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Preface

The use of antibody-based therapeutics has grown exponentially in the past few decades,
now representing a large component of therapeutic drugs that was dominated by small
organic molecules up until the late 1990s. Antibodies have proven versatile in treating a
variety of diseases including cancer, autoimmunity, infectious diseases, or even neurodegen-
erative disorders. As of 2017, 70 therapeutic antibodies have been approved by the FDA,
and more than 550 promising candidates are in different phases of clinical trials. They
currently represent 20% of the top 100 selling drugs, up from just 1% in 2007. However,
major improvements and breakthroughs have been necessary to achieve these impressive
results.

The 1970s were the start of great revolutions in the field: Gerald Edelman and Rodney
Porter were awarded the Nobel Prize for their work on the molecular structure of
antibodies, the first atomic resolution structure of an antibody fragment was published,
followed by the groundbreaking development of hybridoma technology by Georges
J. F. Köhler and César Milstein. This technology allowed antibodies to be produced and
characterized as monoclonals, starting the modern era of antibody engineering.

Despite this revolution, the success of antibodies as therapeutic molecules was not
immediate, and most clinical studies led to disappointments. First murine antibodies used
as treatment had many limitations, such as a short in vivo half-life, limited tumor penetra-
tion, inefficient recruitment of host effector functions, and most of all, immune response
from the patient against the injected antibody, also called “HAMA” response, referring to
the production of neutralizing human anti-mouse antibodies.

For many years, researchers developed strategies to abrogate this problem; the journey
toward antibody humanization began. Fully murine antibodies first progressed to chimeras,
where variable regions from murine origin were assembled onto human constant domains,
then to humanized antibodies by insertion of only the relevant CDRs onto human antibody
scaffolds. Finally, fully human antibodies were generated, directly in genetically modified
mice, selected from human synthetic antibody libraries or by sequencing of human plasma
cells.

However, immunogenicity was not the only factor holding up the development of
antibodies. Indeed, the classical architecture of immunoglobulin molecules bears some
inherent limitations. Many innovative formats have been explored to overcome these
major hurdles, such as reducing the antibody to its minimal functional size, modulating
the valency, the (multi) specificity, increasing the half-life, and enhancing the recruitment of
immune effector cells.

As the demand for monoclonal antibodies in research and clinical applications continues
to increase, the necessity to develop even more efficient molecules is crucial. Antibody
engineering has become a key discipline for generation of innovative antibodies-based
molecules used in research, diagnostics, and therapy.
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This third edition ofAntibody Engineering: Methods and Protocols remains in the lineage
of its predecessors and gives the readers complete and easy access to a variety of antibody
engineering techniques. From the generation of native, synthetic, or immune antibody
libraries, the selection of lead candidates thanks to different powerful and innovating
display technologies, to their production, characterization, and optimization, this handbook
provides the reader with an extensive toolbox to create the powerful molecules of tomorrow.

Darlinghurst, NSW, Australia Damien Nevoltris
Marseille, France Patrick Chames
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Humaine (IGH), UMR 9002 CNRS-UM, Université de Montpellier, Montpellier Cedex,
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DOREEN KÖNNING � Institute for Organic Chemistry and Biochemistry, Technische
Universit€at Darmstadt, Darmstadt, Germany; Antibody-Drug Conjugates and Targeted
NBE Therapeutics, Merck KGaA, Darmstadt, Germany

CHRISTIAN KELLNER � Division of Stem Cell Transplantation and Immunotherapy,
Department of Medicine II, University Hospital Schleswig-Holstein and Christian-
Albrechts, University of Kiel, Kiel, Germany

KATJA KLAUSZ � Division of Stem Cell Transplantation and Immunotherapy, Department of
Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts, University of
Kiel, Kiel, Germany

HARALD KOLMAR � Institute for Organic Chemistry and Biochemistry, Technische Universit€at
Darmstadt, Darmstadt, Germany

SOFIA KOSSIDA � IMGT®, The International ImMunoGeneTics Information System®,
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Montpellier, France; Institut Régional du Cancer de Montpellier, Montpellier, France

SAM MASSA � Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussel,
Belgium; In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel,
Brussels, Belgium

SHANE MIERSCH � Banting and Best Department of Medical Research, Terrence Donnelly
Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON,
Canada

SANDRINE MOUTEL � CNRS, UMR144, Paris, France; Institut Curie, PSL Research
University, Paris, France

SERGE MUYLDERMANS � Cellular and Molecular Immunology, Vrije Universiteit Brussel,
Brussel, Belgium

NAOTO NEMOTO � Graduate School of Science and Engineering, Saitama University,
Saitama, Japan; Epsilon Molecular Engineering, Inc., Saitama, Japan

DAMIEN NEVOLTRIS � Garvan Institute of Medical Research, Immunology Division,
Darlinghurst, NSW, Australia
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France; Institut Régional du Cancer de Montpellier, Montpellier, France

MICHELA PASELLO � CRS Development of Biomolecular Therapies, Experimental Oncology
Lab, Rizzoli Orthopedic Institute, Bologna, Italy

MATTHIAS PEIPP � Division of Stem Cell Transplantation and Immunotherapy, Department
of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts, University
of Kiel, Kiel, Germany

FRANCK PEREZ � CNRS, UMR144, Paris, France; Institut Curie, PSL Research University,
Paris, France
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Part I

In Silico Methods



Chapter 1

Antibody Design and Humanization via In Silico Modeling

Vinodh B. Kurella and Reddy Gali

Abstract

Antibody humanization process converts any nonhuman antibody sequence into humanized antibodies.
This can be achieved using different methods of antibody design and engineering. This chapter will
primarily focus on antibody design using a homology model followed by framework shuffling of murine
to human germline sequence for humanization. Historically, mouse antibodies have been humanized using
sequence-based approaches, in which all the murine frameworks are replaced with most homologous
human germline sequence or related scaffold. Most often this humanized antibody design, when tested,
has a significantly reduced binding or no binding to the cognate antigen. This is due to noncompatibility of
mouse CDRs being supported by non-native human framework scaffold. This mismatch between mouse,
human structural fold, and elimination of key conformational residues often leads to antibody humaniza-
tion failures. Recently, there has been advent of homology modelor structure-guided antibody humaniza-
tion. Instead of humanization based on linear sequence, this approach takes into account the tertiary
structure and fold of the mouse antibody. A mouse homology model of the fragment variable is created, and
based on sequence alignment with human germline, residues that are different in mouse are replaced with
humanized sequence in the model. Energy minimization is applied to this humanized model that also
delineates residues which might have steric clashes due to change in the overall tertiary conformation of the
humanized antibody. Therefore, a homology model-guided with rational mutations, and reintroduction of
key conformational residues from mouse antibody not only eliminates steric clashes but might also restore
function in relation to binding affinity to its antigen.

Key words Antibody design, Humanization, De-immunization, Antibody homology model, PIGS,
Rosetta, Antibody model, Prediction of Immunoglobulin Structures, Mouse antibody humanization,
Homology model-guided humanization, Structure-based antibody engineering

1 Introduction

Historically, antibodies have been generated mainly using mouse
models. These antibodies worked best for research and diagnostic
applications, but did not fare well in human therapeutic use. In the
early days of therapeutic antibody development and use, mouse
monoclonal antibody against a specific cancer target was adminis-
tered directly to human patients. This led to generation of human
anti-mouse antibody response (HAMA), which not only neutra-
lized this therapeutic antibody but also led to severe allergic
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reaction in humans. Researchers then replaced mouse Fc (fragment
crystalline) and part of Fab (fragment antigen binding) with human
antibody sequences, a chimeric antibody. This chimera, based on
the sequence, did reduce overall immunogenicity of the mouse
mAb but still did contain substantial mouse residues. Greg Winter
at Medical Research Council (MRC, UK) came up with a novel idea
of taking the mouse CDRs of both heavy and light chains and
transplanting them directly onto a fully human antibody scaffold.
In this method, CDRs are the only sequences that are mouse, and
the rest of the antibody contains human sequence. This technique
is popularly known as CDR replacement [1]. It was a groundbreak-
ing technique at that time and is still considered a gold standard in
antibody humanization.

Over the years, there have been numerous methods developed
for undertaking antibody humanization or antibody de-immuniza-
tion. Although CDR replacement dramatically reduces the mouse
residues in the humanized antibody, however, in most cases it
results in a significant drop in affinity toward the antigen. This is
due to sequence and structural differences between mouse CDRs
being supported by non-native human frameworks. Therefore,
humanization becomes an iterative process in which numerous
designs have to be made, tested, and ranked based on functional
readout (e.g., affinity measurement). Other humanization tech-
nique adopts sequence-based conversion of a mouse mAb to a
humanized antibody. It involves replacement of only those residues
to human germline sequences, which are not conserved between
mouse and human. Another technique involves a more conserva-
tive approach, in which replacement is done only for one framework
at a time instead of all the four frameworks [2]. In this approach,
designs are tested, and sequential framework replacement of mouse
to human is accomplished, driven by affinity measurements and
functional data. Framework shuffling is a method to create huma-
nized antibody variants based on sequence conservation and ran-
domization of heavy and light chains from different variable chain
germline sequences [3]. Super humanization is another technique
in which mouse CDRs are also humanized along with the frame-
works [4]. Given HAMA responses against a mouse mAb are
antibody mediated, researchers have mapped out the surface-
exposed residues in the mouse mAb and replaced only those with
corresponding human sequences, also known as antibody resurfa-
cing [5]. This is achieved by delineating surface-exposed residues
using either X-ray/NMR structures or homology model of the
mouse mAb fragment variable region (Fv). Recently, this approach
is further optimized, in which the mouse mAb Fv model is first
generated, and then non-conserved residues in mouse are mutated
to reflect human germline sequences. This humanized homology
model has mouse CDRs and human frameworks, which is energy
minimized using one of these force fields (GROMOS,
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CHARMM). If there are steric clashes between frameworks and
CDRs/frameworks regions, these can be visualized in the chimeric
homology model. Sequence or structure-based back or novel muta-
tions can be introduced to avoid these steric clashes. This approach
is well adopted by the scientific community as a homology model-
guided antibody humanization [6–9].

1.1 Antibody

Structures

Antibodies can be classified into canonical and noncanonical clas-
ses. Antibody heavy chain can be further divided into four frame-
works, which encompass CDRs (H1, H2, H3) and light chain
containing CDRs (L1, L2, L3). All these frameworks have a very
high degree of similar structural fold. CDRs L1–L3 andH1 andH2
can be assigned to canonical classes. Based on the length and
sequence, these loops can be modeled based on the structural
templates available from these canonical classes in protein data
bank. Given the diversity and uniqueness of CDR H3, it does not
belong to any canonical family. In the recent past, there has been
plethora of antibody structures determined via NMR, X-ray crys-
tallography, as well as cryo-EM techniques. Most of these antibo-
dies have sequence and structural similarity between them that has
led to creation and development of different algorithms for anti-
body homology model prediction, as opposed to resource-intensive
experimental structure determination.

These algorithms primarily use antibody sequence information
to extract structural templates from protein data bank (PDB),
which results in creation of homology model of an antibody.
Given tremendous growth in biologics in the recent past over
small molecules, different researchers, as well as commercial com-
panies, have developed antibody model prediction algorithms.
Publically available antibody modeling algorithms are Rosetta anti-
body modeling, Web antibody modeling (WAM), structure-based
antibody prediction server (SAbPred), Prediction of ImmunoGlob-
ulin Structures (PIGS), and Kotai (antibody builder). Commer-
cially, there are a number of antibody modeling products, such as
Biovia’s Discovery Studio, Schrodinger’s BioLuminate, and Chem-
ical Computing Group’s MOE and Macromoltek. A brief descrip-
tion of some of these prediction algorithms is described.

1.2 Web Antibody

Modeling (WAM)

Antibody modeling algorithm follows a series of steps to obtain a
homology model from the sequences of variable heavy and light
chains. It consists of sequence-based search for framework and
canonical loop regions to find the most homologous structure
from protein data bank. Noncanonical antibody regions are built
either using knowledge-based search from databases or ab initio
model building, using CONGEN conformational search
[10]. Final conformational homology model is selected from the
five lowest energy models, ranked based on torsion angles closest to
the original PDB template.
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1.3 Rosetta Antibody

Modeling

In this algorithm, antibody variable heavy and light chain is split
into frameworks and CDR sequences. These sequences then
become input for template search in the curated protein data
bank for the most similar sequences, and use the most homologous
structure as a template to build a homology model. As framework
regions are mostly conserved across different antibodies, a frame-
work 3Dmodel is built. CDR-H3 structure is the most variable and
challenging to predict; hence its structural fold is created by de
novo model building. Once VH–VL orientation is chosen via
sequence blast of the whole Fv (fragment variable—VH þ VL)
against the PDB, the modeled CDR loops for VH and VL are
grafted onto this framework template for further refinement and
model building. Engrafted model is energy minimized, and an
ensemble of high-resolution models &lt;3000 are ranked based
on Rosetta score that reflects probable entropies in each model,
and the lowest energy is ranked as the top model [11].

1.4 Prediction

of Immunoglobulin

Structures (PIGS)

In general, this antibody variable homology modeling server algo-
rithm is similar to those mentioned above. However, there are
some differences in the workflow and strategies implemented in
PIGS. A sequence-based analysis is performed to obtain homolo-
gous framework sequences of known antibody structures from
protein data bank. Antibody CDRs with canonical loops are mod-
eled based on known antibody structures and grafted upon the
framework model. Both heavy and light chain models (if the paren-
tal templates are different) then are packed together based on
conserved interface residues at the heavy and light chains from
known antibody structures. Finally, energy minimization of the
side chains is carried out via SCWRL4.0 (side chain with
backbone-dependent rotamer library), results in the final antibody
homology model generation [12].

2 Materials

Antibody humanization can be undertaken either using commer-
cially available tools (Schrodinger’s BioLuminate, Biovia’s Discovery
Studio, Chemical Computing Group’s MOE and Macromoltek) or
publically available web servers (Prediction of Immunoglobulin
Structures- PIGS; Rosetta antibody modeling; structure-based anti-
body prediction server- SAbPred; and Kotai -antibody builder). To
describe and delineate differences and limitations between these
algorithms will be beyond the scope of this chapter. Given, publically
available resources and servers can be accessed by everyone with a
computer and internet access. This chapter will primarily focus on
utilizing public servers for antibody homology model building and
humanization.
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1. To delineate boundaries of mouse heavy and light chain, user
can input the whole heavy chain and light chain from the
mouse IgG sequence separately into IMGT (the international
ImMunoGeneTics information system®) DomainGapAlign
alignment tool using default settings (http://imgt.org/
3Dstructure-DB/cgi/DomainGapAlign.cgi) [13]. As an
example, a mouse antibody from protein data bank code
(3MBX) with the variable heavy (VH) and light
(VL) sequence (see Notes 1 and 2).

VH—
EVTLKESGPGILQPSQTLSLTCSFSGFSLSTYGMGVGWIRQPSGKGLEWLA
HIWWDDVKRYNPALKSRLTISKDTSGSQV
FLKIASVDTSDTATYYCARMGSDYDVWFDYWGQGTLVTVSA

VL—
DIVMSQSPSSLAVSVGEKVTMSCKSSQSLLYNNNQKNYLAWYQQKPGQS
PKLLIYWASTRESGVPDRFTGSGSGTDFTLT
ISSVKAEDLAVYYCQQYYSYPFTFGSGTKLEIK

2. Once the variable heavy (VH) and variable light (VL) chains are
defined as above, these VH and VL sequences will become the
starting material to be used as input for antibody homology
model building. Model can be built by accessing any of the
antibody modeling servers:

PIGS—http://circe.med.uniroma1.it/pigs/index.php
Rosetta—http://rosie.rosettacommons.org/antibody
SAbPred—http://opig.stats.ox.ac.uk/webapps/sabdab-
sabpred/WelcomeSAbPred.php
Kotai—https://sysimm.ifrec.osaka-u.ac.jp/kotaiab/

3. Mouse antibody homology model is built by one of the above
servers; the model can be visualized via molecular visualization
software programs, such as PyMOL, DeepView-Swiss-
PDBViewer, or UCSF Chimera. These programs can be down-
loaded as given below:

PyMOL—https://www.pymol.org/
DeepView-Swiss-PDBViewer—http://spdbv.vital-it.ch/dis
claim.html
UCSF Chimera—http://www.cgl.ucsf.edu/chimera/

4. Energy minimization of the humanized antibody model can be
undertaken by DeepView-Swiss-PDBViewer. This software can
be downloaded from this website.
http://spdbv.vital-it.ch/disclaim.html
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3 Methods

1. The first step is to obtain the mouse antibody variable and
heavy and light sequences and create a homology model via
any of the antibody homology modeling software. Input
mouse antibody sequences (VH and VL) into either antibody
homology modeling software (BioLuminate, Discovery studio,
or MOE) or any of these public web servers (e.g., PIGS,
Rosetta, SAbPred, or Kotai). (For an example, refer to Sub-
heading 2, step 1, for a mouse antibody sequence.) Use PIGS
web server as a starting tool for this exercise (Fig. 1a, b).

PIGS—http://circe.med.uniroma1.it/pigs/index.php
Rosetta—http://rosie.rosettacommons.org/antibody
SAbPred—http://opig.stats.ox.ac.uk/webapps/sabdab-
sabpred/WelcomeSAbPred.php
Kotai—https://sysimm.ifrec.osaka-u.ac.jp/kotaiab/

2. Human framework selection can be primarily accomplished
from two sources:

(a) IMGT database can be used to obtain most identical
(percentage identity) human germline repertoire for
both VH chain and VL chains. IMGT’s DomainGapAlign
tool can be used to obtain the most similar corresponding
human germline sequences for heavy and light chain sep-
arately (http://imgt.org/3Dstructure-DB/cgi/Dom
ainGapAlign.cgi) (see Fig. 2). Use default settings; under
species drop-down menu, choose Homo sapiens
(Humans), and then click “Align and IMGT-gap my
sequence for VH and VL separately.

(b) Blast antibody sequences VH and VL separately to find
the most identical human framework in PDB. Igblast tool
can be utilized for this analysis (https://www.ncbi.nlm.
nih.gov/igblast/).
Human framework selection criteria can be made based
on percentage identity to individual VH and VL chains or
human frameworks with highest overall identity for both
chains (VH and VL).

3. Mutate and replace mouse residues in the homology model
created in step 1 to human residues, either found in the align-
ment using IMGT’s DomainGapAlign alignment (step 2a) or
human antibody structure obtained from PDB (step 2b).
Replacement of mouse residues to human residues can be
performed using PyMOL>wizard> mutagenesis tool https://
www.pymol.org/ (see Note 3). In addition, user can subject
the resulting chimeric model to Ramachandran plot validation
using PDBsumGenerate option (this step is optional) (https://
www.ebi.ac.uk/thornton-srv/databases/pdbsum/Generate.
html).
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Fig. 1 (a) Antibody humanization steps are described in this workflow. As
described in this flow chart, there are numerous steps in this process that
need usage of different antibody modeling servers, sequence alignment tools,
and protein visualization software. (b) Visual representation of antibody humani-
zation design process. Different steps involved in antibody humanization are
annotated based on each stage of the design development. A mouse antibody
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4. This humanized homology model has human frameworks and
mouse CDRs (chimeric), which is subjected to energy mini-
mizations using Swiss-PDBViewer (spdbv) software. Upload
this humanized model in the spdbv software, and select all, and
then under tools, select “compute energy (Force Field).” The
output “energy report” can be copied into a word document
for review. Residues with high total energies need to be exam-
ined further. This can be carried out using PyMOL software
(see Note 4).

5. Energy-minimized humanized model is then examined both
visually and energetically for steric clashes. Based on the degree
of entropies score, as well as extent of steric clashes, some residues
may be replaced either to novel mutations or back mutation
(parental mouse) residues. For example (Figs. 3 and 4), if there
is a steric clash between two residues in the framework regions,
then the residue that is not conserved across different germlines is
mutated to fix the steric clash (seeNote 5).

6. Once residue replacement is completed, humanized homology
model is again subjected to energy minimization (step 4) to
examine amelioration of these steric clashes (Fig. 3b). If no
further steric clashes are found, then this humanized model is
designated as design one.

7. To design additional humanized variants, one can choose the
second highest identical human framework from step 2 and
carry out the engineering until step 6 to obtain design two.
Repeat steps from 2 to 6 to obtain a minimal set of 20 different
humanized variants for experimental testing (see Fig. 1a, b).

4 Notes

1. To explore some additional examples of mouse antibodies for
humanization, refer to [14], as it lists 17 different mouse
antibodies for humanization using the same methods as men-
tioned in this chapter.

�

Fig. 1 (continued) sequence was utilized to create a 3D homology model, CDRs
in orange, light chain in blue, and heavy chain in purple, and sequences that are
different in mouse are highlighted in yellow. Once human germline sequence is
obtained from either IMGT or Abysis database and aligned with mouse antibody
sequence, those residues that were different are changed to reflect human
sequences (green—step 3). This chimeric humanized model can also be vali-
dated via Ramachandran plot using PDBsum Generate option (step 4—optional).
The humanized model (human framework and mouse CDRs) was then subjected
to energy minimization using Swiss-PDBViewer (spdbv) software (step 5). If no
steric clashes are found, this will result in creation of the first humanized
antibody design (step 7)
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2. If using PIGS for antibody model building with VH and VL as
input sequence from PDB ID—3MBX antibody, there will be
two warnings after the submission for template selection. One
being “No IG satisfying search criteria among first 20, and
other is H3 canonical structure not defined.” To circumvent
first warning, under results, select threshold 40 results, instead
of 20 (default).

3. Mutagenesis tool in PyMOL is recommended for mutating and
replacing mouse antibody residues in the heavy chain and light
chain to corresponding residues in the human germline gene
(Fig. 2). In PyMOL, select wizard and mutagenesis, it will
prompt to “pick a residue” of the mouse amino acid, and
mutate to corresponding human amino acid from Fig. 2.
(If using 3MBX as an example, in the heavy chain
(VH) position 1, mouse glutamate (E) needs to be mutated
to glutamine (Q) for humanization.) (see Fig. 2).

4. Energy minimization of the humanized chimeric model using
Swiss-PDBViewer (spdbv). Once the hybrid-humanized model
is opened using Swiss-PDBViewer, it might give an error of
“unrealistic B factor.” Please ignore and close this generic error.
Compute energy (force field), under tools, is first selected.
Make sure the pop-up window has all the boxes checked,
including “show energy report.” The energy report is usually
saved in “temp” folder, which can be found inside the original
folder, where Swiss-PDBViewer is installed
(SPDBV_4.1.0_OSX “folder name.” It is recommended to
use desktop folder as a destination for software installation).
In 3MBX, there are many residues with high total energies. As
an example, only a couple of them are described here. Residues
in the heavy chain position 24 (PHE) and in the light chain
position 46 (LEU) have very high electrostatic or total score.

Fig. 2 Mouse antibody and corresponding human germline sequence alignment using IMGT DomainGapAlign
tool. Mouse antibody sequence (PDB ID—3MBX) is aligned with the most identical human germline sequence.
Mouse residues in both heavy and light chain (yellow) were mutated to human germline residues (green),
whereas the mouse CDRs (orange) were unchanged. Mouse variable heavy chain is 71.4% (identical) to human
germline IGHV2-5*09; a total of 24 amino acids needed to be replaced. Whereas mouse variable light chain is
82.3% (identical) to human germline IGKV4-1*01, as such, only 12 amino acids needed to be replaced
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