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Series preface
Since their inception over a century ago, advances in the science and technology of medical imaging and 
radiation therapy are more profound and rapid than ever before. Further, the disciplines are increasingly 
cross-linked as imaging methods become more widely used to plan, guide, monitor, and assess treatments 
in radiation therapy. Today, the technologies of medical imaging and radiation therapy are so complex and 
computer-driven that it is difficult for the people (physicians and technologists) responsible for their clinical 
use to know exactly what is happening at the point of care, when a patient is being examined or treated. 
The people best equipped to understand the technologies and their applications are medical physicists, and 
these individuals are assuming greater responsibilities in the clinical arena to ensure that what is intended 
for the patient is actually delivered in a safe and effective manner.

The growing responsibilities of medical physicists in the clinical arenas of medical imaging and radiation 
therapy are not without their challenges, however. Most medical physicists are knowledgeable in either 
radiation therapy or medical imaging, and expert in one or a small number of areas within their disciplines. 
They sustain their expertise in these areas by reading scientific articles and attending scientific talks at 
meetings. In contrast, their responsibilities increasingly extend beyond their specific areas of expertise. 
To meet these responsibilities, medical physicists periodically must refresh their knowledge of advances in 
medical imaging or radiation therapy, and they must be prepared to function at the intersection of these 
two fields. How to accomplish these objectives is a challenge.

At the 2007 annual meeting of the American Association of Physicists in Medicine in Minneapolis, this challenge 
was the topic of conversation during a lunch hosted by Taylor & Francis Publishers and involving a group of 
senior medical physicists (Arthur L. Boyer, Joseph O. Deasy, C.-M. Charlie Ma, Todd A. Pawlicki, Ervin B. 
Podgorsak, Elke Reitzel, Anthony B. Wolbarst, and Ellen D. Yorke). The conclusion of this discussion was that 
a book series should be launched under the Taylor & Francis banner, with each volume in the series addressing 
a rapidly advancing area of medical imaging or radiation therapy of importance to medical physicists. The aim 
would be for each volume to provide medical physicists with the information needed to understand technologies 
driving a rapid advance and their applications for safe and effective delivery of patient care.

Each volume in the series is edited by one or more individuals with recognized expertise in the 
technological area encompassed by the book. The editors are responsible for selecting the authors of 
individual chapters and ensuring that the chapters are comprehensive and intelligible to someone 
without such expertise. The enthusiasm of volume editors and chapter authors has been gratifying and 
reinforces the conclusion of the Minneapolis luncheon that this series of books addresses a major need 
of medical physicists.

This series “Imaging in Medical Diagnosis and Therapy” would not have been possible without the 
encouragement and support of the series manager, Lou Chosen, Executive Editor at Taylor & Francis. 
The editors and authors, and most of all I, are indebted to his steady guidance of the entire project.

William R. Hendee 
Founding Series Editor
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Preface
We initially discussed the possibility of publishing a book on big data in radiation oncology while organiz-
ing a symposium on the topic in the 2015 ASTRO annual meeting at San Antonio, Texas. After chatting 
with Lou Han of the Taylor & Francis Group, it became apparent that this was an undertaking that would 
benefit the community of radiation oncology and cancer research. We were thrilled to receive highly con-
structive and encouraging comments from two anonymous reviewers, to whom we are grateful, about our 
book proposal submitted to Taylor & Francis in late 2016. Here we are—in a period of just a little over two 
years, we were able to bring our idea to print.

The tremendous possibilities that big data can bring to cancer research and management have triggered 
a flood of activities in the development and clinical applications of the technology. Particularly, with the 
support of machine learning algorithms and accelerated computation, the field is taking off with tremen-
dous momentum. We strongly believe that data science will dramatically change the landscape of cancer 
research and clinical practice in the near future.

This book is intended for radiation oncologists, radiation physicists, radiation dosimetrists, data scientists, 
biostatisticians, health practitioners, and government, insurance, and industrial stakeholders. The book is 
organized into four main groups: Basics, Techniques, Applications, and Outlooks. Some of the most basic 
principles and concepts of big data are introduced in the Basics. Following that, techniques used to process 
and analyze big data in radiation oncology are discussed in some details. Then some clinical applications of 
big data in radiation oncology are presented with great details. Finally, future perspectives and insights are 
offered into the use of big data in radiation oncology in terms of cancer prevention, detection, prognosis, 
and management. 

Compared to a handful of similar books, the major features of this book include: (1) a comprehensive 
review of the clinical applications of big data in radiation oncology; (2) specially designed content for a 
wide range of readership; and (3) valuable insights into future prospects of big data in radiation oncology 
from experts in the field.

Being the first of its kind in this much talked-about topic, by no means did we set out to nor could we 
cover all the related topics in this book. However, we hope that this book will lay the foundations to many 
future works and hopefully inspire others to get involved in big data analytics.
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1 Big data in radiation 
oncology: Opportunities 
and challenges

Jean-Emmanuel Bibault

The increasing number of clinical and biological parameters that need to be explored to achieve precision 
medicine makes it almost impossible to design dedicated trials.1 New approaches are needed for all popula-
tions of patients. By 2020, a medical decision will rely on up to 10,000 parameters for a single patient,2 
but it is traditionally thought that our cognitive capacity can integrate only up to five factors in order to 
make a choice. Clinicians will need to combine clinical data, medical imaging, biology, and genomics to 
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achieve state-of-the-art radiotherapy. Although sequencing costs have significantly decreased,3,4 we have 
seen the generalization of electronic health records (EHRs) and record-and-verify systems that generate a 
large amount of data.5 Data science has an obvious role in the generation of models that could be created 
from large databases to predict outcome and guide treatments. A new paradigm of data-driven decision 
making: The reuse of routine health care data to provide decision support is emerging. To quote I. Kohane, 
“Clinical decision support algorithms will be derived entirely from data … The huge amount of data avail-
able will make it possible to draw inferences from observations that will not be encumbered by unknown 
confounding.”6

Integrating such a large and heterogeneous amount of data is challenging. In this first chapter, we will 
introduce the concept of big data and the specificities of this approach in the medical field. We will show 
the opportunities of data science applied to radiation oncology as a tool for treatment planning and predic-
tive modeling. We will also explain the main requirements for the implementation of a precision medicine 
program relying on big data.

1.1  WHAT IS BIG DATA?
This section defines big data and introduces a few key concepts the readers need to be familiarized with 
before they can proceed.

1.1.1  THE FOUR V’S OF BIG DATA

The fours Vs of big data are volume, variety, velocity, and veracity.7 A comprehensive EHR for any cancer 
patient is around 8 GB, with genomic data being much larger than all other data combined (volume). 
Creating a predictive model in radiation oncology requires a significant heterogeneity in the data types that 
need to be included (variety). The use of big data for medical decision making requires fast data processing 
(velocity). As sequencing costs have significantly decreased3,4,8 and computing power has steadily increased, 
the only factor preventing us from discovering factors influencing disease outcome is the lack of large phe-
notyped cohorts. The generalization of the use of EHRs gives us a unique opportunity to create adequate 
phenotypes (veracity).

1.1.2  THE SPECIFICITIES OF MEDICAL DATA

1.1.2.1  Data relevance
Lambin et al. have described in details the features that should be considered and integrated into a predic-
tive model.9 They include 

•• Clinical features: patient performance status, grade and stage of the tumor, blood tests results, and 
patient questionnaires.

•• Treatment features: planned spatial and temporal dose distribution, associated chemotherapy. For 
this, data could be extracted directly from the record-and-verify software for analysis.

•• Imaging features: tumor size and volume, metabolic uptake (more globally included into the study 
field of “radiomics”).

•• Molecular features: intrinsic radiosensitivity,10 hypoxia,11 proliferation, and normal tissue reaction.12 
Genomic studies play a key role in determining these characteristics.

1.1.2.2 � Data granularity (Surveillance, Epidemiology and End Results database versus EHRs)
Big data in radiation oncology means studying large cohorts of patients and integrating heterogeneous 
types of data. Using these types of data through machine learning holds great promises for identify-
ing patterns beyond human comprehension. Oncology is already moving away from therapies based on 
anatomical and histological features and focusing on molecular abnormalities that define new groups of 
patients and diseases. This evolution induces an increasingly complex and changing base of knowledge 
that ultimately will be not usable by physicians. The other consequence of this is that, as we individual-
ize molecular traits, designing clinical trials will become more and more difficult to the point where it 
will become statistically impossible to achieve sufficient power. The financial and methodological burdens 
of designing these clinical trials will eventually become unsustainable. EHR use in most institutions 
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is an elegant and easy way to digitally capture large amounts of data on patient characteristics, treat-
ment features, adverse events, and follow-up. This wealth of information should be used to generate new 
knowledge. The quality and nature of the data captured is important because poor data will generate 
poor results (“garbage in, garbage out”) and big data should not be seen as a magical box able to answer 
any question with ease and trust. Clinical trials are designed to avoid confounding factors and gather 
detailed data that are not always available in EHRs.13 Several Surveillance, Epidemiology and End Results 
(SEER) studies have generated fast results on important questions.14–18 However, when studying radiation 
treatments, a major limitation of big data is the lack of detailed information on treatment characteristics. 
Integrating these features straight out of the record-and-verify systems will provide faithful dosimetric 
and temporal data. Several teams have already published studies using prediction to better adapt radiation 
treatments.19–24 None of these approaches have reached clinical daily use. A simple, easy-to-use system 
would need to be directly implemented into the treatment planning system to provide decision support. 
The best achievable treatment plan based on a patient’s profile would be given to the dosimetrist or physi-
cist. The same system would be used to monitor patients during treatment and notify physicians whenever 
an adverse event outside of the predicted norm would happen. The data generated by each patient and 
treatment would be integrated into the model. We are, however, very far from this vision and in order to 
achieve it several methodological challenges will need to be addressed (e.g., how to capture core radiation 
oncology data into EHRs, integrate clinical, dosimetric, and biologic data into a single model and validate 
this model in a prospective cohort of patients).

1.1.2.3  Structured data
In the field of radiation oncology, medical data is already highly structured through the use of oncol-
ogy information and record-and-verify systems. Data can be easily extracted with the precise features of 
treatment planning (dosimetry) and delivery; however, this data can have very heterogeneous labels that 
require time-consuming curation. This is particularly true for anatomical and target volumes labeling. 
Using routine radiation oncology data requires respecting a set of principles to make it more accessible. 
These principles, known as the Findable, Accessible, Interoperable, Re-Usable (FAIR) Data Principles,25 
initially developed for research data, are now being extended to clinical trials and routine care data. 
Data must be Findable, Accessible, Interoperable, and Reusable for research purposes. Behind Findable, 
Accessible, Interoperable, Re-Usable (FAIR) principles is the notion that algorithms may be used to search 
for relevant data, to analyze the data sets, and to mine the data for knowledge discovery. EHR data can-
not be fully shared, but efforts can be made to make vocabularies and algorithms reusable and enable 
multi-site collaborations. To achieve that goal, the radiation oncology community must pave the road for 
semantic frameworks that the sources and the users could agree upon in the future. Besides usual quan-
titative data (e.g., dose), standard representation of anatomical regions and target volumes is required to 
study, for example, radiation complications. There are currently several domain-specific software pack-
ages for radiation oncology planning: Elekta (MOSAIQ©), Varian (ARIA©), Accuray (Multiplan© and 
Tomotherapy Data Management System©), and BrainLab (iPlan©). Each of these treatment planning and 
record-and-verify systems has its own anatomical structure labeling system, and these systems are not 
consistent across platforms, making it difficult to extract and analyze dosimetric data on a multicenter 
large scale. Using knowledge management with concept recognition, classification, and mapping, an accu-
rate ontology that is dedicated to radiation oncology structures can be used to unify data in clinical data 
warehouses, thus facilitating data reuse and study replication in cancer centers.26

1.1.2.4  Unstructured data: The challenge of EHRs and the role of Natural Language Processing
Each physician has a specific way of reporting and writing medical notes. To leverage this kind of data, 
natural language processing (NLP) is required in order to make sense of stored files and extract meaning-
ful data. NLP is a part of machine learning that can help in understanding, segmenting, parsing, or even 
translating text written in a natural language.27 It can be used to repurpose electronic medical records 
(EMR) to automatically identify postoperative complications,28 create a database from chest radiographic 
reports,29 or even rapidly create a clinical summary from data collected for a patient’s disease.30 This kind of 
technology will be essential for big data analytics in radiation oncology, mostly for clinical information.
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1.1.3  FROM BIG DATA AND DARK DATA TO SMART DATA

Radiation oncology is one of the most interesting fields of medicine for big data analytics because treatment 
planning and delivery data are very structured. However, this type of data is rarely used for analytics (dark 
data). Data integration approaches are necessary in order to effectively curate clinical unstructured data and 
this highly structured data. Collecting and repurposing these data into an automatic smart data system will 
be necessary before any medical use can be made.

1.2 � OPPORTUNITIES OF BIG DATA IN RADIATION ONCOLOGY: 
DATA-DRIVEN DECISION MAKING

This part will highlight a few examples of the potential of big data applications in radiation oncology and 
cite the main studies that have already used data mining methodologies for technical or clinical questions.

1.2.1  ACCELERATING TREATMENT PLANNING

1.2.1.1  Contouring
The contouring of a large number of organs at risk before treatment planning is very time-consuming. 
Although manual segmentation is currently viewed as the gold standard, it is subject to interobserver varia-
tion and allows fatigability to come into play at the risk of lowering accuracy. A potential way to spare time 
would be automatic segmentation, with numerous industrial and homemade solutions being developed. 
Very few of them have been evaluated in clinical practice. Most of the existing solutions use atlases as a 
basis for automatic contouring. In 2016, DeepMind, a Google-owned startup, announced a project to use 
deep learning for automatic structures segmentation in head and neck cancer through a partnership with 
the National Health Service (NHS) in the United Kingdom.31

1.2.1.2  Dosimetry optimization
Machine learning has been used to predict radiation pneumonitis after conformal radiotherapy,32 local 
control after lung stereotactic body radiation therapy (SBRT),33 and chemoradiosensitivity in esophageal 
cancer.34 In these studies, dose–volume histograms were used as predictive factors. They were also used 
to predict toxicity after radiotherapy for prostate cancer35–37 and lung cancer.38,39 Future treatment plan-
ning systems will need to directly integrate machine learning algorithms in order to automatically predict 
efficacy or toxicity to help the physician choose the optimal dosimetry.19–24

1.2.2  EVALUATING NEW TREATMENT TECHNIQUES

Big data studies can help in evaluating new treatment techniques. It is highly unlikely that we will see 
studies comparing three-dimensional (3D) conformal radiotherapy and intensity-modulated radiotherapy 
(IMRT). However, IMRT is now used in almost all contexts, even if it was only proven superior to 3D for 
head and neck cancer.40 For future treatment technology improvements, big data studies could be used to 
generate hypothesis that will need to be ideally validated in a prospective trial.

1.2.3  PERSONALIZED RADIATION ONCOLOGY

1.2.3.1  Predicting disease progression and treatment response
Predictive modeling is a two-step process involving qualification followed by validation. Qualification 
consists of demonstrating that the data are indicative of an outcome. Once predictive or prognostic factors 
have been identified, they should be validated on a different data set. Once a model has been qualified and 
validated, further studies must be conducted in order to assess whether treatment decisions relying on the 
model actually improve the outcome of patients.

Kang et al. have proposed seven principles of modeling41 in radiation oncology: 
	 1.	Consider both dosimetric and non-dosimetric predictors.
	 2.	Manually curate predictors before automated analysis.
	 3.	Select a method for automated predictor selection.
	 4.	Consider how predictor multicollinearity is affecting the model.
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