
Chang Lu · Scott S. Verbridge    Editors 

Micro� uidic 
Methods for 
Molecular 
Biology



Microfluidic Methods for Molecular Biology





Chang Lu • Scott S. Verbridge

Editors

Microfluidic Methods
for Molecular Biology



Editors
Chang Lu
Department of Chemical Engineering
Virginia Tech
Blacksburg, VA, USA

Scott S. Verbridge
Department of Biomedical Engineering
and Mechanics

Virginia Tech
Blacksburg, VA, USA

ISBN 978-3-319-30017-7 ISBN 978-3-319-30019-1 (eBook)
DOI 10.1007/978-3-319-30019-1

Library of Congress Control Number: 2016938159

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland



Preface

From the optical instruments that first provided a window into the microscopic

world, to molecular analysis tools that have helped clarify the genetic underpin-

nings of life, the most significant advancements in the biological sciences over the

past century have largely been driven by the availability of powerful new quanti-

tative tools. A more recent theme in biotechnology has been the miniaturization of

analytical tools, enabled in large part by adapting and developing the methods of

the microelectronics industry. Microfluidics as a field has experienced a period of

rapid development and evolution since the 1980s. Most of the early microfluidics

work focused on miniaturization of tools used in analytical chemistry (e.g., chro-

matography and electrophoresis). Microfluidics provided unparalleled flexibility

for miniaturization, integration, and automation. This permitted the creation of

devices that were substantially more sophisticated than tools used in conventional

analytical chemistry, and at a substantially lower cost of production and operation.

Seminal early efforts of the field led to major innovations in both material science

(e.g., the wide use of polydimethylsiloxane) and technology (e.g., two-layered

pneumatic valves). These important developments greatly expanded the applica-

tions of microfluidics and have underpinned a more recent renaissance in

microfluidics for biological applications.

With the explosion of genomics in the 1980s (and later of additional “omics”

fields), molecular biology has always been an important area of application for

miniaturized devices, given these devices’ unique access to the size scales relevant

to the function of cells. Protein/nucleic acid separation and PCR-based analysis are

widely practiced on microfluidic devices. Single-cell analysis has been an inten-

sively explored direction in recent years, due to the unique size advantage associ-

ated with microfluidics for single-cell manipulation. With the decreasing cost of

next-generation sequencing, recent years have witnessed substantial efforts directed

towards genome-wide studies (as opposed to investigations focused on

specific loci).

In parallel to new opportunities in basic science, there has been an increasing

demand for well-established and robust microfluidic technologies that may have a
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direct impact on clinical practice and therapies. Personalized Medicine (PM), more

recently re-branded as Precision Medicine, provides just such a unique opportunity.

PM is based on the premise that every patient is unique at the tissue, cellular, and

molecular level. Thus conducting molecular biology tests on patient samples is

essential for providing clinicians with genomics, transcriptomics, epigenomics, and

proteomics information that will ultimately improve their ability to optimize

decision making for individual patients. Microfluidics offers the ideal platforms

for handling and analyzing low quantities of cell/molecular samples to enable this

exciting personalized approach; however there remains much work to be done

before this paradigm is routine practice.

This book volume highlights recent progress on the topic of microfluidics for

molecular biology studies. We cover various aspects of current microfluidics

research in this growing field, which now spans the disciplines of biology, physics,

chemistry, forensics, engineering, earth and atmospheric sciences, and beyond.

Chapters are presented on various types of molecular analysis (genetic, epigenetic,

proteomic, and next-generation sequencing), use of model organisms and patient

materials, analysis at bulk and single-cell levels, techniques on cell culture and

isolation, and a variety of different platforms at the technological cutting edge of

these respective fields (flow, droplet, and paper-based microfluidics). We are

hopeful that new microfluidic tools will continue to enable new insights into

basic science as well as technology and biomedicine. To analyze molecular

populations at the resolution of single cells or even single molecules will undoubt-

edly provide new ways of understanding complex biological processes, for example

the dynamics of the adaptive immune system, or the role of tumor heterogeneity in

cancer. High-resolution tools translated to the clinic could enable entirely new ways

to treat a patient’s own disease, as opposed to treating a hypothetical average

patient as is the current pharmaceutical paradigm. We hope to provide a succinct

but comprehensive picture of the state of the art for microfluidic molecular assays,

and we look forward to the advancements yet to come in this exciting and rapidly

progressing field.

Blacksburg, VA, USA

December 15, 2015

Chang Lu

Scott S. Verbridge
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Chapter 1

Microfluidic Platforms for Quantitative
Biology Studies in Model Organisms

Daniel A. Porto*, Tel M. Rouse*, Adriana San-Miguel*, and Hang Lu

Abstract The use of lab-on-chip tools has been adopted in a wide variety of

scientific fields. Hundreds of applications that speed up, miniaturize, or enable

otherwise unfeasible assays have emerged in the last couple of decades [1, 2]. The

microfluidic toolbox offers several advantages which make it a very attractive

resource for biological studies: reduced sample volume, control of spatiotemporal

chemical compositions, streamlined assays, precise and predictable fluid flow

regimes, portability, and integration with sensors, actuators, controllers, and auto-

mation systems [1–3]. The main drive of the field has thus far focused on the

development of microfluidic tools that replace conventional methods with proof-of-

principle applications. However, widespread adoption of these technologies for

fundamental research is still in progress. Microfluidics has nonetheless had a

significant impact in fundamental biological studies with model organisms [4, 5].

In this article, we provide an overview of the current state of the field, the impacts of

microfluidics in model organism research, and the outlook, challenges, and oppor-

tunities for the future.
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1.1 Introduction

The use of lab-on-chip tools has been adopted in a wide variety of scientific fields.

Hundreds of applications that speed up, miniaturize, or enable otherwise unfeasible

assays have emerged in the last couple of decades [1, 2]. The microfluidic toolbox

offers several advantages which make it a very attractive resource for biological

studies: reduced sample volume, control of spatiotemporal chemical compositions,

streamlined assays, precise and predictable fluid flow regimes, portability, and

integration with sensors, actuators, controllers, and automation systems

[1–3]. The main drive of the field has thus far focused on the development of

microfluidic tools that replace conventional methods with proof-of-principle appli-

cations. However, widespread adoption of these technologies for fundamental

research is still in progress. Microfluidics has nonetheless had a significant impact

in fundamental biological studies with model organisms [4, 5]. In this article, we

provide an overview of the current state of the field, the impacts of microfluidics in

model organism research, and the outlook, challenges, and opportunities for the

future.

Microfluidics takes advantage of the physics that govern fluids at small scales. The

most important phenomena that dominate at the micro-scale are laminar flow and

surface effects [6, 7] (Fig 1.1). Laminar flow entails a predictable stream behavior and

minimal mixing. Manipulation of fluids at the micro-scale thus becomes precise and

reproducible. These characteristics are useful to not only control spatiotemporal

chemical compositions [8–12] but also to manipulate specimens via the exertion of

forces driven by fluid flow [13]. Operating in a laminar flow regime implies that

mixing of fluids requires special consideration, as this occurs solely through diffusion

and Taylor dispersion [7]. Hence some assays require the incorporation of channel

geometries that enable efficient fluid mixing within a desired residence time

[14, 15]. Surface effects refer to the high surface-area-to-volume ratio of fluids

constrained at the micro-scale [7, 16, 17]. These can be advantageous in the drawing

of liquid via capillary forces that act through surface wetting [7, 17], or through field

effects in electro-osmotic flows [16]. The high surface-to-volume ratio also facilitates

interfacial transport and reactions [17]. At the same time, the small length scales

enable fast changes in temperature and chemical composition. These, along with

small sample volumes, are some of the main advantages that microfluidics offers. In

particular, for model organisms such as bacteria, yeast, cells, nematodes, and some

higher-order organism, the length scales of microfluidic channels are comparable to

the specimen of interest (~ tens to hundreds of microns), providing the spatial

resolution required for individual trapping, handling, culturing, and perturbation.

Early microfluidic devices were made mostly of silicon and glass, as these

materials were ubiquitous in the semiconductor industry. Hard and brittle, silicon

2 D.A. Porto et al.
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