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 Infl uenza A viruses are among the most important pathogens for humans, food animals, 
and companion animals. Of the animal infl uenza viruses, avian, swine, and equine infl uenza 
are likely to have the greatest economic impact internationally because of their value as food 
animals or, with horses due to a large sport competition industry. Also, although the risk is 
truly unknown, as domestic animals, poultry, swine, and horses have extended contact with 
humans, which provides an interface for interspecies transmission, there is always the poten-
tial for these animal infl uenza viruses to become threats to public health. 

 Regardless of the possible implications for public health, infl uenza is highly signifi cant 
to poultry, swine, and equine health. Research and diagnostics with animal infl uenza viruses 
are critical to animal health in its own right and it should be recognized that the needs and 
goals of animal agriculture and veterinary medicine are not always the same as those of 
public health. Even within these three examples of animal infl uenza viruses there are differ-
ences in the approach which may need to be taken, as the structure of the poultry, swine, 
and equine industries are different and there are some biological differences of infl uenza 
virus from each animal group as well. One of the aims of this book is to sort out those dif-
ferences and to provide host, strain, and lineage specifi c guidance and procedures. 

 The reader will also recognize that in some cases the same method is described for all 
three of these animal viruses, for example real-time RT-PCR or hemagglutination inhibi-
tion (HI) assay. At fi rst glance this may seem redundant; however there are often seemingly 
minor, but crucial differences in the assay, such as sample processing for each species (e.g., 
how to treat for sera the HI assay) or the specifi city of reagents (e.g., primer sequences for 
RT-PCR; optimal laboratory host system for virus isolation). In contrast there are some 
methods that will be unique to an animal infl uenza virus group and parameters will neces-
sarily vary. Certainly, assays may be adapted to individual study needs with proper optimiza-
tion or can simply be used as they are described. The aim of this book is to provide the 
essential methods used in working with animal infl uenza viruses, and to compile more 
advanced information that will guide the user in designing infl uenza studies. 

 Most importantly this book would not have been possible without the contributions of 
the authors. The contributors are experts in their fi elds; therefore their input and knowl-
edge is invaluable with the details they provide from their extensive experience. I want to 
gratefully acknowledge each of them for taking time from their busy schedules to contrib-
ute to this book. I would also like to thank the editorial team at Springer: John Walker, 
MIMB series editor, and both Patrick Marton and David Casey for all their time and help 
with completing this book. 

 Happy pipetting.  

    Athens, GA, USA  Erica     Spackman    

  Pref ace       
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Erica Spackman (ed.), Animal Infl uenza Virus, Methods in Molecular Biology, vol. 1161,
DOI 10.1007/978-1-4939-0758-8_1, © Springer Science+Business Media New York 2014

    Chapter 1   

 Hemagglutination Assay for Infl uenza Virus 

           Mary     Lea     Killian    

    Abstract 

   The hemagglutination assay (HA) is a tool used to screen cell culture isolates or amnioallantoic fl uid harvested 
from embryonated chicken eggs for hemagglutinating agents, such as type A infl uenza. The HA assay is 
not an identifi cation assay, as other agents also have hemagglutinating properties. Live and inactivated 
viruses are detected by the HA test. Amplifi cation by virus isolation in embryonated chicken eggs or cell 
culture is typically required before HA activity can be detected from a clinical sample. The test is, to some 
extent, quantitative as 1 hemagglutinating unit (HAU) is equal to approximately 5–6 logs of virus. It is 
inexpensive and relatively simple to conduct. Several factors (quality of chicken erythrocytes, laboratory 
temperature, laboratory equipment, technical expertise of the user) may contribute to slight differences in 
the interpretation of the test each time it is run. This chapter describes the methods validated and used by the 
US National Veterinary Services Laboratories for screening and identifi cation of hemagglutinating viruses.  

  Key words     Hemagglutination  ,   Avian infl uenza virus  ,   Type A infl uenza  ,   Infl uenza detection  ,   Virus titer  

1      Introduction 

 The hemagglutinin protein on the surface of infl uenza virus parti-
cles is capable of binding to  N -acetylneuraminic acid-containing 
proteins on avian and mammalian erythrocytes [ 1 ,  2 ]. When com-
bined, if the infl uenza virus is present in a high enough concentra-
tion, there is an agglutination reaction and the erythrocytes link 
together to form a diffuse lattice ( see  Fig.  1 ). The hemagglutina-
tion assay (HA) is a classic diagnostic test used to screen cell cul-
ture supernatant or amnionic–allantoic fl uid (AAF) harvested from 
embryonated chicken eggs.

   The HA is not an identifi cation assay. Other types of viruses 
(e.g., paramyxoviruses, adenovirus-127) and certain bacteria also 
have hemagglutinating properties [ 3 – 5 ]. The HA should be 
 followed by a hemagglutination-inhibition assay ( see  Chapter   2    ) to 
determine the type and/or subtype of virus. The HA does not nec-
essarily indicate the presence of a viable virus [ 1 ]. It is also capable 

http://dx.doi.org/10.1007/978-1-4939-0758-8_2
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of detecting viral particles that have been degraded or inactivated 
and are no longer infectious. 

 Generally, there is enough virus present following a single pas-
sage in culture for detection of infl uenza virus by HA [ 4 ,  5 ]. 
Additional passages increase the chance for cross-contamination in 
the laboratory. On average, a 10 5 –10 6  50 % egg infectious dose 
(EID 50 )/ml is required for detection by HA [ 5 ]. At the time of 
collection, AAF that contains blood should be discarded as there 
may be some adsorption of the virus by the erythrocytes, decreas-
ing the overall titer of the virus in the fl uid or inhibiting the ability 
to detect the virus by HA assay. 

 The following test procedure is used at the US National 
Veterinary Services Laboratories (NVSL). The World Animal 
Health Organization (OIE) Manual of Standards for Diagnostic 
Tests and Vaccines outlines a slightly different procedure, however 
the results are equivalent. The OIE procedure utilizes different 
volumes of reagents and a different concentration of chicken eryth-
rocytes, and the steps are performed in a slightly different order. 
For this reason, steps or reagents from the NVSL procedure and 
the OIE procedure should not be combined in the same test.  

2    Materials 

     1.    Sterile bottle with lid.   
   2.    Anticoagulant, Alsever’s solution or acid citrate dextrose.

   (a)    Alsever’s solution: Weigh out reagents into a conical fl ask: 
0.55 g of citric acid, 0.8 g of sodium citrate, 2.05 g of  D - 
glucose , and 0.42 g of sodium chloride. Dissolve in distilled 
water to a fi nal volume of 100 ml. Dispense into sterile 10 ml 

  Fig. 1    Illustration of the hemagglutination process. The virus binds red bloods 
cells (RBCs) and forms a matrix by linking RBCs together which prevents the 
RBCs from settling in the diluent (often PBS)       

 

Mary Lea Killian
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bottles, do not tighten lids and sterilize by autoclaving at 
116 °C for 10 min. Use slow exhaust. Allow to cool, then 
tighten the lid and label the bottle. Store at 4 °C.   

  (b)    Acid citrate dextrose (ACD): Weigh out reagents into a 
conical fl ask: 4 g of citric acid, 11.3 g of sodium citrate, 
and 11 g of  D -glucose. Dissolve in 300 ml of distilled water 
then add distilled water to a fi nal volume of 500 ml. 
Dispense into 100 ml bottles and do not tighten the lids. 
Sterilize by autoclaving at 116 °C for 10 min. Use slow 
exhaust. Allow to cool, then tighten the lid and label the 
bottle. Store at 4 °C.       

   3.    50 ml Conical tubes.   
   4.    U-bottom or V-bottom 96-well plate with lid.   
   5.    Single and multichannel pipettes and pipette tips to deliver 

50 μl volumes.   
   6.    Liquid reagent reservoirs.   
   7.    0.1 M phosphate-buffered saline (PBS), pH 7.2.

   (a)    To prepare PBS, combine the following ingredients: 8.5 g 
of sodium chloride, 1.33 g of sodium phosphate dibasic, 
and 0.22 g of sodium phosphate monobasic. Dissolve in 
distilled water to a fi nal volume of 1 l. Mix thoroughly and 
adjust pH to 7.2 ± 0.1.       

   8.    Chicken erythrocytes, 0.5 % in PBS ( see  Chapter   2    ).   
   9.    Positive control infl uenza antigen.   
   10.    Mylar microtiter plate sealers (Thermo) or equivalent.   
   11.    Test material: AAF harvested from eggs inoculated with AIV 

or an AIV suspect sample. Suffi cient quantity of AAF should be 
harvested to provide enough material to conduct the HA assay 
and subsequent characterization assays. Cell culture superna-
tant may also be used.      

3    Methods 

      1.    Rooster red blood cells (RBCs) collected from specifi c 
pathogen- free (SPF) chickens are preferred for use in the HA 
test. Red blood cells collected from hens may contain hor-
mones that interfere with hemagglutination. Chicken eryth-
rocytes are typically used because the settling time is quicker 
and the settling patterns are typically clearer than with cells 
from other species [ 2 ]. Certain AI viruses may not hemag-
glutinate chicken erythrocytes before adaptation in embryo-
nated chicken eggs; these viruses may be more sensitive to 
hemagglutination with turkey erythrocytes or guinea pig 
erythrocytes.   

3.1  Collection and 
Preparation of Rooster 
Red Blood Cells

HA Assay for AIV

http://dx.doi.org/10.1007/978-1-4939-0758-8_2
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   2.    Fresh erythrocytes should be prepared regularly. Red blood 
cells will begin to hemolyze after 5–7 days, causing inaccura-
cies in the HA test [ 6 ]. The erythrocyte suspension should be 
mixed gently before use to ensure a uniform distribution of 
cells in each of the test wells.   

   3.    Prepare a sterile bottle with a lid containing an anticoagulant 
(either ACD or Alsever’s solution). Use one volume ACD to 
three volumes blood or one volume Alsever’s solution to one 
volume blood.   

   4.    Before collecting blood, draw a small amount of anticoagulant 
into the syringe and expel again. This will coat the syringe 
which will keep the blood from coagulating in the syringe 
before addition to the anticoagulant in the bottle.   

   5.    Collect 3–5 ml blood from the wing vein or by cardiac punc-
ture from an SPF rooster in accordance with the appropriate 
animal care and use procedures. Animals should not be vacci-
nated for Newcastle disease or other pathogens as this may 
interfere with some serological hemagglutination-inhibition 
tests. Add the blood to the anticoagulant. Rotate the bottle 
gently to mix thoroughly. Always treat the red blood cells gen-
tly to avoid hemolysis.   

   6.    Add the suspension to a 50 ml conical tube and add a suffi cient 
quantity of PBS to total 50 ml. Rotate gently to mix.   

   7.    Centrifuge at approximately 800 ×  g  for 10 min to pellet RBCs.   
   8.    Aspirate supernatant and surface layer of white cells (buffy coat) 

from the tube without disturbing the pellet of erythrocytes.   
   9.    Wash the erythrocytes a total of three times in PBS by repeat-

ing  steps 6 – 8 .   
   10.    Add 1 ml packed red blood cells to 199 ml PBS for a fi nal RBC 

concentration of 0.5 %.      

      1.    Orient a microtiter plate (U-bottom or V-bottom) so that 
samples will be diluted either 8 wells or 12 wells across as 
needed. Number the rows on each plate so that the contents of 
each row are uniquely identifi ed.   

   2.    Add 50 μl PBS to every well on the plate.   
   3.    Add 50 μl AAF ( see   Note 1 ) or cell culture fl uid to be tested 

(“test material”) to the fi rst well in each row (or column) to be 
tested. Note that this will result in a 1:2 dilution of test mate-
rial. Positive control antigen and cell control (no antigen, 
where PBS is added instead of antigen) wells with RBCs must 
be included each time the test is performed. If multiple plates 
are being tested at the same time, one positive control antigen 
and one RBC only control well should be included on a mini-
mum of every fi fth plate.   

3.2  Hemag-
glutination Assay

Mary Lea Killian
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   4.    Dilute the test material: Mix the contents of the fi rst well by 
pipetting up and down slowly (avoid generating bubbles). 
Transfer 50 μl from the fi rst well to the second well in the row or 
column as appropriate for the plat orientation. Continue to make 
twofold dilutions of the virus suspension across the entire row or 
column. Discard the excess 50 μl after the last row or column. 
All wells should have a fi nal volume of 50 μl after this step.   

   5.    Starting at the end of the plate with the highest dilution add 
50 μl 0.5 % erythrocyte suspension to every well. Tap the plate 
gently to mix.   

   6.    Apply adhesive plate sealer to each plate. Once the sealer is 
applied, the plates may be removed from the biological safety 
cabinet after decontaminating the surface.   

   7.    Allow 20–30 min for the RBC to settle ( see   Note 2 ).      

      1.    The HA plate should be read when the erythrocytes in the cell 
control wells have settled to form a solid “button” in the bot-
tom of the well (hemagglutination negative) ( see   Note 3 ) ( see  
Chapter   24    , Fig.   1    ). When the plate is tilted at approximately 
45°, the RBCs will stream in a “tear-drop” fashion [ 2 ,  7 ]. Test 
fl uids that are HA negative will also form solid buttons in all 
wells of the corresponding row. These buttons should teardrop 
at the same rate as the cell control. Because 10 5 –10 6  EID 50 /ml 
is required for hemagglutination to occur, an additional pas-
sage of negative material in embryonated chicken eggs may be 
optionally performed to confi rm that isolations are not missed 
because of low levels of virus in the sample.   

   2.    Samples showing complete hemagglutination in one or more 
test wells should be considered positive for a hemagglutinating 
agent ( see  Fig.  2 ). Hemagglutination positive samples may be 
further characterized by testing in the hemagglutination- 
inhibition assay ( see  Chapter   2    ) using monospecifi c antibodies or 
may be confi rmed as infl uenza with another assay (e.g., rRT-PCR).

       3.    Incomplete hemagglutination may be observed as buttons that 
do not teardrop, have fuzzy margins, or form a donut-shaped 
ring in the bottom of the well (incomplete hemagglutination 
may not be observed if using V-bottom plates). Incomplete 
hemagglutination usually indicates an unbalanced proportion 
of erythrocytes and virus particles allowing partial settling of 
the erythrocytes. The incomplete reaction may be recorded 
but should be interpreted as negative.   

   4.    The endpoint of the virus titration is the highest dilution 
causing complete hemagglutination (initial dilution is 1:2). 
The endpoint dilution is considered 1 HA unit (HAU), 
and the number of HAUs/50 μl is the reciprocal of the highest 
dilution. Example: For 6 wells of complete hemagglutination 
with an endpoint dilution of 1:64, there are 64 HAU/50 μl.       

3.3  Interpretation 
of Results

HA Assay for AIV

http://dx.doi.org/10.1007/978-1-4939-0758-8_24
http://dx.doi.org/10.1007/978-1-4939-0758-8_24#Fig1
http://dx.doi.org/10.1007/978-1-4939-0758-8_2
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4    Notes 

     1.    All steps with infectious or potentially infectious material must 
be performed in a Class II biological safety cabinet. Aerosol- 
resistant tips and aseptic technique should be used any time an 
aliquot is taken from the original sample tube containing virus. 
Material carried on the surface of a pipette is a common source 
of laboratory contamination.   

   2.    Assay plates should not be left too long before reading results 
[ 1 ]. The neuraminidase protein present on infl uenza viruses 
acts to break virus-cell bonds, and may eventually begin to 
break apart the lattice formed by the virus and erythrocytes. 
Some virus strains have very high neuraminidase activity and 
may not allow proper hemagglutination. When these viruses 
are encountered, the assay should be performed at 4 °C to 

  Fig. 2    Illustration of microtiter plate with positive and negative hemagglutination 
results. Sample ID is designated on the  left  side of the plate (+C indicates positive 
control antigen and CC indicates RBC control), the dilution factor is designated 
across the  top . Results for each sample: ( 1 ) positive hemagglutination 128 HAU; 
( 2 ) positive hemagglutination 32 HAU; ( 3 ) positive hemagglutination 64 HAU with 
incomplete hemagglutination in 128 HAU well; ( 4 ) negative hemagglutination; ( 5 ) 
negative hemagglutination; ( 6 ) positive hemagglutination 16 HAU with incomplete 
hemagglutination in 32 HAU well; ( 7 ) negative hemagglutination; ( 8 ) positive hem-
agglutination 32 HAU; ( 9 ) positive hemagglutination 128 HAU with prozone effect 
in 2, 4, and 8 HAU wells; ( 10 ) negative hemagglutination       
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decrease neuraminidase activity, and the incubation period 
should be increased to 45–60 min before reading the plate.   

   3.    Troubleshooting.
   (a)    If the erythrocytes do not settle in cell control wells after 

20–30 min possible causes are as follows: (1) The erythro-
cytes are not equilibrated to room temperature; (2) the 
erythrocyte suspension is poor quality or hemolyzed; (3) 
the PBS is poor quality or incorrect pH; (4) contamina-
tion of wells with viral antigen has occurred.   

  (b)    If the positive control is negative possible causes are as fol-
lows: (1) The positive control antigen was not added to 
control well; or (2) the erythrocytes have been allowed to 
settle for longer than 30 min.   

  (c)    When a sample is negative for hemagglutination in the fi rst 
wells (where the highest virus concentration should be) 
and positive in the last wells (lower concentration wells) it 
is called the prozone effect. The prozone phenomenon is a 
high dose effect where reactions may be weak or negative 
in the fi rst wells and stronger in the higher dilutions. This 
is caused when the virus in the high concentration wells is 
proportionately higher than the available receptors on the 
erythrocytes therefore cannot crosslink into a lattice. They 
may appear as either complete buttons or a partial button 
with fuzzy margins in the bottom of the well. Reactions 
may be interpreted as false negative if the dilution series is 
not carried out far enough ( see  Fig.  2 ). A dilution of 2 8  is 
normally suffi cient to avoid a false- negative reading due to 
a very high virus concentration.             
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    Chapter 2   

 Hemagglutination-Inhibition Assay for Infl uenza 
Virus Subtype Identifi cation and the Detection 
and Quantitation of Serum Antibodies to Infl uenza Virus 

           Janice     C.     Pedersen     

   Abstract 

   Hemagglutination-inhibition (HI) assay is a classical laboratory procedure for the classifi cation or subtyping 
of hemagglutinating viruses. For infl uenza virus, HI assay is used to identify the hemagglutinin (HA) 
subtype of an unknown isolate or the HA subtype specifi city of antibodies to infl uenza virus. Since the HI 
assay is quantitative it is frequently applied to evaluate the antigenic relationships between different infl u-
enza virus isolates of the same subtype. The basis of the HI test is inhibition of hemagglutination with 
subtype-specifi c antibodies. The HI assay is a relatively inexpensive procedure utilizing standard laboratory 
equipment, is less technical than molecular tests, and is easily completed within several hours. However 
when working with uncharacterized viruses or antibody subtypes the library of reference reagents required 
for identifying antigenically distinct infl uenza viruses and or antibody specifi cities from multiple lineages of 
a single hemagglutinin subtype requires extensive laboratory support for the production and optimization 
of reagents.  

  Key words     Hemagglutination  ,   Hemagglutination-inhibition  ,   Avian infl uenza  ,   Type A infl uenza  , 
  Infl uenza subtype identifi cation  

1      Introduction 

 Infl uenza viruses agglutinate erythrocytes through the interaction 
of the virus surface glycoprotein, the hemagglutinin (HA), with 
receptors on the surface of the erythrocyte. If viral particles are in 
suffi cient quantity, the interaction of the HA protein with erythro-
cytes will form a complete network of linked erythrocytes prevent-
ing erythrocytes from settling out or precipitating as a small pellet 
in the bottom of a tube or microtiter plate. Agglutination of eryth-
rocytes is the basis of the hemagglutination assay ( see  Chapter   1    ), 
and inhibition of the agglutination reaction by HA subtype-specifi c 
antisera is the basis of the hemagglutination-inhibition (HI) assay 
[ 1 – 3 ] ( see  Fig.  1 ).

http://dx.doi.org/10.1007/978-1-4939-0758-8_1
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   A panel of serum prepared against the 16 distinct HA subtypes 
is used in the HI assay to confi rm the HA subtype identity of infl u-
enza viruses and may be used to evaluate antigenic relatedness [ 4 ]. 
Typing is facilitated by using antisera raised against infl uenza iso-
lates with neuraminidase (NA) subtypes which are heterologous 
with the test virus. The use of heterologous NA test virus elimi-
nates false-positive reactions due to steric inhibition caused by the 
interaction of homologous neuraminidase antigen and antibodies 
[ 5 ]. For example a false positive could be produced by testing an 
H5N2 isolate with H7N2 sera, but should not cross-react with 
H7N3 sera. 

 Reference laboratories maintain a library of antigens and anti-
sera of each HA subtype for isolate identifi cation and testing anti-
genic relatedness. Production of antibodies to only the HA protein 
with DNA vaccines has been reported [ 6 ] and offers an alternative 
method for the production of sera without NA interference. 

 Importantly, with diagnostic and surveillance specimens an 
infl uenza virus with a novel HA subtype would not be detected or 
would produce a false-negative result in tests using antisera to the 
known HA subtypes [ 7 ]. Therefore, it is essential to confi rm that a 
hemagglutinating agent that is negative by HI assay is not infl uenza 
by another test such as commercial antigen immunoassay, rRT-
PCR, sequencing, or agar gel immunodiffusion assay. 

 In addition to virus subtype identifi cation, the HI assay may be 
used to detect and quantitate HA subtype-specifi c antibodies in 
serum, plasma, or egg yolk following infection or vaccination. The 
presence of AI virus-specifi c antibodies may be detected as early as 
7 days after infection by HI assay [ 4 ]. Antibody positive serum 
will inhibit the HA activity of an antigen of the same HA subtype, 

  Fig. 1    Hemagglutination-inhibition assay. ( 1 ) Virus and antibody are mixed and incubated; ( 2 ) if the antibody is 
an antigenic match to the virus, it will bind the virus; ( 3 )  red  blood cells are then added to the assay; ( 4 ) since 
the antibody is binding the virus, the virus can not bind the  red  blood cells and hemagglutination is blocked       
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