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Preface

Anecdotal clinical reports of tumor remissions after viral infections laid the foundation for
the field of oncolytic virotherapy. Advances in molecular virology, tumor biology, and
immunology have enabled more refined studies of tumor-selective viruses. Concomitant
with the resurgence of cancer immunotherapy and after the approval of Talimogene laher-
parepvec by the FDA and EMA, oncolytic virotherapy has gained unprecedented momen-
tum. The field has flourished in recent years, yielding many notable preclinical studies and
clinical trials. This book aims to provide a guide for basic virologists, translational research-
ers, and clinician scientists in the field by providing reference protocols from vector devel-
opment to clinical translation.

The initial chapter provides an introductory review of the field, followed by a series of
chapters describing virus modifications to enhance tumor specificity and anti-tumor efficacy.
Reflecting the increasing interest in immunotherapeutic effects of oncolysis, a number of
chapters address different strategies for immunomodulation and immunomonitoring. The
third section of the book covers methodologies for different model systems to study
oncolytic viruses, including mouse tumor models, patient-derived samples, and also mathe-
matical modeling.

A number of virus platforms and approaches are represented, providing a survey of state-
of-the-art methods for study of this unique treatment approach. Therefore, I would like to
take this opportunity to thank all authors who have made this possible with their contribu-
tions. Hopefully this book will serve the research community as a useful resource to further
enhance progress in the field of oncolytic virotherapy.

Heidelberg, Germany Christine E. Engeland
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Frédéric Tangy, Nicolas Boisgerault, and Jean-François Fonteneau

9 Design and Production of Newcastle Disease Virus for Intratumoral
Immunomodulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Gayathri Vijayakumar and Dmitriy Zamarin

10 Analysis of Immunological Treatment Effects of Virotherapy
in Tumor Tissue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Krishna Das, Carles Urbiola, Bart Spiesschaert, Philipp Mueller,
and Guido Wollmann

11 Immunohistochemistry for Tumor-Infiltrating Immune
Cells After Oncolytic Virotherapy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Dipongkor Saha and Samuel D. Rabkin

12 Detection of Tumor Antigen-Specific T-Cell Responses
After Oncolytic Vaccination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Jonathan G. Pol, Byram W. Bridle, and Brian D. Lichty

13 Evaluation of Oncolytic Virus-Induced Therapeutic Tumor
Vaccination Effects in Murine Tumor Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
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Chapter 1

Introduction to Oncolytic Virotherapy

Christine E. Engeland and John C. Bell

Abstract

Oncolytic viruses exploit key hallmarks of cancer for replication in malignant cells, leading to tumor cell
lysis, modulation of the tumor microenvironment and in situ vaccination effects. Diverse virus platforms
have been developed as oncolytic vectors and designed for improved tumor specificity, intratumoral spread,
therapeutic gene delivery and especially as targeted cancer immunotherapeutics. This chapter provides a
concise overview of the basic principles as well as current progress in preclinical and clinical studies of
oncolytic virotherapy.

Key words Oncolytic viruses, Viral vectors, Cancer immunotherapy, Tumor targeting, Cancer gene
therapy

1 Principles of Oncolytic Virotherapy: Exploiting Hallmarks of Cancer and Turning
Cold Tumors Hot

Treating cancer patients with replicating viruses may seem an out-
rageous idea—which was actually inspired by clinical observations
of tumor remissions after natural virus infections [1]. Indeed, these
experiments of nature were followed up by clinicians and research-
ers, who deduced the following principles of oncolytic virotherapy
(Fig. 1):

On a cellular level, viruses with oncolytic properties show
tumor-selective infection, replication, and spread—supported by
inherent characteristics of cancer cells, the “hallmarks of cancer.”
As such, cancer cells show many properties conducive to viral
replication including sustained proliferation, resistance to apopto-
sis, and immune evasion [2, 3]. Malignant transformation can
include upregulation of viral entry receptors (e.g., CD46, a com-
plement regulator) and proliferative signaling pathways usurped
by viruses (e.g., Wnt/ß-Catenin and EGFR) as well as down-
regulation of antiproliferative and antiviral signaling (especially
interferon) [4].

Christine E. Engeland (ed.), Oncolytic Viruses, Methods in Molecular Biology, vol. 2058,
https://doi.org/10.1007/978-1-4939-9794-7_1, © Springer Science+Business Media, LLC, part of Springer Nature 2020
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A tumor comprises not only individual malignant cells but a
complex microenvironment composed of stroma, vasculature, and
leukocytes, typically characterized by immunosuppression. Onco-
lytic virotherapy can act to reshape the local milieu. An acute viral
infection serves as a potent stimulus for the immune system. Local
inflammation, innate immune activation, and danger signals
(DAMPs and PAMPs) arise during viral replication which can
change the immune contexture, thereby “turning cold tumors
hot” [5].

During oncolysis, tumor-associated antigens are released in this
context, which provides adjuvants for induction of adaptive anti-
tumor immune responses. Thus, on a systemic level, oncolytic
virotherapy can act as an in situ tumor vaccine, inducing therapeutic
and protective antitumor immunity [6].

Preclinical and clinical data have provided proof of these prin-
ciples. However, the role and contribution of these mechanisms of
action to efficacy of oncolytic virotherapy has been a subject of
debate. Moreover, this may depend on the specific oncolytic vector
and the therapeutic setting.

Fig. 1 Principles of oncolytic virotherapy. (a) Oncolytic viruses replicate selectively in malignant cells. (b)
Oncolysis reshapes the tumor microenvironment. (c) Exposure of tumor antigens in the context of oncolysis
can elicit tumor vaccination effects

2 Christine E. Engeland and John C. Bell



2 Oncolytic Vector Platforms: From Adeno to Zika

These principle mechanisms of action outlined above are common
to a diverse set of viruses which have been developed as oncolytic
vector platforms (Fig. 2). These include the following:

– Small (e.g., parvovirus, approximately 25 nm and 5 kb), large
(Vaccinia virus, 300 nm and 200 kb).

– Enveloped (herpes) and nonenveloped (PVSRIPO, derived
from polio).

– DNA (adeno), RNA positive (Coxsackie) and negative (Mar-
aba), and double-stranded (reovirus) RNA viruses as well as
retroviruses (Toca 511, derived from amphotropic murine leu-
kemia virus).

– Human (mumps), animal (Newcastle disease, vesicular stomati-
tis, myxoma).

– Pathogenic (influenza, Zika) and live-attenuated (measles)
viruses.

These diverse viruses have been tested in preclinical studies and
many have advanced to clinical trials. Overall, the clinical data have

Fig. 2 Schematic depictions of five representative oncolytic viruses

Introduction to Oncolytic Virotherapy 3



demonstrated safety and typically mild, often flu-like symptoms as
adverse events as well as some promising results in terms of anti-
tumor efficacy [7]. While the adenovirus Oncorine H101 has been
licensed for treatment of nasopharyngeal cancer in China since
2005, 2015 marked the approval of the herpes virus talimogene
laherparepvec for treatment of advanced melanoma in the USA and
Europe. Thus, the paradigm of using replicating viral vectors for
cancer treatment has entered clinical practice.

To date, systematic head-to-head comparisons of these diverse
viruses have not been performed. Viruses which have evolved a
specific tissue tropism, conceivably, may be especially adapted to
replicate in tumors originating from these tissues. In addition to the
range of naturally occurring oncolytic viruses, the possibilities
opened by genetic engineering offer a plethora of treatment
options with vectors designed for specific therapeutic purposes.

3 Vector Design: Tumor Targeting and Spread, Tracers, Therapeutic Genes

Progress in molecular biology including the development of reverse
genetics systems has enabled the design of oncolytic therapeutics
with improved properties (Fig. 3) [8]. Main arenas of vector design
include tumor targeting to increase specificity, which can be
achieved on the entry level by modifying receptor tropism or
incorporating matrix metalloproteinase cleavage sites into viral sur-
face proteins. Targeting on the post-entry level can be achieved by
placing viral genes under transcriptional control of a tumor-specific
promoter, inserting target sites for microRNAs with differential
expression in healthy and malignant cells or deletion of virulence

Fig. 3 Strategies to improve efficacy of oncolytic viruses by rational vector design
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