dose and dose 
rate dependency. Lethality is the most common consequence of irradia-
tion during the preimplantation stage (within 10 days of conception), 
growth retardation has been noted for irradiation during the implantation 
stage (10–14 days after conception), and during the organogenesis period 
(about 15–50 days after conception), the embryo is sensitive to both 
lethal, teratogenic, and growth retarding effects.255 Radiation-induced 
gross abnormalities of the major organ systems do not occur during 
the fetal period (more than 50 days postconception), although generalized 
growth retardation and some neurological defects have been noted for 
radiation doses in excess of 1 Gy.

Radiation-Induced Cataracts
Late effects resulting from irradiation of the eye were noted within a 
few years of the discovery of x-rays,228,255 with cataracts being the most 
frequent pathological finding. From a clinical perspective, the induction 
of a cataract following radiotherapy is a normal tissue complication 
that can be corrected surgically and, as such, is not considered quite as 
dire as other late effects. From a radiobiological perspective, however, 
cataracts are unique among the somatic effects of radiation in several 
respects. First, although the lens of the eye is a self-renewing tissue 
complete with a stem cell compartment of epithelial cells that divide 
and gradually differentiate into mature lens fibers, there is no clear 
mechanism of cell loss.28 As such, the stem cells damaged by radiation 
(which manifest themselves as abnormal, opaque lens fibers) persist, 
eventually leading to a cataract. Second, cataracts are among the few 
radiation-induced lesions that can be distinguished pathologically from 
their spontaneously occurring counterparts; radiation cataracts first 
appear in the posterior pole of the lens, whereas spontaneous cataracts 
usually begin in the anterior pole.258,259 Third, radiogenic cataracts exhibit 
a variable latency period (anywhere from about a year to several decades, 
averaging 5–8 years) that decreases with increasing radiation dose. Finally, 
cataract formation is a nonstochastic (deterministic) process; that is, 
there is a threshold dose below which no cataracts occur, but above the 



CHAPTER 1  The Biological Basis of Radiation Oncology 31

Carcinogenic risk from prenatal irradiation.  The risk of carcino-
genesis as a result of prenatal radiation exposure is made even more 
controversial by conflicting results of epidemiological studies. One major 
study cohort consisted of several thousand children (plus a demographi-
cally similar population of unirradiated children) who received prenatal 
exposure from diagnostic procedures during the 1950s and 1960s. The 
Oxford Survey of Childhood Cancer263 reported nearly twice the incidence 
of leukemia in children who had received prenatal irradiation. Although 
other epidemiological studies lend credence to the Oxford Survey’s 
findings,254,260 it is still possible that factors other than the x-ray exposure 
may have caused, or at least contributed to, the excess cancer risk. On 
the other hand, children of the Japanese atomic bomb survivors who 
were pregnant at the time of the bombing did not support the Oxford 
Survey’s findings of increased risk of childhood malignancy; however, 
they did support an increased risk of malignancy later in life.28

On the assumption that it is preferable to overestimate rather than 
underestimate risk, it is prudent to assume that the carcinogenic risk 
of radiation exposure to an embryo or fetus is about twice that for 
postnatal exposure.

Carcinogenic risk from medical imaging procedures.  Recent data 
gleaned from the Japanese atomic bomb survivors indicate a small but 
statistically significant excess cancer risk even for doses as low as 35 to 
150 mSv.264,265 That this is in the range of doses delivered during a 
computed tomography (CT) scan—in particular, a pediatric CT 
scan266,267—has made headlines and both sparked controversy268 as well 
as increased awareness269 of radiation’s risks. Estimates are that an 
abdominal helical CT scan of a pediatric patient results in a risk of a 
fatal cancer later in life of approximately one in a thousand.265

A very small risk of radiation carcinogenesis from a CT scan may 
seem trivial, especially to the radiation oncologist who typically delivers 
more than 10 times that dose to a patient each day (albeit not to the 
whole body). Nevertheless, the finding of a radiation-induced excess 
cancer risk associated with a medical imaging procedure whose use has 
skyrocketed over the past 35 years265 has the makings of a public health 
issue. Currently, over 70 million CT scans are performed annually in the 
United States.265 That, disproportionately, this increase in CT scanning 
has been in a pediatric population both inherently more sensitive to 
ionizing radiation and with the longest lifespan in which to express 
those radiation-induced malignancies is all that much more concerning.

Because of this, radiation oncologists, as de facto experts on the 
health and medical effects of ionizing radiation, should be willing to 
serve as educators of the public as to both the benefits and risks associated 
with the common procedures that they employ.

Early and Late Effects Following Radiotherapy
It is not the intent of this section to provide an exhaustive review of 
the various histopathological changes observed in the irradiated normal 
tissues of radiation therapy patients; the reader is referred to several 
textbooks and pertinent review articles on the subject (e.g., Rubin and 
Casarett,228 Mettler and Upton,255 and Fajardo270). This section will focus 
instead on more recent developments that promise to increase our 
understanding of the etiology of normal tissue injury and, hopefully, 
provide clues as to how to decrease or even prevent their occurrence.

Cytokines, reactive oxygen species, and inflammation.  As mentioned 
previously, the early and late effects that occur in irradiated normal 
tissues result directly or indirectly from the killing of critical target 
cells. Although this statement is true in a general sense, it is clearly a 
gross oversimplification of what is now known to be a highly complex 
and dynamic process of signaling cascades, radiation-induced gene 
expression, cell death (by any of several possible mechanisms), and 
compensatory proliferative responses. Cytokines, chemokines, and growth 
factors, inducible proteins released by irradiated cells that stimulate 

radiation.28 As such, dose-response curves for tumor formation in 
vivo tend to be bell shaped as a function of dose (e.g., Upton261). 
In vitro, where cytotoxicity can be assessed separately from trans-
formation and appropriate corrections made, dose-response curves 
tend to be linear.
Epidemiological studies in humans.  In humans, most of the informa-

tion useful for risk estimation is derived from epidemiological studies, 
with the dose almost always exceeding 0.1 Gy and often exceeding 1.0 Gy. 
However, most of the controversy concerns doses less than 0.1 Gy, 
delivered over protracted, rather than acute, time periods. Therefore, 
in order to infer low-dose effects from high-dose data, epidemiologists 
make extrapolations and assumptions about dose-response relationships 
that may or may not be valid in all cases.

Many sources of error can also plague epidemiological data, including 
selection bias, small sample size, heterogeneous population characteristics, 
and dose uncertainties.255 The human populations that have been and 
continue to be evaluated for radiation-induced excess cancers are Japanese 
atomic bomb survivors; persons exposed to fallout from nuclear tests 
or accidents; radiation workers receiving occupational exposure; popula-
tions living in areas characterized by above average natural background 
radiation or in proximity to man-made sources of radiation; and patients 
exposed to repeated diagnostic or therapeutic radiation. Pertinent findings 
from these studies include the following.
1.	 Within the limits of statistical resolution, the shape of the dose-

response curve is not inconsistent with a linear, no-threshold 
model.254,260

2.	 Different tissues have different sensitivities to radiation-induced 
carcinogenesis, with bone marrow (leukemias other than chronic 
lymphocytic), breast (female), salivary glands, and thyroid especially 
susceptible.255

3.	 The latency period between irradiation and the clinical presentation 
of a solid tumor averages 20 years or more, and about half that for 
hematological malignancies. However, the latency period varies with 
the age of the individual, generally increasing with decreasing age 
at exposure. Latency periods tend to be shorter for radiation-induced 
second malignancies, in which patients had received much higher 
doses.

4.	 Two risk projection models have been used to predict the risk of 
radiation carcinogenesis in the human population: the absolute risk 
model, and the relative risk model. Using the absolute risk model, 
excess risk in an irradiated population begins after the latency period 
has passed and is added to the age-adjusted spontaneous cancer 
risk. After a period of time, the cancer risk returns to spontaneous 
levels. The relative risk model predicts that the excess cancer risk is 
a multiple of the spontaneous incidence. At present, the epidemiologi-
cal data tend to support the relative risk model for most solid tumors 
and the absolute risk model for leukemia.

5.	 The current recommendations of the International Commission 
on Radiological Protection (ICRP) state that the nominal prob-
ability of radiation-induced cancer death is approximately 4% 
per Sievert (Sv) for working adults and about 5% per Sv for the 
whole population under conditions of frequent, low-dose exposure 
over extended periods.262 These risk estimates double for acute,  
high-dose exposures.
The Sievert is a unit of dose equivalent used for radiation protection 

purposes and is equal to the radiation dose (in Gy) multiplied by a 
radiation weighting (WR) factor specific for the type of radiation (with 
WR roughly equivalent to the radiation’s RBE). As warranted, a second 
correction to the equivalent dose can be made to account for the differing 
radiosensitivities of the different tissues exposed, termed the tissue 
weighting factor (WT). Once this correction is applied, equivalent dose 
becomes effective dose, also expressed in units of Sv.
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the previous treatment course is well documented and the treatment 
fields still identifiable, the clinician is nevertheless left with the uncertainty 
of what time, dose, and fractionation pattern to use.

Radiobiology research in this area has been slow in coming (given 
the very nature of studies involving late effects), but some progress has 
been made and some of the factors thought to be important in normal 
tissue tolerance to retreatment have been identified. These include 
whether the initial treatment course was to “full tolerance” or not, the 
likelihood that residual damage from the first treatment course has 
persisted, the amount of time that has elapsed between the first course 
and the second, the target volume to be reirradiated compared to the 
original target volume, and the structural and functional makeup of 
the tissue at risk.

A few general concepts are beginning to emerge from studies with 
laboratory rodents (for reviews, see Thames and Hendry,275 Travis and 
Terry,276 and Joiner and van der Kogel141):
1.	 For rapidly proliferating tissues such as skin, bone marrow, or testis, 

recovery following the first course of treatment is rapid such that 
the tissue can be reirradiated to near the full tolerance dose within 
about 2 to 3 months. However, it must be borne in mind that these 
tissues do not exist in isolation; thus, damage to nearby tissues that 
they depend on could affect tolerance.

2.	 Some slowly proliferating tissues, such as spinal cord and lung, are 
capable of long-term recovery after the first course of treatment 
and can be retreated to a partial (25%–70%) tolerance dose, with 
the dose generally increasing the longer the time between the two 
treatments (3–6 months minimum).

3.	 Other slowly dividing tissues, such as bladder, seem to show permanent 
residual injury from the first treatment such that the total dose for 
a second course must be reduced by at least half regardless of how 
much time has elapsed between treatments. In addition, there is 
evidence that complications arising from retreatment tend to occur 
much earlier (relative to the second treatment) than they would 
have from a single treatment.

4.	 One apparent exception to this type of classification system is the 
kidney, for which retreatment tolerance decreases with time between 
the first and second treatment courses.
A model that is consistent with these observations suggests that 

target cells that survive the initial treatment course have three pos-
sible fates. Some may regenerate their numbers over time, making 
the tissue as a whole better able to tolerate a second treatment, with 
the rate of regeneration determining how much time should elapse 
between the two treatments and what total dose can be delivered 
safely during the second course. Other target cells may maintain a 
steady-state number of survivors after the first treatment; therefore, the 
tissue would appear to harbor “residual damage” and never be able to 
tolerate a full second course of radiation therapy. Finally, some target 
cells may undergo continued depletion after the first treatment such 
that tolerance to a second treatment course will actually decrease the 
longer the time between treatments. This may be related to a progres-
sive expression of otherwise subclinical residual damage from the  
initial treatment.

Radiation-induced second malignancies.  With increasing numbers 
of long-term cancer survivors, the risk of second malignancies arising 
as a consequence of prior treatment becomes significant. Leukemia is 
thought to account for about 20% of second malignancies, with the 
remainder usually presenting as solid tumors in and around the previously 
irradiated site.277,278 Certain subpopulations of previously treated patients 
are at an even higher risk than the majority and deserve special attention, 
including children and young adults, those with a known genetic 
predisposition to cancer, immunocompromised individuals, and those 
with known exposure to other carcinogens (including chemotherapy). 

other cells to produce a biological response, participate in many of 
these processes. Although produced locally within the irradiated volume 
and chiefly intended to influence the behavior of cells in the local 
microenvironment, some cytokines do enter the circulation and can 
mobilize cells distant from the irradiated site. In addition to cytokines, 
another important player in an irradiated tissue’s microenvironment 
and that also contributes to the development of the complication, is 
persistent, sometimes cyclic, oxidative stress and inflammation that, 
after the initial radiation insult, can become self-perpetuating.271

By way of example, lung irradiation causes the release of, among 
others, cytokines transforming growth factor β (TGF-β), basic fibroblast 
growth factor (bFGF), and interleukin-6 (IL-6), all of which participate 
in the etiology of radiation pneumonitis and fibrosis. Of these, TGF-β’s 
role in promoting lung fibrosis is perhaps the best understood, as is its 
potential to serve as an early biomarker of radiation-induced lung 
injury.272 It drives fibrosis development by affecting the survival, prolifera-
tion, differentiation, and extracellular matrix production by fibroblasts, 
while at the same time producing reactive oxygen species that further 
contribute to oxidative stress and inflammation in the tissue’s 
microenvironment.271,273

Functional subunits and volume effects.  Radiation oncologists 
traditionally reduce the total dose when the irradiation field involves 
a large volume of normal tissue. Although this practice evolved empiri-
cally, the biological basis for decreasing normal tissue tolerance with 
increasing irradiation volume remains unclear. Withers240,274 proposed 
a descriptive model for the pathogenesis of radiation injury in normal 
tissues based on the structural and functional organization of the tissue 
at risk for a complication. Conceptually, tissues are considered to be 
organized into functional subunits (FSUs), which can be inactivated 
by radiation exposure secondary to the killing of their constituent target 
cell(s). These FSUs may be anatomically defined, such as an alveolar 
sac of the lung, a nephron of the kidney, or lobule of the liver, or anatomi-
cally undefined (skin, gut, nervous system).28 The main difference between 
the two is that surviving cells from surrounding FSUs can migrate and 
help repopulate anatomically undefined FSUs but not anatomically 
defined ones, presumably due to the lack of any structural demarcation. 
This could have the net effect of making anatomically undefined  
FSUs able to tolerate higher radiation doses.

Whether the inactivation of one or more FSUs impacts the overall 
tissue function (in the form of a radiation-induced complication) depends 
on how many of the tissue’s FSUs are in the irradiation field and their 
spatial arrangement. The spinal cord responds to changing irradiation 
volume as if its corresponding FSUs are arranged “in series.” There is 
a steep reduction in the tolerance dose for white matter necrosis of 
the rat spinal cord with increasing treatment volume for small radia-
tion fields (up to about 2 cm exposed cord length), but little or no 
volume dependence for larger treatment fields, presumably because 
inactivation of one FSU inactivates the entire cord.141 The lung, on 
the other hand, seems to have a large functional reserve; it is only 
when much larger volumes are irradiated, and correspondingly large 
numbers of FSUs inactivated, that a functional deficit develops. This 
is more in keeping with a tissue whose functional subunits operate 
relatively independently and are arranged “in parallel.” Some other 
organs are believed to behave as if they have both serial and parallel  
components.

One immediate clinical implication for tissues with parallel versus 
serially arranged FSUs is that a small dosimetric hotspot would be 
relatively innocuous for a parallel tissue but potentially catastrophic 
for a serial tissue.

Reirradiation tolerance.  A common problem that radiation oncolo-
gists face is whether or not to risk reirradiation of a previously treated 
site. If a decision is made to retreat, even in the most ideal case in which 
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Time-Dose-Fractionation Relationships
The NSD Model
Based on Strandqvist’s isoeffect curves,24 Fowler and Stern’s pig skin 
experiments,91,283 and other laboratory and clinical findings,23 Ellis293,294 
formulated the NSD concept in 1969. The NSD equation,

D NSD N T= ( ) . .0 24 0 11

where D is the total dose delivered, N the number of fractions used, T 
the overall treatment time, and NSD the nominal standard dose (a 
proportionality constant thought to be related to the tolerance of the 
tissue being irradiated), became widely used for the design of biologically 
equivalent treatment schedules, particularly when its more mathematically 

For example, large epidemiological studies have assessed the breast and 
lung cancer risk in Hodgkin lymphoma survivors,279,280 leukemia and 
sarcomas in cervical cancer survivors,281 and sarcomas in long-term 
survivors of childhood retinoblastoma.282

Dose Rate and Dose Fractionation Effects
While the sparing effects of fractionated, external beam radiotherapy 
and brachytherapy are assumed to be a result of the repair of SLD, 
other factors may be involved as well, most notably, repopulation. In 
the isoeffect relationship derived by Strandqvist,24 however, the “time 
factor” included both the effects of dose fractionation (presumably, the 
result of SLDR) and overall treatment time (presumably, repopulation). 
It was not until 1963 that Fowler and colleagues91,132,283 attempted to 
separate the contributions of these two factors by performing fraction-
ation experiments with pig skin. In their experiments, 5 equal dose 
fractions were given in overall treatment times of either 4 or 28 days. 
In changing from an overall time of 4 days to 28 days, an additional 
6 Gy was required to reach the same level of skin response. This was 
thought to reflect the contribution of overall time (i.e., repopulation) 
to the isoeffect total dose since the size and number of fractions were 
kept constant. In a parallel series of experiments in which the overall 
time was kept constant (28 days) but the number of fractions was 
increased from 5 to 21, it was found that an additional 13 Gy was 
required to reach the skin isoeffect level. This increase was almost as 
great as the 16-Gy additional dose required when changing from a 
single-dose treatment to a treatment protocol of 5 fractions in 4 days, 
implying that the change in fraction number was more important than 
the change in the overall treatment time.

During the 1960s and 1970s, dose rate effects were studied extensively. 
The clinical community was also becoming more attuned to the biological 
underpinnings of radiation therapy, especially the “Four Rs of Radio-
therapy”: repair, reoxygenation, redistribution, and repopulation.284 
These are considered key radiobiological phenomena that influence the 
outcome of multifraction radiotherapy. (In later years, a fifth R was 
added, radiosensitivity.285)

Bedford and Hall286,287 generated in vitro survival curves for HeLa 
cells irradiated at various dose rates between about 0.1 Gy per hour 
and 7.3 Gy per minute. The killing effectiveness per unit dose decreased 
as the dose rate was reduced; however, a limit to this dose rate or dose 
fractionation effect was reached under conditions in which cell cycle 
and proliferative effects were eliminated by the use of lower tempera-
tures288 or by growing cells to plateau phase prior to irradiation289–291 
(Fig. 1.26).

Similar conclusions about the nature of dose rate and dose frac-
tionation effects were reached from clinical studies. Dutreix et al.292 
studied dose fractionation effects in human skin under conditions 
in which cell cycle and proliferative effects were minimized (i.e., 
short interfraction intervals and overall treatment times). Their data 
indicated that the incremental dose recovered due to SLDR when a 
single dose was replaced by two equal fractions became very small 
when the size of the dose per fraction dropped below approximately 
2 Gy (Table 1.4). This finding is consistent with the hypothesis that 
survival curves have negative (rather than zero) initial slopes and, 
therefore, that a limit to the repair-dependent dose fractionation effect 
should be reached for increasingly smaller-sized dose fractions or dose 
rates. Accordingly, these authors cautioned that isoeffect equations in 
common clinical use at the time (the NSD model—see discussion 
to come) would be inaccurate for predicting tolerances when doses 
per fraction were quite small. Further, small differences in the initial 
slopes of survival curves for different cell types could be magnified into 
large differences in the limiting slopes for continuous or multifraction  
survival curves.
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Fig. 1.26  The dose rate effect for nonproliferating C3H 10T1/2 mouse 
cells maintained in vitro. As the dose rate decreases from about 56 to 
0.3 Gy/h, survival curves become progressively shallower, reflecting the 
repair of radiation damage during the continuous irradiation interval. 
However, for dose rates less than about 0.3 Gy/h, no further sparing 
effect of dose protraction is observed, suggesting that there is an effective 
limit to the repair-dependent dose rate effect. This is considered compel-
ling evidence that cell survival curves have nonzero initial slopes. (Modified 
from Wells R, Bedford J. Dose-rate effects in mammalian cells. IV. 
Repairable and nonrepairable damage in non-cycling C3H 10T1/2 cells. 
Radiat Res. 1983;94:105.)

TABLE 1.4  “Recovered Dose” as a 
Function of Dose per Fraction for Skin 
Reactions in Human Radiotherapy Patients

Single Dose (Ds) Split Dose (2 Di)a
Recovered Dose
(Dr = 2Di − Ds)

15 Gy 2 × 8.5 Gy 2 Gy

13 Gy 2 × 7.5 Gy 2 Gy

8 Gy 2 × 5.5 Gy 3 Gy

6 Gy 2 × 4 Gy 2 Gy

3.5 Gy 2 × 2 Gy ≤0.5 Gy

aInterfraction interval (i) was 6 h.
Data from Dutreix J, Wambersie A, Bounik C. Cellular recovery in 
human skin reactions: application to dose fraction number overall 
time relationship in radiotherapy. Eur J Cancer. 1973;9:159–167.
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Fig. 1.28  Isoeffect curves in which the total dose necessary to produce 
a certain normal tissue or tumor endpoint (as indicated) is plotted as a 
function of the dose per fraction under conditions in which cell proliferation 
is negligible. Isoeffect curves for late-responding normal tissues (solid 
lines) tend to be steeper than those for early-responding normal tissues 
and tumors (dashed lines). This suggests that, for the same total dose, 
late reactions may be spared by decreasing the size of the dose per 
fraction used. It also follows that by using smaller-sized dose fractions, 
a somewhat higher total dose could be given for the same probability 
of a late reaction but, hopefully, with a higher tumor control probability. 
(Modified from Withers H, Thames H, Peters L, et al. Normal tissue 
radioresistance in clinical radiotherapy. In: Withers H, Thames H, Peters 
L, eds. Biological Basis and Clinical Implications of Tumor Radioresistance. 
New York: Masson; 1983:139.)

convenient derivatives, such as the TDF295 or CRE296 equations became 
available.

The introduction of the NSD equation theoretically allowed radio-
therapy prescriptions worldwide to be compared and contrasted with 
respect to “biological equivalence.” It also permitted the calculation of 
dose equivalents for split-course treatments and brachytherapy, and 
provided a means of revising treatment prescriptions in the event of 
unforeseen treatment interruptions. Because the NSD formula was based 
on observations of early-onset radiation effects, it was quite useful as 
a predictor of some tissue tolerances, as long as it was not used for 
treatments involving extremes of fraction number or overall time.

On the other hand, the NSD formula was ill equipped to deal with 
some clinical problems, particularly the prediction of late effects in 
normal tissues (especially at nonstandard doses per fraction) and the 
patterns of repopulation in normal tissues and tumors.243 The use of 
a fixed exponent for the overall time component, T, gave the false 
impression that an extra dose to counteract proliferation would be 
needed from the outset of treatment, rather than after a delay of several 
weeks, which is what is observed in practice (e.g., Denekamp297).

In light of the growing frustration with the NSD model and research 
at the time focusing on the shape of the shoulder region of cell survival 
curves and the nature of dose rate and dose fractionation effects, new 
radiobiology-based approaches to isoeffect modeling were developed 
during the late 1970s and early 1980s.

The Linear-Quadratic Isoeffect Model
In ambitious multifraction experiments using mice in which a broad 
range of fraction sizes and interfraction intervals was used, Douglas 
and Fowler298 developed a novel method of data analysis in which they 
assumed that their resulting isoeffect curves for skin damage in the 
mouse foot were a reflection of the shape of the underlying tissue 
dose-response curve for the effect. The shape of this dose-response 
curve was assumed to be linear-quadratic, effectively “repurposing” the 
cell survival curve expression for in vivo use. Because overall treatment 
times were kept quite short, proliferative effects were assumed to be 
negligible, such that inherent radiosensitivity and repair were the main 
factors governing the tissue’s response.

The underlying dose-response curves were deduced by plotting 1/D, 
where D was the total dose delivered (D = n × d), as a function of d, 
the dose per fraction. This was termed a reciprocal dose plot and was 
used to derive values for the α/β ratio, a novel metric proposed to 
express a tissue’s fractionation sensitivity.298 A representative reciprocal 
dose plot is shown in Fig. 1.27.

This new approach to isoeffect analysis, in which attention was 
focused on repair parameters and dose-response curve shapes, emphasized 
that the critical parameter in radiotherapy is the size of the dose per 
fraction, more so than the overall treatment time. During the course 
of experimental and clinical fractionation studies, it became clear that 
there was a systematic difference between early- and late-responding 
normal tissues and tumors in their responses to different fractionation 
patterns. Isoeffect curves for the slowly or nonproliferating normal 
tissues—kidney and spinal cord, for example—are steeper in general 
than those for more rapidly proliferating, early-responding tissues, such 
as skin and gut epithelium and, significantly, most tumors (Fig. 1.28).299,300 
A steep isoeffect curve implies that late effects were more sensitive to 
changes in the size of the dose per fraction, experiencing greater sparing 
with decreasing fraction size than their early-effects counterparts (Fig. 
1.29). This difference is also reflected in the α/β ratios derived for these 
tissues, which are usually low for late-responding tissues (on the order 
of 1–6 Gy, with an average of about 3 Gy), and high for early-responding 
tissues and tumors (typically 7–20 Gy, with an average of about 10 Gy; 
Tables 1.5 and 1.6). There are exceptions, however.
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Fig. 1.27  The reciprocal dose or “Fe” plot technique of Douglas and 
Fowler,298 used to determine a normal tissue or tumor’s α/β ratio. Using 
this method, the reciprocal of the total dose necessary to reach a given 
isoeffect is plotted as a function of the dose per fraction. Assuming 
that the killing of target cells responsible for the tissue effect can be 
modeled using the linear-quadratic expression, S = e–(αD + βD2), the α/β 
ratio can be obtained from the ratio of the isoeffect curve’s intercept:slope. 
See text for details. (Modified from Douglas B, Fowler J. The effect of 
multiple small doses of x rays on skin reactions in the mouse and a 
basic interpretation. Radiat Res. 1976;66:401.)
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An important implication of the steeper isoeffect curves for late-
responding tissues compared to those for tumors is that it might be 
possible to increase the therapeutic ratio by using larger numbers of 
smaller fractions to a somewhat higher total dose than traditionally 
used.248,249,301 Although such treatments could exacerbate acute effects 
in normal tissues, late effects would be spared preferentially and tumor 
control could be improved, thereby increasing the therapeutic ratio. 
The use of multiple fractions per day of smaller than conventional size 
(less than about 1.6 Gy) but to a somewhat higher total dose, with little 
or no change in overall treatment time, is called hyperfractionation. 

Clinical Applications of the Linear-Quadratic Isoeffect Model
The shapes of tissue and tumor isoeffect curves and their calculated 
α/β ratios have a number of clinical applications. It is possible using 
α/β ratios to equate treatment schedules employing different-sized doses 
per fraction in order to match the probability of causing a tissue injury, 
assuming that the overall treatment times are similar in both schedules 
or the tissue at risk of a complication is relatively insensitive to treatment 
duration.249 The equation

D D d d2 1 1 2= + +( ) ( )α β α β

can be used for this purpose, where D1 and d1 are, respectively, the total 
dose and dose per fraction (in Gy) of one radiotherapy treatment plan, 
D2 and d2 are the total dose and dose per fraction for an alternate 
treatment plan designed to be biologically equivalent for a particular 
tissue effect, and with the fractionation sensitivity of that tissue defined 
by its unique α/β ratio. Of course, avoiding a normal tissue complication 
is not the sole criterion used in treatment planning; in considering a 
particular time, dose, and fraction size combination, the responses of 
the tumor and all incidentally irradiated normal tissues should be taken 
into account simultaneously.
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Fig. 1.29  Hypothetical dose response curves for either an acute (top) 
or late (bottom) effect in an irradiated normal tissue, depending on 
whether the total dose “C” is delivered using dose fractions of size 
“A” or “B.” Because of the difference in the initial slopes of the cor-
responding single-dose survival curves for these cell types, reducing 
the fraction size from “B” to “A” preferentially spares late-responding 
normal tissues (shaded areas). (Modified from Withers H, Thames H, 
Peters L. Differences in the fractionation response of acutely responding 
and late-responding tissues. In: Karcher K, Kogelnik H, Reinartz G, eds. 
Progress in Radio-Oncology II, New York: Raven Press; 1982:287.)

TABLE 1.5  Representative α/β Ratios for 
Human Normal Tissues and Tumors

Tissue Type (and Endpoint)
α/β Ratio (±95% 
Confidence Interval)

Early-Responding Normal Tissues
Skin: erythema
  Desquamation

10.6 (1.8; 22.8) Gy
11.2 (8.5; 17.6) Gy

Lung: pneumonitis ≤90 days after 
radiotherapy

>8.8 Gy

Oral Mucosa: mucositis 8–15 Gy

Late-Responding Normal Tissues
Skin: telangiectasia
  Fibrosis

~2.7 (−0.1; 8.1) Gy
1.7 (0.6; 3.0) Gy

Breast: cosmesis
  Fibrosis

3.4 (2.3; 4.5) Gy
3.1 (1.8; 4.4) Gy

Lung: pneumonitis >90 days after 
radiotherapy

  Fibrosis

4.0 (2.2; 5.8) Gy

3.1 (−0.2; 8.5) Gy

Bowel: perforation/stricture
  Various other

3.9 (2.5; 5.3) Gy
4.3 (2.2; 9.6) Gy

Spinal cord: myelopathy <3.3 Gy

Muscle, vasculature or cartilage: 
impaired movement

3.5 (0.7; 6.2) Gy

Nerve: brachial plexopathy
  Optic neuropathy

2.0–3.5 Gy
1.6 (−7; 10) Gy

Head and neck: various 3.5–4 Gy

Tumors
Head and neck: nasopharynx
  Vocal cord
  Buccal mucosa
  Tonsil
  Larynx

16 (−11; 43) Gy
~13 Gy
~6.6 (2.9; ∞) Gy
7.2 (3.6; ∞) Gy
14.5 (4.9; 24) Gy

Lung: squamous cell carcinoma ~50–90 Gy

Cervix: squamous cell carcinoma >13.9 Gy

Skin: squamous cell carcinoma
  Melanoma

8.5 (4.5; 11.3) Gy
0.6 (−1.1; 2.5) Gy

Prostate 1.1 (−3.3; 5.6) Gy

Breast (early-stage invasive ductal, 
lobular, and mixed)

4.6 (1.1; 8.1) Gy

Esophagus 4.9 (1.5; 17) Gy

Liposarcoma 0.4 (−1.4; 5.4) Gy

Data from Joiner M, van der Kogel A. Basic Clinical Radiobiology. 4th 
ed. London: Hodder Arnold; 2009.



36 SECTION I  Scientific Foundations of Radiation Oncology

α/β ratios for the tissues at risk. For this reason, the units used to 
describe these extrapolated doses are, for example, Gy3 and Gy10 rather 
than Gy, in which the subscripts 3 and 10 refer to the assumed α/β 
ratio of the tissue at risk. A second caveat is that, while two different 
radiotherapy treatment schedules can be compared qualitatively on the 
basis of their respective Gy3 or Gy10 doses, Gy3 and Gy10 cannot be 
intercompared.

A mathematical rearrangement of the linear-quadratic expression 
S = e−(αD + βD2) yields

BED E nd d= = +α α β( )1

where E is the (iso)effect being measured (E is divided by α to obtain 
the BED value in units of dose), n is the number of fractions, d is the 
dose per fraction, and the α/β ratio is specific for the tissue being 
irradiated. The factor (1 + d / α/β) has been called the relative effectiveness 
term because, in essence, it is a correction for the fact that treatment 
is not really given as an infinite number of infinitely small dose fractions 
but rather as a finite number of fractions of a finite size.

Perhaps the best way to illustrate the use of the BED equation is by 
example. Suppose that a radiation oncologist is developing a clinical 
protocol in head and neck cancer comparing standard fractionation 
(30 fractions of 2 Gy to a total dose of 60 Gy in an overall treatment 
time of about 6 weeks) to a schedule of 50 fractions of 1.4 Gy to a 
total dose of 70 Gy in approximately the same overall treatment 
time. The tissues of most concern for radiation injury are the tumor, 
the oral mucosa, and the spinal cord, that is, two early-responding 
tissues and one late-responding tissue. Finally, assume that an α/β 
ratio of 10 Gy is appropriate for the tumor and oral mucosa and an 
α/β ratio of 3 Gy is appropriate for the spinal cord. For calculation 
purposes, an α/β ratio of 10 Gy can be used for most early-responding 
normal tissues and tumors and 3 Gy for most late-responding normal 
tissues unless more robust, better vetted values are available. For 
example, an α/β ratio of 4 Gy may be more appropriate for breast 
cancer; 20 Gy for non–small cell lung cancer; approximately 2 Gy 
for CNS, kidney, and prostate cancer; and approximately 0.6 Gy  
for melanoma.247

For the standard fractionation schedule, therefore:
For tumor and mucosa:

E Gy Gy Gy Gyα = + =60 1 2 10 72 10( )

For the spinal cord:

E Gy Gy Gy Gyα = + =60 1 2 3 100 3( )

For the more highly fractionated schedule (rounded off to the nearest 
whole number):
For tumor and mucosa:

E Gy Gy Gy Gyα = + =70 1 1 4 10 80 10( . )

TABLE 1.6  Summary of the Linear-Quadratic Isoeffect Model Parameters and Concepts

Tissue Type α/β Ratioa Dose-Response Curve Shapeb Isoeffect Curve Shapec

Early-responding normal tissues and most tumors High (6–30 Gy) Steep initial slope (α is large) Shallow

Late-responding normal tissues Low (1–6 Gy) Shallow initial slope (α is small) Steep

aDetermined from the reciprocal dose plot technique of Douglas and Fowler.298

bBased on the assumption that differences in the calculated α/β ratio are usually caused by differences in the α component.
cUsing the Thames et al.299 isoeffect curve plot (see Fig. 1.28).

With particularly aggressive tumors that proliferate rapidly, multiple 
treatments per day might also be useful in order to decrease the overall 
treatment time, thereby allowing less time for repopulation of clonogenic 
tumor cells.302,303 Treatment with multiple daily fractions of approximately 
standard size and number (and to about the same total dose), but in 
shorter overall times, is termed accelerated fractionation. In practice, 
however, a combination of accelerated and hyperfractionated treatment 
is often used, as purely accelerated treatment tends to be poorly toler-
ated.275 Finally, hypofractionation, the use of one or a few large dose 
fractions delivered over short periods of time—for example, stereotactic 
radiosurgery (SRS), stereotactic body radiation therapy (SBRT), or 
intraoperative radiation therapy (IORT)—is also an option. Indications 
for such include cases in which the frank ablation of a small primary 
tumor or metastasis is the goal or in the relatively unusual circumstance 
in which the tumor is suspected of having a low, rather than high, α/β 
ratio. Prostate cancer and melanoma are tumor types that meets these 
criteria, as does, to a lesser extent, breast cancer. It is clear that hypo-
fractionation has been quite successful for the treatment of multiple 
types of (small) tumors, while at the same time causing no worse normal 
tissue complications.304–306 However, the biological underpinnings 
associated with its use remain poorly defined and the subject of consider-
able controversy.307–310 Regardless, today’s use of hypofractionation would 
not be possible were it not for innovations in physics and imaging that 
now allow nearly all normal tissue to be excluded from the radiation 
field because, otherwise, complications in late-responding normal tissues 
would be dose limiting. This was amply demonstrated during the early 
days of radiotherapy.

The decision to opt for one of these fractionation protocols would 
depend not only on the α/β ratios for the tissues being irradiated but 
also on their relative repair rates and proliferative responses before, 
during, and after exposure. At present, while α/β ratios for human 
normal tissues and tumors are fairly well characterized, data on prolifera-
tive behavior and repair rates, especially for tumors, are less robust.243,303

With “non-standard” fractionation now the standard, radiation 
oncologists find themselves confronted with the same problem faced 
by their 1930s counterparts, that is, how to compare and contrast different 
treatment schedules for presumptive isoeffectiveness. The “biologically 
effective dose,” or BED method,250,311 another derivative of the LQ model, 
attempts to address this issue. Knowing that cell survival and dose-
response curves have negative initial slopes and that, for a sufficiently 
low dose per fraction or dose rate, a limit to the repair-dependent dose 
fractionation effect occurs that “traces” this initial slope, this question 
may be asked: “In the limit, for an infinite number of infinitely small 
dose fractions, what total radiation dose will correspond to normal 
tissue tolerance, tumor control, or any other endpoint of interest?” 
Clearly, this theoretical dose will be quite large for a tissue characterized 
by a dose-response curve with a shallow initial slope (like many late-
responding normal tissues) and appreciably smaller for a tissue character-
ized by a dose-response curve with a steep initial slope (like most tumors 
and early-responding normal tissues). It is also important to bear in 
mind that BEDs are not real doses but rather extrapolates based on the 
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brachytherapy are used. However, the lack of robust values at present 
for the parameters introduced in such calculations (e.g., potential 
doubling times, repopulation “kick-off” times, and half-times for repair) 
can limit their usefulness. The current status of some of the existing 
and proposed parameters of the LQ model for human tumors and 
normal tissues is summarized in Table 1.7.

RADIATION BIOLOGY IN THE 21ST CENTURY
Since the mid-1980s, most graduate students pursuing careers in oncol-
ogy necessarily trained as molecular, cellular, or tumor biologists and 
not as radiation biologists per se, although some may have worked with 
ionizing radiation as a tool for probing fundamental cellular processes 
or as part of translational research designed to develop new cancer 
therapies. Even fewer have taken a formal course in radiation biology, 
let alone in its more clinical aspects. This shift in focus and training 
that effectively has blurred the line between “radiation biologist” and 
“cancer biologist” is part of the natural evolution of the oncologic 
sciences over the years and surely not an unexpected or unwarranted one. 
However, the fact remains that the field of radiation biology as a distinct 
entity, with its rich 120-year history that has made major contributions 
to fields as diverse as carcinogenesis, epidemiology, toxicology, DNA 
damage and repair, genetics and cytogenetics, cell cycle biology and 
radiation oncology, to name but a few, is threatened with extinction. 
In many respects, the extinction is in name only, as the radiation-
related research enterprise continues regardless of the backgrounds of 
its investigators and how they self-identify. What is being lost, and at 
an increasingly rapid rate, is competent radiation biology educators. 
This is especially troubling, as there remains a need for all radiological 
science professionals to be at least reasonably well versed in the basic 
principles of radiation biology. Radiation oncologists, in particular, 
need to be familiar both with the foundational and modern aspects of 
the field and, since the events of September 11, 2001, a new mandate 
has emerged: the need to provide expertise in the basics of radiation 
biology and radiation protection to emergency responders, civic 
leaders, and the general public in the event of a radiological or nuclear  
terrorist attack.

For the spinal cord:

E Gy Gy Gy Gyα = + =70 1 1 4 3 103 3( . )

Although little quantitative information can be gleaned from this 
exercise, a few qualitative statements can be made. First, a comparison 
of the Gy10 values for the two treatment schedules suggests that the 
more highly fractionated schedule should result in somewhat better 
tumor control, albeit at the expense of more vigorous mucosal reactions 
(i.e., 72 Gy10 compared with 80 Gy10, an 11% increase in “biodose”). 
However, the comparison of the Gy3 values for the two schedules suggests 
that the spinal cord tolerance would be essentially unchanged (i.e., 
100 Gy3 compared to 103 Gy3, a 3% increase).

Even with the BED concept being only semi-quantitative at best, its 
use for treatment planning purposes over the past 3 decades has provided 
a wealth of clinical data that has allowed a better definition of what is 
or is not tolerable for particular normal tissues in terms of Gy3 or Gy10. 
Using head and neck cancer as an example, Fowler et al.247,312,313 have 
suggested that the tolerance dose for acute mucosal reactions is in the 
range of 59 to 63 Gy10 and for late reactions in the range of 110 to 
117 Gy3.

It would be remiss to conclude any discussion of the LQ isoeffect 
model, or any biologically based model with potential clinical application, 
without a few words of warning. First, this model, although certainly 
more robust than the NSD model and much better grounded in biological 
principles, is still a theoretical model. Some limitations of the basic model 
are obvious: an overly simplistic assumption that an isoeffect in a tissue 
corresponds to an isosurvival of a particular cell type; no provision for 
the influence of cell cycle, proliferative or microenvironmental effects in 
the overall dose-response relationship; no way to account for differences 
in repair rates between different tissues; no consideration of volume 
effects; uncertainty surrounding the model’s applicability for extremes 
of fractionation; and a limited understanding of how to apply the model 
in patients receiving multimodality therapy.

Various add-ons to the LQ model have been proposed,314–316 especially 
with respect to compensating for tumor cell repopulation and correcting 
for differing tissue repair rates when multiple fractions per day or 

TABLE 1.7  Current Status of Existing and Proposed Parameters of the Linear-Quadratic 
Isoeffect Model for Human Normal Tissues and Tumors

Parameter Property Governed

AVAILABILITY OF DATA WITH RESPECT TO

Early Effects Late Effects Tumors

α/β Ratio Fractionation sensitivity Can assume 
10 Gy for most

Can assume 
3 Gy for most

Can assume 
10 Gy for most

T1/2 (repair half-time) Repair kinetics Poor/fair Poor None/poor

Tp (effective clonogen doubling time)
and/or
Tk (“kickoff” time—time proliferation 

begins relative to the start of treatment)

Dose lost to accelerated proliferation 
during radiotherapy

Fair Poor/NA Poor/fair

Volume effect Variation in tissue tolerance with 
increasing target volume

Poor Poor None/poor

γ (normalized dose-response gradient) Steepness of dose-response curve for 
effect; can be used to estimate the 
normal tissue complication probability

Fair Fair Fair

Modified from Bentzen SM. Estimation of radiobiological parameters from clinical data. In: Hagen U, Jung H, Streffer C, eds. Radiation Research 
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From a research perspective, fundamental studies of genomic 
instability,317,318 epigenetics,319,320 and cell signaling as it applies to radiation 
response321,322 continue to be active areas of investigation. Our growing 
understanding of the complex roles played by cytokines in the etiology 
of normal tissue complications following radiation exposure323,324 
promises to someday deliver novel, molecularly based radioprotectors 
that may benefit radiation accident victims, first responders during 
radiation emergencies, and astronauts on deep-space missions. Radiation 
scientists also have been important contributors to the fields of genomics 
and proteomics, functional and molecular imaging, and molecularly 
targeted cancer therapy, and to the search for tumor-specific biomarkers 
that can aid in cancer diagnosis, staging, and the monitoring of treatment 
progress.

In early 2018, a new agenda was proposed325 that provides an ambi-
tious roadmap for the next 10 to 20 years of radiation biology research. 
New priority areas for research include combining radiotherapy 
(especially hypofractionation) with immunotherapy; targeting DNA 
repair, cancer metabolism, tumor stem cells, and the tumor microenviron-
ment; and developing novel high-throughput in vitro screening systems 
and animal models.
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