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Preface

The OHOLO conferences are sponsored by the Israel Institute for Biological
Research and take their name from the site of the first meeting on the shores of
Lake Kinnereth. The purpose of these meetings is, as it was at their inception over
50 years ago, “to foster interdisciplinary communication between scientists in Israel,
and to provide added stimulus by the participation of invited scientists from abroad”.

The core of the organizers of the OHOLO conferences are scientists from the
Israel Institute for Biological Research. From time to time a particular OHOLO
conference cooperates with an international scientific organization. The present 46th
OHOLO Conference marks the resumption of the OHOLO tradition after 8 years of
interruption caused by events beyond our control. It is my belief that our uncompro-
mising commitment to excellence in research and development in the various areas
of science in Israel is essential to our survival in this troubled region. The OHOLO
conference tradition is a reflection of this conviction.

The present 46th OHOLO Conference entitled: The Challenge of Highly
Pathogenic Microorganisms – Mechanisms of Virulence and Novel Medical
Countermeasures intends to address the unique virulence features and host-
pathogen interactions of microorganisms constituting emerging biothreat with
emphasis on Y. pestis, B. anthracis, F. tularensis and Orthopox viruses. Accordingly
we selected classical microbiological as well as genomic, proteomic & transcrip-
tomic approaches towards developments of novel prophylactic and post-exposure
treatment, as well as updated strategies of diagnostics and bioforensics.

I wish to thank the members of the international Scientific Advisory committee:
Elisabeth Carniel, Arthur Friedlander, Paul Keim, Johannes Löwer, Michèle Mock
and Anders Sjöstedt who helped us to formulate scientific content of this meeting
as well as the local organizers Arie Ordentlich, Baruch Velan and Sara Cohen from
IIBR.

Ness-Ziona, Israel Avigdor Shafferman
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Chapter 1
The Anthrax Capsule: Role in Pathogenesis
and Target for Vaccines and Therapeutics

Arthur M. Friedlander

Abstract The polyglutamic acid capsule of Bacillus anthracis is a well-established
virulence factor, conferring antiphagocytic properties on the bacillus. We have
shown that the capsule also confers partial resistance to killing by human defensins.
In our research we targeted the anthrax capsule for developing medical countermea-
sures, first using the capsule as a vaccine, similar to successful efforts with other
bacteria, and secondly, by developing a novel therapeutic against the capsule. Our
experiments showed that a capsule vaccine is protective in the mouse model and its
efficacy could be enhanced by conjugation to a protein carrier. In initial experiments
using high challenge doses, a capsule conjugate vaccine was not protective in rab-
bits but did show some protection in nonhuman primates. This suggests it may be
useful as an addition to a protective antigen-based vaccine. We are also developing
the use of the B. anthracis capsule-depolymerizing enzyme, CapD, as a therapeutic.
We demonstrated that in vitro treatment of the encapsulated anthrax bacillus with
CapD enzymatically removed the capsule from the bacterial surface making it sus-
ceptible to phagocytic killing. Initial experiments in vivo showed that CapD could
be used successfully to treat experimental anthrax infections. Such a novel approach
to target the capsule virulence factor might be of value in the treatment of infections
due to antibiotic-resistant strains.

Keywords Anthrax · Capsule · Vaccine · Therapy · Capsule depolymerase

The recent renewed interest in anthrax after the cases of anthrax that developed in
2001 after the mailing of letters containing anthrax spores has stimulated research
to develop new medical countermeasures.

In this review I will give an overview of the anthrax capsule and its role
in pathogenesis and describe our efforts to develop a capsule-based vaccine and
therapeutic.
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1.1 Overview of Anthrax Pathogenesis

The infectious form of anthrax, the spore, germinates within the infected host to
the vegetative bacillus, and in this regard it is similar to the pathogenic dimor-
phic fungi. Bacillus anthracis possesses three major recognized virulence factors:
the two exotoxins, lethal and edema toxins and the antiphagocytic polyglutamic
acid capsule. In recent years other virulence factors have been identified includ-
ing several whose deletion results in 2 or more logs of attenuation. These include
a capsule depolymerase (CapD) responsible for attachment of the nascent capsule
filament to the cell wall peptidoglycan (Candela and Fouet, 2005), a manganese
ATP-binding cassette transporter (Gat et al., 2005), anthrachelin siderophore biosyn-
thesis genes (Cendrowski et al., 2004), nitric oxide synthase (Shatalin et al., 2008)
and the caseinolytic protease component ClpX (McGillivray et al., 2009). Several
other genes have also been identified that contribute to virulence but whose deletion
results in less attenuation (<2 logs).

The spore enters the skin, gastrointestinal tract, or lung. Germination occurs
locally extracellularly or in phagocytic cells during or after transport to regional
lymph nodes. Some organisms are killed while others remain viable and proliferate.
Germination is not synchronous and toxins and capsule are synthesized early after
germination. Bacilli located extracellularly or after escape from a phagocyte become
encapsulated and resistant to subsequent phagocytosis. Local production of toxins
leads to the pathological effects of edema and necrosis. The lethal and edema toxins
likely act early in the infectious process, intracellularly and extracellularly, to sub-
vert host innate immune mechanisms by inhibiting phagocytic cells and other cell
types (Tournier et al., 2009). The organism spreads from the lymph node, resulting
in bacteremia and subsequent toxemia. Death after inhalational anthrax is likely due
to lymphatic/vascular obstruction, pulmonary hemorrhage/edema, pleural effusions
and toxicity.

1.2 Role of Capsule in Virulence

Since the early 1900s (Preisz, 1909), it has been known that capsule expression
is associated with virulence in B. anthracis and that strains lacking the capsule are
attenuated. When grown with bicarbonate and carbon dioxide B. anthracis produces
an antiphagocytic capsule. This results in smooth glistening colonies, while capsule-
negative mutants, such as Sterne-like strains lacking the capsule encoding pX02
plasmid, appear rough and dry. Capsule can bevisualized by negative staining with
India ink. As indicated in Fig. 1.1, the wild-type Ames strain has a typical crinkled
appearance while an isogenic, unencapsulated strain is difficult to see.

The five genes necessary for capsule synthesis and formation are encoded in an
operon on the pX02 plasmid. CapB and CapC are thought to be responsible for
synthesis of the polyglutamate filament, CapA and CapE for translocation across
the cell membrane, and CapD for covalent attachment to meso-diaminopimelic acid
of the peptidoglycan (Candela and Fouet, 2006; Richter et al., 2009). The capsule is
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Fig. 1.1 B. anthracis grown on NBY/bicarbonate agar with 20% CO2 at 37◦C. The colonial
morphology (top panels) and India ink preparation (1000×) of bacilli (bottom panels) of wild-
type encapsulated B. anthracis (left panels) and an unencapsulated isogenic strain (right panels)
are shown

located external to the S-layer of the bacillus. As with other extracellular bacterial
pathogens, the anthrax capsule has long been known to be antiphagocytic. It also
blocks phage attachment (McCloy, 1951) and access of antibodies to underlying
bacillus antigens (Mesnage et al., 1998). Synthesis of the capsule is regulated by
factors on both pX01 and pX02 and is induced by carbon dioxide and serum. The
capsule is a homopolymer of gamma-linked polyglutamic acid composed entirely
of the D enantiomer. As such it is resistant to proteases and a poorly immunogenic
T-independent antigen. Its mass varies from 100,000 to 1,000,000 daltons.

The antiphagocytic nature of the capsule is evidenced by the fact that there is
minimal binding of encapsulated bacilli to macrophages without addition of anti-
capsule antibodies. There is also some evidence that low molecular weight capsule
fragments are released from the bacillus and may contribute to virulence (Makino
et al., 2002). Evidence from our laboratory suggests that the capsule provides
some protection against the bactericidal effects of some of the antimicrobial pep-
tides, including human beta defensins. The defensins are cationic peptides with
intramolecular disulfide bonds and are an important part of the innate immune
system. Beta defensins occur in the epithelium of the skin, lung, gastrointestinal,
and genitourinary tracts.

We found that the beta defensins 1, 2, and 3 have some antimicrobial activity
against the encapsulated Ames strain, but that they are significantly more active
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Fig. 1.2 Antimicrobial activity of human beta defensins against encapsulated and unencapsulated
B. anthracis strains. Bacilli were incubated with human beta defensins-1, 2, or 3 (HBD-1,2,3) at
a final concentration of 20 μg/ml at 37◦C in 5% CO2 for 2 h and bacteria were then plated for
cfu. Survival percentages were calculated by comparing the cfu at 2 h to a control containing no
defensins. Results are expressed as the mean + SEM of triplicate samples. Black bars represent
wild-type and white bars represent unencapsulated bacilli. The differences between encapsulated
and unencapsulated strains were significant for all defensins tested (P < 0.0001)

against an unencapsulated isogenic strain (Fig. 1.2) (O’Brien et al. manuscript in
preparation). The mechanism of this inhibition is under study but preliminary data
suggest the capsule on the surface of the bacillus may bind some of the antimicrobial
peptide and thus prevent it from binding to its presumed target on the cytoplasmic
membrane.

1.3 Capsule as a Vaccine Target: Development of a Capsule
Vaccine

Essentially all licensed vaccines against extracellular bacteria are based upon the
bacterium’s capsule. However no work had been done with the anthrax capsule
until research in our laboratory demonstrated for the first time that the capsule
is effective as a vaccine against challenge with an encapsulated nontoxinogenic
B. anthracis strain that is virulent for the mouse (Chabot et al., 2004). Mice vacci-
nated with two doses of capsule were protected against subcutaneous challenge with
approximately 100 LD50 with 7/12 animals surviving compared to 0/12 controls
(Table 1.1, P = 0.014). The capsule vaccine was unable to protect against challenge
with the fully virulent encapsulated and toxinogenic Ames strain as was protective
antigen by itself, as has been reported previously. However, the combination of cap-
sule and protective antigen was protective (9/11 surviving) in mice suggesting that
capsule and protective antigen might be synergistic. In an attempt to convert the
capsule from a T-independent to a T-dependent antigen resulting in a more mature
IgG response and immunological memory, as has been done with polysaccharide
homopolymer antigens, we conjugated the capsule to an immunogenic protein car-
rier (bovine serum albumin). This resulted in the expected increased IgG response
but did not protect mice, likely because the carbodiimide conjugation procedure
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Table 1.1 Efficacy of capsule vaccine against anthrax infection in the mousea

Experiment Vaccine
No. survivors/no.
challenged

1. Challenge with B. anthracis
delta Ames (cap+, tox-)

Capsule 7/12

PBS 0/12
2. Challenge with B. anthracis
Ames (cap+, tox+)

Protective antigen 1/12

Capsule 0/12
Protective

antigen+capsule
9/11

PBS 0/12
3. Challenge with B. anthracis
Ames (cap+, tox+)

Capsule conjugate 9/9

Alum control 1/10

aMice were vaccinated with two doses of vaccine and challenged subcutaneously
4–8 weeks later with 116 LD50, 78 LD50 or 20,000 spores in Experiments 1, 2, or
3, respectively. Data and details for experiments 1 and 2 were from Chabot et al.
2004 and for experiment 3 from Joyce et al. 2006. The differences in survival
between capsule and PBS in experiment 1, protective antigen+capsule and PBS in
experiment 2, and capsule conjugate and alum control in experiment 3 were all
significant (P = 0.014, P < 0.001, and P < 0.001, respectively, Fisher’s exact test).

reduced the size of the capsule and destroyed antigenic epitopes. However, using
a novel controlled conjugation procedure to couple the capsule to the outer mem-
brane protein complex of Neisseria meningitidis serotype B as the carrier, the high
molecular mass and antigenic epitopes on the capsule were preserved (Joyce et al.,
2006). This capsule conjugate was now able to protect mice against challenge
with the fully virulent encapsulated toxinogenic strain (Table 1.1). Note that this
degree of protection in mice was greater than what is observed with the protective
antigen.

To further investigate the effectiveness of the capsule conjugate, we tested the
vaccine against an aerosol challenge with the encapsulated toxinogenic Ames strain
in the rabbit and nonhuman primate models. The vaccine was highly immunogenic
in both species and induced opsonic anticapsule antibodies. Rabbits vaccinated with
two doses of the conjugate vaccine and challenged with 680 LD50 were not pro-
tected, with none of 10 animals surviving. However, significant protection was seen
in the nonhuman primate challenged with 123 LD50 with 3/5 and 2/5 animals sur-
viving after two or one dose of the vaccine compared to 0/5 controls (P = 0.02
and P = 0.04, respectively) (Chabot et al., 2009). The results suggest that including
the capsule might increase the potency of a protective antigen-based vaccine. Such
a multicomponent vaccine might be of value against strains resistant to vaccina-
tion with one antigen and as the mouse experiments suggest, there may be synergy
between the capsule and protective antigen components targeting different virulence
factors.
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1.4 Capsule as a Therapeutic Target

Vaccines against bacterial capsules function by inducing antibodies that are opsonic
and enable phagocytic killing as described above for anthrax. Antibodies against the
capsule have also been developed as a therapeutic and have shown some efficacy in
experimental animals (Kozel et al., 2004; Joyce et al., 2006). A novel alternative
approach we have taken is to convert the encapsulated bacillus to a form susceptible
to phagocytic killing by removing the capsule from the bacterial surface using a
capsule-degrading enzyme. This builds on the concept of using microbial enzymes
as antibacterials developed many years ago, and subsequently demonstrated with
the use of capsule degrading enzymes to treat with varying success, pneumococcal
(Avery and Dubos, 1931), E. coli (Mushtaq et al., 2005) and cryptococcal infections
(Gadebusch, 1960). Another approach recently explored is the development of drugs
that inhibit capsule attachment (Richter et al., 2009).

As indicated above, B. anthracis expresses CapD, which is required for cova-
lently attaching the nascent polyglutamic acid filament to the peptidoglycan and
CapD null mutants are attenuated (Uchida et al., 1993; Candela and Fouet, 2005).
However, this enzyme, a gamma glutamyltranspeptidase, when added to purified
capsule, can carry out a hydrolytic reaction and degrade the high molecular weight
polyglutamate to low molecular species using water or amino acids as an acceptor
as shown in Fig. 1.3.

We used this property to show that purified CapD added externally to encapsu-
lated B. anthracis is capable of removing the capsule from the surface (Fig. 1.4),
making the bacillus susceptible to phagocytosis and neutrophil killing. Pretreating
encapsulated bacilli with CapD before incubation greatly enhanced their adherence

Fig. 1.3 Degradation of capsules from B. anthracis and B. subtilis by CapD. Capsule purified
from B. subtilis (lanes 1–3) or B. anthracis (lanes 4–6) were incubated with CapD and examined
by SDS-polyacrylamide gel electrophoresis. CapD was present at the following concentrations:
lanes 1 and 4, 0.35 ug/ml; lanes 2 and 5, 3.5 μg/ml; and lanes 3 and 6, 35 μg/ml together with
capsule at 200 μg/ml. Data adapted from Scorpio et al., 2007
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