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Foreword

As a clinician and researcher involved in human immunodeficiency virus (HIV) 
disease since the beginning of the epidemic, I have huge respect for the contribu-
tions of work with humanized mice. As one of the only animal models that fa-
cilitates working with HIV as opposed to other lenitviruses, work with humanized 
mice has encompassed the entire spectrum of HIV pathogenesis research from 
transmission to immune dysregulation and the impact of preventive and therapeu-
tic interventions. Finding suitable animal models has been a major impediment to 
HIV pathogenesis work since the beginning, as naturally occurring rodent cells are 
completely refractory to HIV infection. Even animals closely related to humans, 
such as chimpanzees, that can be infected with HIV do not develop the same immu-
nodeficiency and disease. In addition, HIV has very limited tropism and so any kind 
of in vivo modeling must use a very similar organism, the most common one being 
simian immunodeficiency virus (SIV). While extremely useful, there are important 
genetic and biological differences between HIV and SIV, just as there are between 
humans and chimpanzees.

Over the last few decades, enormous strides have been made to improve the “hu-
manization” of mouse models, particularly in the area of HIV research. Humanized 
mice have evolved into an invaluable alternative to SIV-based nonhuman primate 
models, as they are simpler, less costly, and also highly susceptible to HIV infection. 
Mouse models have been employed in basic pathogenesis research, preclinical and 
clinical testing of compounds with potential antiretroviral activity, and more recently, 
HIV biomedical prevention. For example, a humanized mouse model demonstrated 
that human breast milk has antiretroviral properties and may protect infants against 
oral transmission, thus helping to inform the debate about breast feeding for infected 
mothers without access to safe alternatives. Humanized mouse models are also being 
used to provide efficacy data about protection against rectal and vaginal infections 
with an array of regimens that might be used for pre-exposure prophylaxis. The mod-
els have helped to define the limits of protection for various dosing schedules, and 
are increasingly being used to investigate key pharmacologic parameters.

Reports of at least two individuals being cured of HIV infection, and several 
more with apparent functional cures (defined as long-term health in the absence of 
antiretroviral therapy) have renewed interest and excitement in this area. An im-
portant challenge is the difficulty of quantifying virus at extremely low levels in 
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patients, but this will need to be overcome in future to be able to establish whether 
or not an infected individual has truly been cleared of any virus. Humanized mice 
have already been used in this context to demonstrate replication competent virus 
in the absence of any detectable plasma viremia, even using highly sensitive assays 
for HIV RNA and DNA. Mouse models are likely to play a key role in this scientific 
agenda, moving forward.

Dr. Larisa Poluektova has been working in this field for many years, and we 
have been working together since 2006. Originally focused on neuropathogene-
sis work, more recently our collaborative activities have been in the development 
of nanoformulated antiretroviral therapy (ART) under the direction of Dr How-
ard Gendelman [1–3]. Nanomedicines contain crystalline drug particles of small 
diameter, coated with low-molecular-weight excipients to produce specific sizes, 
charges, and shapes that optimize cell and tissue penetrance. We have been working 
on nanoformulations of existing antiretroviral agents, and humanized mouse work 
has been pivotal. Building on what we have learned from the mouse experiments, 
we have moved into studies in nonhuman primate and hope to advance to clinical 
trials in humans. This emerging area of discovery has potential to make enormous 
changes in the field and advance treatment. While highly successful if taken cor-
rectly by infected patients, current ART is limited by the need for lifelong daily 
therapy, by poor tissue penetration, and by adverse effects. Suboptimal adherence to 
therapy may promote the development of virologic resistance and treatment failure. 
Nanoformulated ART may be able to be administered intermittently, and thereby 
improve medication adherence, and also has potential for decreased adverse effects 
and improved tissue penetrance. Investigations of long-acting formulations are also 
underway for HIV prevention.

“Humanized Mice for HIV Research” covers all these topics, and more. From 
an in depth review of the genetic background of mice and tips for humanization 
through understanding of human immune cells, the book moves on to HIV biology 
and pathogenesis and how humanized mice can advance the field. With discussion 
of specific cellular and humoral immune responses, the book includes reviews of 
development of conventional and novel therapeutics for HIV treatment and preven-
tion. Finally, other human-specific or selective pathogens are presented including 
dengue, tuberculosis, and malaria, all causes of enormous amounts of human dis-
ease. The last section moves to new horizons and exciting prospects for the future 
from experts in the field.

This is an essential book for scientists and their students and will provide them 
with comprehensive and up-to-date information about the role of humanized mice 
in HIV research. Despite a wealth of scholarly articles on this topic, including many 
from the authors in the book, there are very few comprehensive textbooks about 
humanized mice in HIV research—a gap that has now been filled very nicely.

Omaha, NE �   Susan Swindells (M.B.B.S.)
Terry K. Watanabe Chair for HIV/AIDS  

Research and Care, and Professor of  
Internal Medicine and Infectious Diseases

2013
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Preface

In 2012, our international editorial team, whose members are listed below, imple-
mented work on a comprehensive textbook, or collection, entitled “Humanized 
Mice for HIV Research.” In its current completed form, this detailed document is 
intended to serve as a scientific guide for graduate students, fellows, and investiga-
tors in bench science, academicians (e.g., hematologists, immunologists, virolo-
gists), clinicians (e.g., infectious disease specialists), and persons in the pharma-
ceutical industry (e.g., drug developers, vaccine developers, and pharmacologists/
toxicologists) in the field of HIV and beyond. Importantly, humanized mice are the 
only animals, aside from chimpanzees, that are susceptible to HIV infection. Thus, 
humanized mice are an ideal platform for the study of HIV.

HIV has been, and still is, intensively investigated. However, the lack of robust 
small animal models has hindered progress in the basic understanding of HIV infec-
tion and pathogenesis. This lack also poses a considerable challenge for preclinical 
testing and the prioritization of new drug and vaccine candidates.

Stable, multilineage human hematopoietic engraftment can now be routinely 
achieved in immunodeficient mice. Surveillance of the development of human he-
matopoietic and lymphoid tissues in the mouse environment by researchers with 
different expertise provides valuable information. This book provides information 
on a wide range of different approaches, applications, ideas, observations, hypoth-
eses, and insights. We expect this exchange of information to help facilitate explora-
tion of HIV pathogenesis, and the development of new treatments and preventative 
approaches that will accelerate progress toward the eradication of this disease.

We sincerely appreciate the great efforts of all of our contributors, and apologize 
to anyone we may have left out with important new findings, observations, devel-
opments, or ideas to share. With the help of humanized mouse models, we hope to 
progress to an HIV/AIDS-free world. We expect that efforts to control other human-
specific infections will also benefit from broadening the application of humanized 
mice to biomedical research.
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Since development of NOD-scid IL-2Rgnull (NOG, NSG) and BALB/cA-Rag2null 
IL-2Rgnull (BRG) at the start of the twenty-first century, given the high capacity of 
human cells and tissues to engraft and differentiate in these models, studies using 
humanized mice have universally attracted researchers’ attention. This chapter de-
scribes past, present, and future xenotransplantation mouse models, with a particular 
focus on developments in Japan and the future technological progress needed for the 
use of humanized mouse models in translational research fields like HIV-1 infection.

1.1 � History of the Development of Immunodeficient Mice 
in Japan

Centuries before xenotransplantation studies began in Japan and the USA, scien-
tists in Europe were conducting cross-species transplantation studies using newborn 
animals dating as far back as the sixteenth century [1]. Importantly, failures and 
limitations associated with these transplants have helped improve understanding of 
basic immune mechanisms that control tissue compatibility. Finally, the discovery 
of immunodeficient nude mice dramatically increased the performance of xeno-
transplantation studies and opened a new door for performing xenotransplantation 
experiments on small laboratory animals [2]. While there are volumes of informa-
tion regarding these developments for Europe and North America, little has been 
published regarding progress in this field of research in Asia. Thus, this chapter 
briefly describes the history of immunodeficient mice in Japan. Such developments 
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began in Japan in 1973 when Dr. Tatsuji Nomura imported the nude mice from Dr. 
Friis in Denmark. Dr. Nomura was a Japanese pioneer in this field and helped found 
the International Nude Mice Workshop, referred to as the International Workshop 
of Immunodeficient Mice following the fifth workshop onward, with Drs. Rygaard 
and Povlsen of Denmark. This workshop created a foundation to study how nude 
mice could be used in biomedical fields which was held nine times between 1972 
and 1997 at different locations around the world.

Dr. Nomura actively expanded the initial mouse colony from Dr. Friis, and 
30,000 nude mice were produced over the following 3 years. In parallel, he formed 
a consortium with public institutes and pharmaceutical companies to perform can-
cer research using nude mice with support from the Japanese Ministry of Public 
Welfare. In conjunction with his work on expanding the initial colony of nude mice, 
Dr. Nomura continued the development of new immunodeficient mice as described 
later. After successful development of NOG mice as a results of his effort, in 2006, 
Dr. Nomura hosted the International Workshop of Humanized Mice in Tokyo, Ja-
pan, which has been attended by researchers every 3 years [3]. With these contri-
butions, Dr. Nomura has helped to progress the field of immunodeficient mice in 
Japan and throughout the world.

Using Dr. Nomura’s work as a foundation, in the early 1980s the Central Institute 
for Experimental Animals (CIEA) attempted to improve the recipient for xenotrans-
plantation by crossing Dr. Nomura’s nude mice with X-linked immunodeficient 
mice (XID) and beige mice, which were one of the few immunodeficient mouse 
models available in Japan at the time. Unfortunately, these initial attempts were 
unsuccessful. In 1985, the CIEA introduced a new immunodeficient mouse model, 
severe combined immunodeficiency (SCID). SCID mice lack T and B cells [4] and 
were discovered in the USA by Dr. Melvin Bosma in 1983.

In subsequent work by Dr. Joseph McCune and colleagues in the USA using 
SCID mice, human T and B cells were successfully generated following transplan-
tation of human fetal liver and thymus into these mutant mice in 1988. These hu-
manized mice, termed SCID-hu, are able to maintain human T cells and have been 
of major interest to researchers, particularly in the study of HIV-1 infection [5]. 
However, SCID-hu mice cannot be used in Japan due to bioethical concerns about 
the use of human fetal organs. Thus, nonhuman SCID mice have been mainly used 
for basic immunology and cancer studies in Japan.

Human peripheral blood mononucleated cell (PBMC), as well as fetal organs, 
can be engrafted into SCID mice [6]. In turn, such mice have been used in Japan 
for studies involving HIV-1 infection. The scid gene (formally, Prkdcscid) was in-
troduced into the NOD mouse inbred strain to generate NOD-scid mice showing 
ability to support high levels of HIV-1 viremia after transplantation of human cells 
[7–9]. Then, international groups of collaborating scientists reported that human he-
matopoietic stem cells (HSC) differentiate when transplanted into NOD-scid mice 
[10, 11]. Therefore, these mice have been used extensively in stem cell biology for 
more than a decade, until the development of NOG and BRG mice.

Until the early 1990s, immunodeficient mice had only been obtained accidental-
ly, following a spontaneous mutation. Targeting technology using embryonic stem 



31  Mamoru Ito’s Vision for the Future of Humanized Mouse Models

(ES) cells, established in 1989 by Italian-born American molecular geneticist and 
Nobel prize recipient Dr. Mario Capecchi, helped to pave the way for artificially 
developing numerous immunodeficient mouse models [12]. In 2002, artificially 
generated IL-2Rg knockout mice were crossed with NOD-scid mice to create NOG 
mice, which can inactivate the gene encoding IL-2Rg [13]. Around this same time, 
our lab also developed BRG mice by inactivating the gene encoding IL-2Rg from 
BALB/cA-Rag2null mice. In 2004, Dr. Marcus Manz and colleagues at the Universi-
ty Hospital Zurich reported a humanized mouse model using these BRG mice [14]. 
In 2005, Dr. Leonard Shultz of the Jackson Laboratory in the USA generated NSG 
mice, which are similar to NOG mice [15]. In 2010, Dr. Takiguchi and colleagues 
at Kumamoto University in Japan generated NOD-scid-Jak3null mice, which have 
the same immunodeficiency as NOG and NSG mice [16]. These immunodeficient 
mouse models have been critical in the recent progress in normal and diseased hu-
man cell/tissue transplantation for regenerative medicine, cancer and therapeutics 
development.

1.2 � Currently Available Humanized Mouse Models 
Generated Using NOG, NSG, and BRG Mice  
and Their Limitations

In general, the following three strains of immunodeficient mice are currently used 
to generate humanized mouse models: NOG [13], NSG [15], and BRG [14]. The 
common characteristics of immunodeficient mice are that they are deficient in T, 
B and NK cells, due to SCID/RAG2null and inactivation of IL-2Rg. Inactivation of 
IL-2Rg allows for a high level of engraftment and differentiation of human cells 
into NOD-scid and BALB/cA-Rag2null mice. Still, the reason why inactivation of 
IL-2Rg supports engraftment and differentiation of xenografts is unclear. It is quite 
possible that inactivation of IL-2Rg is linked to the dysfunction of cytokines re-
sponsible for T, B, and natural killer (NK) cell proliferation and differentiation. Our 
team recently demonstrated a crucial role of interferon gamma (IFNg)-producing 
CD11c+B220+CD122+ cells in xenograft rejection. IFNg-producing cells consti-
tute a subpopulation of plasmacytoid dendritic cells and are absent in NOG mice 
[17]. Production of IFNg is impaired in IL-2Rg-deficient mice [18], which suggests 
that IFNg has an important role in xenograft rejection. The genetic backgrounds of 
NOG/NSG and BRG mice are the NOD and BALB/cA inbred strains, respectively. 
The engraftment rate of human cells is generally considered to increase in NOG/
NSG mice compared with BRG mice. This is thought to be because the NOD strain 
has SIRPa polymorphism similar to human and reduced innate immunity, whereas 
the BALB/cA strain does not [9, 19].

Engraftment of xenografts, including human cells and tissues, is extremely effec-
tive in NOG, NSG, and BRG mice compared with conventional immunodeficient 
mice like NOD-scid and C.B-17-scid. The high engraftment capacity of these mice 
enables improved humanized mouse models to be generated. In general, two tech-
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niques are used to generate humanized mice. One involves the transfer of mature 
human PBMC, and the other involves the transfer of HSCs isolated from human 
cord blood, bone marrow, or fetal liver (e.g., BLT). In the PBMC technique, trans-
ferred mature lymphocytes, CD3+ cells in particular, essentially attack the mouse, 
resulting in early death due to severe graft versus host disease (GVHD). For in-
stance, NOG mice die at 2 weeks after intravenous transfer of 1 × 107 PBMC. In 
contrast, severe GVHD does not occur in NOD mice as seen in NOG mice. NOD 
mice survive more than 2 months, and the GVHD occurs only by intraperitoneal 
transfer of 1 × 107 PBMC [20].

Human CD3+ cells infiltrate the organs of the NOD mice. These proliferating 
cells are considered to be xenoreactive and can secrete various cytokines in re-
sponse to the mouse cells. This secretion of cytokines results in further proliferation 
and activation of the human cells in a paracrine manner. Severe GVHD does not 
occur when human PBMC are transferred into NOG mice that have been depleted 
of major histocompatibility complex. Instead, human T cells proliferate less in these 
mice than in NOG mice with normal levels of the major histocompatibility complex 
(unpublished data). It is speculated that humanized mice can be generated by the 
transfer of particular cells, such as NK cells, that are purified from human PBMC. 
On the other hand, the long-term maintenance of these cells in NOG mice is ex-
pected to be difficult. For example, when human NK cells isolated from PBMC are 
transferred, the cells only survive in mouse peripheral blood for approximately a 
week (unpublished data). However, depending on the study, such humanized mice 
could be used for short-term experiments [21, 22].

In contrast to PBMC transfer, various hematopoietic cells differentiate from 
HSC in NOG/NSG/BRG mice, and such humanized mice have been of particular 
interest to researchers. When HSC are transferred into NOG mice, myeloid cells 
typically develop after 3–4 weeks; B cells typically develop after 6–8 weeks, and T 
cells typically develop after 10–12 weeks. T cells differentiate into CD4+ or CD8+ 
cells in NOG mice, whereas T-cell differentiation rarely occurs in NOD-scid mice. 
Conversely, certain cell lineages, such as erythrocytes and granulocytes, rarely de-
velop at all, even in NOG, NSG, and BRG mice. The reasons for this phenomenon 
are beginning to be understood, and it appears that mouse factors are unable to 
compensate for the absence of human factors responsible for the differentiation of 
these cells.

T and B cells that differentiate from HSC in NOG mice can be maintained for as 
long as 1 year without GVHD. At one time, it was expected that such mice could be 
used to develop hematolymphoid humanized mice with a complete immune system. 
However, humanized NOG mice do not produce antigen-specific human immuno-
globulin (Ig) G antibodies, even when they are challenged with antigens. Antigen-
specific cytotoxic T lymphocytes (CTL) were not also induced in NOG mice. This 
lack of responsiveness may be because human T/B cells and antigen-presenting 
cells do not interact in humanized NOG mice when human T cells are educated 
in the mouse thymus. By using NOG/NSG mice that express class I or II human 
leukocyte antigens (HLA), antigen-specific human IgG antibodies and CTL can be 
induced following transfer of HLA-matched HSC [23–27]. Thus, human immune 
responses can be partially elicited in immunodeficient mice that express HLA.
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Humanized mice with engrafted human T cells following transfer of PBMC and 
HSC can be used to evaluate anti-HIV-1 drugs. Still, such mouse models cannot be 
used to research immunological responses to HIV-1 infection or the development of 
an HIV-1 vaccine due to functional deficiency of human T and B cells resulting in 
the lack of robust adaptive immune responses. NOD-scid mice that have received 
human fetal bone marrow, liver, and thymus (i.e., BLT mice), have a working hu-
man immune system and can be used as a HIV-1 infection model [28]. However, 
there are bioethical concerns about the use of such mice, and consequently, they 
cannot be used in Japan.

1.3 � Novel Humanized Mouse Models Generated Using 
Improved Immunodeficient Mice

Recently, to overcome the disadvantages of conventional NOG, NSG, and BRG 
mice, several improved immunodeficient mouse models have been developed pri-
marily through the introduction of various human genes [23–34]. Our team has 
developed and improved several immunodeficient mouse models (http://www.
ciea.or.jp/kiban-s/index.html). Our new models were primarily established through 
the introduction of human cytokine genes and mutated mouse genes (unpublished 
data). Mice that have been modified to have genes encoding HLA are of interest be-
cause they exhibit human immune response following transfer of human haplotype-
matched HSC.

Here, we briefly describe the characteristics of the humanized mouse models of 
particular interest developed by CIEA. In NOG mice expressing human interleukin 
(IL)-2 following HSC transfer, human NK cells generally developed 4 weeks before 
T and B cells. These NK cells accounted for 80–90 % of human cells in NOG-hIL-2 
mice, and the NK cells effectively suppressed the growth of NK-sensitive K562 leu-
kemia cells in vivo (paper submitted). Myeloid lineage cells, including granulocytes 
and monocytes, successfully formed in NOG mice that expressed human granu-
locyte macrophage colony-stimulating factor (GM-CSF) and IL-3, whereas they 
rarely form in conventional NOG mice. Additionally, a passive cutaneous anaphy-
lactic reaction was successfully elicited in these humanized NOG mice following 
intracutaneous inoculation of sera from pollenosis patients followed by intravenous 
inoculation of pollen antigen and Evans Blue dye [35]. HSC did not differentiate 
when transferred into NOG mice that express human IL-4, but the reason for this 
remains unclear. When these mice were transplanted with HSC, they showed mild 
GVHD, and human cells could be maintained for a longer time period due to the 
shift of T cells to Th2 cells.

These improved humanized mouse models can be used to study human diseases. 
The evaluation of the use of such models in this context will be left to experts in 
different areas of biomedical disciplines, such as regeneration, development, infec-
tious diseases and vaccines, and cancer and therapeutics.
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