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Since the discovery of the prophylactic effects of the cowpox virus toward variants of the 
variola virus in the late eighteenth century, scientists and clinicians have fought to balance the 
beneficial effects of viral vaccines against the potential for undesired and potentially patho-
genic side effects. In the last half century or so scientists have harnessed a variety of patho-
genic viruses, from a number of species, for use and study in the laboratory and the clinic. Our 
increased understanding of the pathology and the molecular anatomy of those viruses has 
enabled us to adapt them for use as recombinant expression systems for immunogens that can 
be used to protect hosts from infection by a wide variety of infectious agents.

This volume is intended for scientists and clinicians who are interested in learning more 
about and adapting methods employed in basic and biomedical research, which are directed 
toward understanding the development of recombinant viruses and their use as vaccine 
platforms. The methods and protocols contained herein involve many of the viruses cur-
rently being used for, or under development as, vaccine platforms. Throughout this work 
readers will find details of the use of recombinant vaccines which are employed to either 
produce immunogens in vitro or elicit antibody production in vivo. Within each of the 
parts of this work, readers will find several chapters that are grouped according to the 
Baltimore Classification of viruses. Taken together, the described methods should inform 
individuals with interests in the current methods used to generate and develop recombinant 
viral vaccines.

The contributors to this volume are current or nascent leaders in the field of recombi-
nant virus vaccine development. Taken together they have provided a large number of 
effective protocols that can be employed or adapted as readers see fit. While an attempt has 
been made to be as comprehensive as possible, inevitably there are certain platforms that 
are not included in this collection. We sincerely hope that you find this work informative 
and useful in your own laboratories and that they serve to acquaint you with the current 
state of the art in the use of recombinant viral vaccines.

Rochester, NY, USA� Maureen C. Ferran 
 � Gary R. Skuse 

Preface
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Maureen C. Ferran and Gary R. Skuse (eds.), Recombinant Virus Vaccines: Methods and Protocols, Methods in Molecular Biology, 
vol. 1581, DOI 10.1007/978-1-4939-6869-5_1, © Springer Science+Business Media LLC 2017

Chapter 1

Development of Novel Vaccines Against Infectious 
Diseases Based on Chimpanzee Adenoviral Vector

Chao Zhang*, Yudan Chi*, and Dongming Zhou

Abstract

Vaccination is considered to be the most effective method of preventing infectious or other diseases. 
Adenovirus (Ad) is one the most promising vectors in vaccine research and development. It can induce not 
only potent humoral but also cellular immune responses, and has therefore been widely applied in basic 
and translational studies. Chimpanzee Ad is a rare serotype circulating in humans. This circumvents the 
problem of preexisting immunity to human Ad serotypes, enhancing Chimpanzee Ad prospects in vaccine 
development. Here we describe experimental procedures used to generate a new generation of rabies vac-
cine based on a chimpanzee Ad vector, which can be extended in the development of novel vaccines against 
other infectious diseases.

Key words Chimpanzee adenovirus, Immune response, Vaccine, Infectious disease, Rabies

1  Introduction

Adenovirus (Ad) was first discovered in 1953 by Rowe and his col-
leagues [1]. It is a double stranded DNA virus with icosahedral 
capsids. Over the past decades, Ad-based vectors have shown great 
potential in gene therapy and have been used to generate recombi-
nant vaccines against cancer or infectious diseases since the first 
in vivo gene transfer was performed by Rosenfeld et al. in 1991 
[2–4]. Nowadays, Ad vectors are widely used as gene delivery sys-
tems due to several promising features such as high biosafety levels, 
broad tropism, and feasibility for scale-up production [5–7]. One 
of the most widely used Ad vectors originates from human sero-
type 5(AdHu5) [8], however, the preexisting neutralizing anti-
bodies against AdHu5 have a high seroprevalence of 74.2% in 
humans [9], and the preexisting antibodies dampen the vaccina-
tion effectiveness thus restricting further application in clinical 

*These authors contributed equally to this work.
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trials [10–12]. In order to circumvent the disadvantages of the 
AdHu5, the rare human serotype Ads and other Ads from nonhu-
man species have been developed [13–16].

Here, we use a chimpanzee-originated Ad, AdC68, as a model 
for the generation of Ad-based vaccines against infectious diseases. 
The construction of the AdC68 infectious clone is as previously 
described [17]. The E1 region is deleted, thus it is replication-
deficient and can only replicate in E1-compensating cell lines such 
as HEK293 and PER. C6 [18]. In a previous study done in our 
laboratory, the AdC68 that expressed G protein of the rabies virus 
(rab.GP) was successfully constructed, expanded and purified. 
After testing, the rab.GP was found to be highly expressed in HEK 
293 cells infected with the recombinant Ads, termed as AdC68-
rab.GP. AdC68-rab.GP could elicit high levels of neutralizing anti-
bodies against rabies virus in vaccinated mice. The generation of 
recombinant Ads in this study is based on the direct cloning 
method [17] which is simple and efficient and can be extended in 
the development of vaccines against other infectious diseases.

2  Materials

	 1.	Restriction enzymes: XbaI; NheI; PI-SceI; I-CeuI; BglII; SalI; 
XhoI.

	 2.	T4 DNA ligase.
	 3.	Competent cells: Escherichia coli strain DH5α cells; Escherichia 

coli strain Stbl2 cells.
	 4.	Agarose G-10.
	 5.	Low melting point agarose.
	 6.	LB culture medium: yeast extract (5 g/L); tryptone (10 g/L); 

NaCl (10 g/L), amplicillin or kanamycin (0.1 g/L); agar (15 
g/L., only be used for LB plate).

	 7.	GelRed Nucleic Acid Gel Stain, 10,000× in DMSO (Biotium). 
(see Note 1).

	 8.	KCM buffer (5×): 0.5 M KCl; 0.15 M CaCl2; 0.25 M MgCl2.
	 9.	TAE Buffer (50×): 2 M Tris, 1 M acetic acid, 50 mM EDTA.
	10.	DNA size standard ladders.
	11.	NucleoBond Xtra Midi Plus (MACHEREY-NAGEL).
	12.	QIAprep® Spin Miniprep Kit (QIAGEN).
	13.	PUC57-rab.GP (codon-optimized for improving expression, 

Genscript).
	14.	pShuttle (as described in Ref. [17]).

2.1  Molecular 
Cloning

Chao Zhang et al.



5

	 1.	Chimpanzee Ad type 68 (AdC68, also called SAdV-25, ATCC, 
GenBank accession number: AF394196.1).

	 2.	HEK 293 cell (ATCC, cat. no. CCL-243).
	 3.	Cell culture reagents: Dulbecco’s modified Eagle’s medium 

(DMEM); fetal bovine serum; phosphate-buffered saline; peni-
cillin–streptomycin 100× solution; trypsin (0.25%), phenol red.

	 4.	Cell tranfection reagents: Opti-MEM; Lipofectamine 2000 
transfection reagent (Invitrogen).

	 5.	Virus purification reagents: Tris–HCl (1 M, pH 8.0); cesium 
chloride; Bio-Gel P-6DG (Bio-Rad); Liquid chromatography 
columns.

	 6.	Pronase.
	 7.	DNeasy® Blood & Tissue Kit (QIAGEN).

	 1.	NuPAGE® Novex 10% Bis–Tris gel 1.0 mm, 10 Well (Thermo 
Fisher Scientific).

	 2.	RIPA buffer: 25 mM Tris–HCl pH 7.6;150 mM NaCl, 1% (V/V) 
NP-40;1% (W/V) sodium deoxycholate; 0.1% (W/V) SDS.

	 3.	Complete protease inhibitor cocktail tablets (Roche).
	 4.	Running buffer (5×): 0.125 M Tris–HCl;1.25 M glycine;0.5% 

(W/V) SDS.
	 5.	Transfer Buffer: 39 mM glycine;48 mM Tris;0.037% (W/V) 

SDS;20% (V/V) methanol.
	 6.	PVDF membrane (0.45 μm filter).

ICR (4–6 weeks old) mice are purchased from Shanghai Laboratory 
Animal Center, China. The protocol for this animal experiment 
should be approved by the Institutional Animal Care and Use 
Committee.

3  Methods

	 1.	Cloning the rab.GP gene into pShuttle. Digest 500  ng of 
PUC57-rab.GP (Genscript) and 500 ng of pShuttle [17] with 
XbaI and NheI for 2 h at 37 °C, respectively. Conduct each 
digestion reaction in a total volume of 20 μl.

	 2.	Run the digestion products on a 1% (W/V) low-melting point 
agarose gel in TAE buffer. Cut out the desired bands with a razor 
blade or scalpel to get the digested insert from PUC57-rab.GP 
and the digested backbone from pShuttle vector, respectively, 
and then place gel slices into Eppendorf microcentrifuge tubes. 
Incubate for 5 min at 65 °C. Cool for 1 min at room temperature 

2.2  Virus Production 
and Idetification

2.3  Immunoblotting

2.4  Animals

3.1  In-Gel Ligation 
(See Fig. 1)

Ad-Based Vaccines Against Infectious Diseases
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(see Note 2). Set up the in-gel ligation with a total volume of 20 
μl; use 4 μl of backbone in liquefied gel, 12 μl of insert in lique-
fied gel, and mix both with 1 μl T4 DNA ligase. Incubate at 16 
°C overnight (see Note 3).

	 3.	Melt the ligation products for 5 min at 65 °C, and then dilute 
in 180 μl of 1× KCM buffer (see Note 4), cool the system at 
room temperature for 1 min (see Note 5). Transform 50 μl of 
diluted ligation product into 100 μl of DH5α competent cells 
(transforming efficiency ≥109 CFU/μg), and then incubate on 
ice for 30 min. After that, perform the heat shock at 42 °C for 
30 s, and spread the transformation mix onto a kanamycin-
containing LB plate. Incubate plates for 14 h at 37 °C.

Fig. 1 Flowchart of the construction of pAdC68-rab.GP

Chao Zhang et al.
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	 4.	Pick up several colonies and culture each of them in 5 mL LB 
selective medium for 12 h in a shaker at 37 °C and 0.9 × g 
shaking speed. Extract the plasmid DNA by QIAprep® Spin 
Miniprep Kit based on manufacturer’s instructions. Identify 
the plasmids by restriction enzyme digestions with Nhe1 and 
XbaI, respectively; choose the right clone, so the pShuttle-rab.
GP was successfully generated.

	 5.	Clone the rab.GP gene into AdC68 vector; digest 1 μg of the 
AdC68 plasmid and 1 μg of pShuttle-rab.GP with I-CeuI and 
PI-SceI, respectively. Conduct each reaction in a total volume 
of 20 μl and incubate for 4 h at 37 °C.

	 6.	Run the digestion products on 1% (W/V) low-melting point 
agarose gel in TAE buffer. Cut out the desired bands with a 
razor blade or scalpel to get the digested insert from pShuttle-
rab.GP and the digested backbone from AdC68 vector, and 
then place gel slices into Eppendorf microcentrifuge tubes. 
Incubate for 5 min at 65 °C. Cool for 1 min at room tempera-
ture. Set up the in-gel ligation with a total volume of 20 μl; use 
4 μl of backbone in liquefied gel, 12 μl of insert in liquefied gel 
and mix both with 1 μl T4 DNA ligase. Incubate at 16 °C 
overnight (see Note 6).

	 7.	Melt the ligation products for 5 min at 65 °C, and then dilute 
in 180 μl of 1× KCM buffer, cool the system at room tempera-
ture for 1 min. Transform 50 μl of diluted ligation product 
into 100 μl of Stbl2 competent cells (transforming efficiency 
≥109 CFU/μg) with heat shock as described in step 3, and 
spread the transformation mix onto an ampicillin-containing 
LB plate. Incubate plates for 24 h at 30 °C (see Note 7).

	 8.	Pick up several colonies and culture each of them in 5 mL LB 
selective medium for 12 h in a shaker at 30 °C and 0.6 × g 
shaking speed (see Note 7). Extract each plasmid DNA by 
QIAprep® Spin Miniprep Kit based on manufacturer’s instruc-
tions. Identify the plasmids by restriction enzyme digestions 
with BglII, SalI, and XhoI, respectively. Run the digested 
products on 1% agarose gel and verify the bands by electropho-
resis (see Fig. 2a). Choose the right clone, so the AdC68-rab.
GP vector (pAdC68-rab.GP) was successfully generated.

	 9.	Select one correct clone and culture it in 200 mL LB medium 
for 20 h in a shaker at 30 °C and 0.6 × g shaking speed. Extract 
plasmid DNA using NucleoBond Xtra MidiPlus based on 
manufacturer’s instructions.

	 1.	Virus rescue. Seed HEK 293 cells on a 6-well plate 1 day before 
transfection, and culture cells overnight to 80–85% confluency 
at 37 °C and 5% CO2 in DMEM with 10% FBS and 1× penicil-
lin–streptomycin solution.

3.2  Virus Rescue, 
Expansion, 
Purification  
(See Note 8)

Ad-Based Vaccines Against Infectious Diseases
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