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Antimicrobial drug resistance is a global health problem that continues to expand as  
micro-organisms adapt to the antibiotics we use to treat them and as new classes of antimicro-
bial agents have been harder to discover and advance into the clinic. The second edition of 
Antimicrobial Drug Resistance grew out of a desire by the editors and authors to provide an 
updated, comprehensive resource of information on antimicrobial drug resistance that would 
encompass the current information available for bacteria, fungi, protozoa, and viruses. The 
two volumes have been extensively revised with many new authors and chapters as the field 
of drug resistance has evolved. We believe that this information will be of value to clinicians, 
epidemiologists, microbiologists, virologists, parasitologists, public health authorities, medi-
cal students, and fellows in training. We have endeavored to provide this information in a style 
that is accessible to the broad community of persons who are concerned with the impact of 
drug resistance in our clinics and across broader global communities.

Antimicrobial Drug Resistance is divided into two volumes. Volume 1 has sections cover-
ing a general overview of drug resistance and mechanisms of drug resistance, first for classes 
of drugs and then by individual antimicrobial agents, including those targeting bacteria, fungi, 
protozoa, and viruses. Volume 2 addresses clinical, epidemiologic, and public health aspects 
of drug resistance, along with an overview of the conduct and interpretation of specific drug 
resistance assays. Together, these two volumes offer a comprehensive source of information on 
drug resistance issues by the experts in each topic.

We are very grateful to the 197 international experts who have contributed to this textbook 
for their patience and support as the work came together. The editors would like to especially 
thank Michelle Feng He for her exceptional support and encouragement to the editors in bring-
ing this revised textbook to print. Finally, the book would never have been completed without 
the patience and support of our wives and families.

Cambridge, MA, USA� Douglas L. Mayers, M.D. 
Detroit, MI, USA� Jack D. Sobel, M.D. 
Québec, Canada� Marc Ouellette, M.D. 
Ann Arbor, MI, USA� Keith S. Kaye, M.D., M.P.H.
Tel Aviv, Israel� Dror Marchaim, M.D. 
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1  �Introduction

Streptococcus pneumoniae (the pneumococcus) has been an 
important human pathogen for over 100 years and continues to 
cause a wide variety of infections, ranging from mild otitis 
media and sinusitis to serious lower respiratory infections, as 
well as life-threatening invasive infections such as meningitis 
or pneumonia. Worldwide, morbidity and mortality due to 
pneumococcal infections are highest among young children 
below the age of 5 years, accounting for approximately one-
third of the estimated 1.3 million deaths from pneumonia in 
2011 [1]. The pneumococcus is a common colonizer in the 
respiratory tract, especially in the nasopharynx of children 
where it is often exposed to antimicrobials. As well as affecting 
the young, S. pneumoniae is an important cause of morbidity 
and mortality in the elderly; it is the most common etiological 
agent of community-acquired pneumonia, often resulting in 
hospitalization of previously healthy individuals.

Infections caused by S. pneumoniae were for many years 
traditionally treated with penicillin or ampicillin, to which this 
species was exquisitely sensitive when penicillin was first 
introduced in the 1940s. However, exposure to antimicrobials 
has led to the selection of resistant strains and clones, some of 
which have a global distribution; resistance, which was first 
seen in the 1960s, has continued to increase throughout the 
world in more recent decades. The emergence of resistance to 
penicillin and other beta-lactam antibiotics in pneumococci in 
the 1980s and 1990s led to the increased use of macrolides, 
fluoroquinolones (FQs), and other non-beta-lactam antibiotics 
for pneumococcal infections. Pharmacodynamics predicts that 
high doses of parenteral β-lactams with good Gram-positive 

activity will currently treat most penicillin-resistant pneumo-
cocci. In contrast, oral β-lactams may fail, and high doses of 
amoxicillin are the best oral β-lactam drugs currently avail-
able to treat penicillin-resistant infections. Neither oral nor 
parenteral macrolides are able to treat macrolide-resistant 
pneumococcal infections. Fluoroquinolone resistance remains 
rare, but in patients previously exposed to these drugs, there is 
an increased risk of treatment failure due to selection of first-
step mutants. Efforts to treat pneumococcal disease in both 
adults and children have been complicated by this increasing 
resistance to antimicrobials. The increase in antimicrobial 
resistance rates has been in part due to the selective pressures 
associated with the widespread use of antibiotics [2, 3] and the 
clonal expansion and spread of multiresistant pneumococcal 
clones [4]. More recently, the introduction of conjugate vac-
cine immunization of infants reduces the burden of resistance 
by eliminating vaccine types from invasive infections, but 
resistance continues to be selected in non-vaccine types. New 
classes of antimicrobials are needed to ensure long-term treat-
ment options for pneumococcal infections.

This chapter will describe the emergence and incidence of 
antibiotic resistance in pneumococci, mechanisms, clinical 
implications, and impact of vaccines on resistance.

2  �Epidemiology of the Pneumococcus 
and Risk Factors for Resistance

The incidence of pneumococcal disease remains the highest 
in children <2 years of age and in adults >65 years of age. 
Other important risk factors include underlying medical con-
ditions such as chronic heart and lung disease, cigarette 
smoking, and immunodeficiency states such as asplenia, 
HIV, and sickle cell disease.

S. pneumoniae colonizes the upper respiratory tract and is 
part of the normal flora of healthy individuals. Pneumococcal 
colonization is a dynamic process. A particular serotype can 
be carried for many months before being eradicated or 
replaced by a different serotype. Carriage increases in the 
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first few months of life, and universally, carriage rates are 
highest in young children (40–60 %), compared with older 
children (12 %), adolescents (6–10 %), and adults (3–4 %) [5, 
6]. Factors associated with increased carriage include winter 
season, situations of overcrowding such as day-care atten-
dance, and living in crowded conditions [7]. Prior antibiotic 
use does not appear to alter the rate of carriage but does pro-
mote carriage with antibiotic-resistant strains, particularly to 
β-lactam antibiotics [8].

Investigations of serotype prevalence from various parts 
of the world have shown that serotype distribution varies 
with geographical location and age [9]. The distribution of 
serotypes also varies between carriage isolates and invasive 
disease, and antibiotic resistance (at least in the pre-conjugate 
vaccine era) is most frequent in pneumococcal serotypes that 
are carried by children (types/groups 6, 9, 14, 19, and 23) 
[9]. The probable reason is the frequent use of antibiotic 
therapy in small children and hence exposure of strains of 
these serotypes to antimicrobial drugs, providing a selective 
advantage to resistant mutants [10].

There are multiple risk factors for acquisition of infection 
with antibiotic-resistant pneumococci. Most of these factors 
have a commonality in exposure to the drugs that select the 
resistance. This exposure to β-lactams can be at the level of a 
country [11, 12], province [13], day care [14], family [15], or 
individual [16]. Macrolide resistance is also a function of 
exposure, particularly of long-acting drugs such as azithro-
mycin [17]. The selection of resistant strains is complicated 
by multiple resistances where macrolides appear to be better 
selectors of multiresistant strains than do β-lactam drugs 
[16]. Antimicrobial resistance may be seasonal, with higher 
rates detected during increased antibiotic use in the winter 
months [18]. The issue of cross-resistance extends to treat-
ment of such diverse organisms as the malaria parasite, 
where treatment with Fansidar selects trimethoprim-
sulfamethoxazole resistance in pneumococci [19].

Most resistance is selected as mentioned above in chil-
dren, but the exception is fluoroquinolone resistance which is 
selected in adults [20–22] as these agents are not usually 
given to children. In the unusual circumstance of fluoroqui-
nolone treatment of children, for example, as treatment of 
drug-resistant tuberculosis, the selection of fluoroquinolone-
resistant pneumococci occurs, and these strains are associ-
ated with invasive disease [23].

Children in rural settings generally have less access to 
antibiotics and therefore have less resistant strains [24, 25], 
while in some large cities, where poorer children live in the 
city center with less access to care and more affluent chil-
dren live in the suburbs, there may be more resistance out-
side the city [26].

Little is known about the impact of drug dose on the 
selection of resistant strains, but there is a prospective study 
that suggests that high dose and short duration of amoxicillin 

therapy may select less resistance than the same total dose 
given over a longer period of time [27].

Nosocomial acquisition is a major risk for resistant pneu-
mococci [28], and the first multiply resistant strains were 
selected in hospital [29]. Recent hospitalization is also a risk 
for infection with multiply resistant pneumococci [25].

HIV infection is a risk for increased resistance in pneu-
mococcal infections due to the frequent exposure of these 
patients to antibiotic prophylaxis with trimethoprim-
sulfamethoxazole [30], as well as the fact that these patients, 
especially HIV-infected women, are at risk due to the 
antibiotic-resistant serotypes carried by children [31].

Children exposed to conjugate vaccine, as well as adults 
living in countries where these vaccines are routinely admin-
istered to children, are at lower risk for pneumococcal infec-
tions due to resistant strains as described in Sect. 10.

3  �The Role of Clones in Resistance

The increase in antibiotic resistance and the introduction of 
conjugate vaccines have focused attention on the epidemiol-
ogy of S. pneumoniae. Molecular typing data from numer-
ous studies over the past few decades has added to our 
knowledge by showing that although there is considerable 
diversity among resistant strains within most serotypes, a 
small number of highly successful clones have emerged 
within countries and in some cases have achieved massive 
geographical spread [4]. In response to this, the 
Pneumococcal Molecular Epidemiology Network (PMEN) 
was established in 1997 with the aim of standardizing 
nomenclature and classification of pneumococcal clones 
worldwide. At present, PMEN has documented 43 interna-
tional clones, 26 of which are multidrug-resistant. The best 
characterized, and most widely spread of these international 
clones, is the Spain23F-1 or PMEN1 originally described in 
Spain during the 1980s. Intercontinental spread of this clone 
to the USA was described in 1991 and shortly thereafter in 
the UK, South Africa, Hungary, and South America [32]. By 
the late 1990s, it was estimated that approximately 40 % of 
penicillin non-susceptible pneumococci circulating in the 
USA were members of this clone [33], and while strains 
belonging to this genotype continue to be isolated today in 
many countries all over the world, their prevalence has 
decreased in countries where conjugate vaccines have been 
introduced [34, 35]. Recent studies [32, 36, 37] looking at 
whole genome sequencing of pneumococci representing 
PMEN1 show that there is a considerable amount of genetic 
diversity within this lineage. This diversity, which largely 
results from hundreds of recombination events, indicates 
rapid genomic evolution and presumably allowed rapid 
response to selective pressures such as those imposed by 
vaccine and antibiotic use [36].
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Clonal analyses of large surveillance collections of pneu-
mococci have revealed the remarkable dominance of a small 
number of clones among the antimicrobial-resistant popula-
tion. As these global clones have spread, they have been 
exposed to new selective pressures applied by regional varia-
tions in the use of different antibiotics. This has led to the 
further selection of strains belonging to these clones with 
varying antimicrobial resistance patterns. These resistant 
clones have also been exposed more recently to conjugate 
vaccines, and shifts in both serotype and clonal types have 
been documented [34, 35, 38]. For example, in the USA 
serotype 19A strains have been identified as the main cause 
of serotype replacement in both carriage and invasive disease 
post-PCV7 introduction; this has coincided with a significant 
increase in penicillin resistance and multidrug resistance 
among 19A clinical strains [34, 35, 39]. The majority of 
penicillin-resistant 19A strains belonged to emerging clonal 
complex 320 (CC320), which is descended from multidrug-
resistant Taiwan19F-14 (PMEN14). In 1999, prior to PCV7 
introduction, only CC199 and three minor clones were 
apparent among 19A strains. In 2005 post-PCV, 11 clonal 
complexes were detected, including ST695 capsular variants 
of serotype 4 [38, 40].

4  �Laboratory Detection of Resistance

Even though we can now identify pneumococci and many 
resistances based upon genetic features, bacterial culture and 
phenotypic susceptibility tests remain the gold standard 
approaches in clinical laboratories. Because it is a fastidious 
organism, however, specific methods and interpretative crite-
ria developed by a variety of professional bodies such as the 
Clinical and Laboratory Standards Institute (CLSI, formerly 
the National Committee for Clinical Laboratory Standards, 
NCCLS), the British Society for Antimicrobial Chemotherapy 
(BSAC), and the European Committee on Antimicrobial 
Susceptibility testing (EUCAST) must be used to ensure 
accurate and consistent susceptibility results [41]. Because 
the breakpoints are determined on the basis of microbiologi-
cal, pharmacological, and clinical outcome data and since 
patterns of resistance to antimicrobial drugs continue to 
evolve, changes to breakpoints can occur during the lifetime 
of an antibiotic. A good example is the CLSI revised break-
points for penicillin adopted in January 2008 to redefine the 
susceptibility of meningeal and non-meningeal pneumococ-
cal isolates [42].

Culture of clinical specimens and antibiotic susceptibility 
testing are often slow, taking up to 48 h, and are often nega-
tive due to prior antibiotic use before sampling or autolysis 
of the organism. Rapid tests, based mainly on immunologi-
cal or molecular techniques, have gained importance for the 
detection of bacteria and antibacterial resistance over the last 

two decades. PCR has been shown to be a useful tool for the 
rapid identification of S. pneumoniae from both clinical 
specimens and bacterial isolates [43, 44]. The increased use 
of molecular tests such as PCR for the diagnosis of bacterial 
infections has led in turn to an increased demand for antibi-
otic susceptibility testing using molecular methods. However, 
unlike phenotypic testing for antibiotic susceptibility, which 
examines all resistance mechanisms for a particular antibi-
otic simultaneously, molecular testing can detect only known 
resistance mechanisms. A variety of assays has been 
described to detect the presence of specific resistance genes 
in pneumococcal isolates and also directly from clinical 
specimens [44–50]. The majority of these assays are PCR 
based [44–47], although sequencing approaches and micro-
arrays have also been used [49, 50].

5  �Resistance to β-Lactams

With the advent of penicillin G therapy in the 1940s, the case 
fatality rate for pneumonia fell dramatically [51]. 
Pneumococcal isolates were initially extremely sensitive to 
the drug with MICs of ≤0.01 mg/L. Penicillin resistance was 
demonstrated in laboratory mutants soon after the introduc-
tion of penicillin G into clinical use but was not reported in 
clinical strains until 20 years later when investigators in 
Boston reported penicillin resistance in 2 of 200 strains [52]. 
Initially, the observation was not considered relevant, until a 
report by Hansman and Bullen [53] describing a penicillin-
resistant strain (MIC 0.6 mg/L) isolated in Australia from the 
sputum of a patient with hypogammaglobulinemia. 
Subsequently, resistant strains were identified in New Guinea 
and Australia, and in 1974, the first clinical infection due to 
a penicillin non-susceptible strain was reported in the USA 
[54, 55]. In 1977, pneumococci resistant to penicillin began 
to appear in South Africa, and in 1978, the first multidrug-
resistant pneumococci were documented in Johannesburg, 
South Africa [29, 56]. In between and after these initial 
reports, detection of penicillin-resistant pneumococci among 
clinical isolates began to be reported with increasing fre-
quency in the clinical and microbiological setting. Today, 
penicillin-resistant strains are encountered in all countries in 
which adequate surveys are conducted. Recombination 
appears to be an essential mechanism in the evolution of 
beta-lactam resistance in nature, and resultant clonal spread 
of resistant strains plays an enormous role in the increase in 
beta-lactam resistance globally [4].

β-lactam antibiotics inhibit the growth of pneumococci by 
inactivation of cell wall synthesizing penicillin-binding pro-
teins (PBPs). β-lactam resistance in pneumococci occurs by 
alterations in the key cell wall PBPs and the creation of pbp 
genes with decreased affinities for these antimicrobials. Six 
PBPs have been identified in S. pneumoniae (PBPs 1a, 1b, 
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2a, 2b, 2x, 3), of which PBP2X and PBP2B have been con-
firmed to be essential for cell growth [57, 58]. Resistance to 
β-lactams is complex and involves a multifactorial process. 
Depending on the selecting β-lactam, different combinations 
of pbp genes and mutations within these pbp genes are 
involved in conferring resistance. Little data exist for the role 
of PBPs 1b, 2a, and 3 [59, 60] as resistance determinants, 
and altered PBPs 2x, 2b, and 1a are the major players in the 
development of β-lactam resistance in most clinical isolates. 
The altered PBPs are encoded by genes with a mosaic struc-
ture and can undergo inter- and intraspecies recombination 
so that parts of the genes are replaced by allelic variants that 
differ by up to 20 % in DNA sequence [61]. Mosaic sequences 
of pbp genes are very difficult to classify and organize. In 
general, the resistance profile of particular isolates results 
from interactions between various combinations of altered 
PBPs, in conjunction with a functional murMN operon which 
encodes enzymes involved in the synthesis of branched 
structured muropeptides. Several other genes have been 
implicated in β-lactam resistance in selected clinical isolates 
that contribute to resistance in addition to mutations in PBP 
genes [61], although certain combinations of these three 
altered PBP genes alone appear to confer resistance.

Resistance to penicillin is associated with some degree of 
non-susceptibility to all β-lactam antibiotics. Mutations in 
PBP2x confer low-grade penicillin resistance and may be 
sufficient for the cell to become non-susceptible to oral ceph-
alosporins. Alterations in PBP2b result in even higher MICs 
to penicillin [62], while changes in PBP1a are required for 
high-level penicillin resistance [60, 63] and extended-
spectrum cephalosporin resistance [64, 65]. Isolates with 
very high levels of penicillin resistance (MICs ≥ 8  mg/L) 
require changes in all three PBPs (i.e., 1a, 2b, and 2x) and 
sometimes in additional non-PBP resistance determinants 
such as MurM [66].

Resistance rates reported for amoxicillin are relatively 
low (<5 %) as a result of the favorable pharmacodynamic 
properties of this agent [67, 68]. Generally, MICs to amoxi-
cillin are equal to or two to four times less than the MIC of 
penicillin [69]. In the past, there have been numerous reports 
of strains with amoxicillin MICs (4–16 mg/L) higher than 
penicillin MICs (2–8  mg/L) [68, 70–72]. In particular, 
PBP2b appears to play a significant role in mediating the 
expression of this resistance phenotype [73]. In addition to 
typical changes in PBP1a and PBP2x, these strains have 
unique mutations in the 590–641 region of the PBP2b gene 
in close proximity to the active binding site [68, 72, 73].

Resistance to cephalosporins may develop with mutations 
in the pbp1a and pbp2x genes, and the close linkage of these 
two genes on the chromosome is conducive to the transfer of 
both genes in a single transformation step [64, 74]. PBP2b is 
not a target for cephalosporins so would remain unaltered in 
isolates expressing cephalosporin resistance and susceptibil-

ity to penicillin [75]. Most, but not all, extended-spectrum 
cephalosporin-resistant strains are also penicillin-resistant, 
and as with amoxicillin, the MICs of cefotaxime and ceftri-
axone are usually lower than the MICs of penicillin. Newer 
antibiotics such as ceftaroline and ceftobiprole appear to be 
more active and have greater affinity for altered pbp genes 
allowing it to be active against strains with elevated MICs to 
other β-lactams [76, 77]. In the early 1990s in the USA, 
pneumococci with high-level cefotaxime and ceftriaxone 
(2–32  mg/L) resistance were detected [78], and this high-
level resistance was due to alterations in PBPs 1A and 2X 
[65]. The cephalosporin MICs were in excess of the MICs of 
penicillin for these isolates, and specific point mutations 
(Thr550Ala) in the pbp2x gene were associated with this phe-
notype [65]. These cephalosporin-resistant strains emerged 
within a few preexisting clones and demonstrate that point 
mutations as well as recombinational events are important in 
the development of resistance to β-lactam antibiotics in 
pneumococci.

6  �Resistance to Macrolides

The macrolides have been used extensively to treat 
community-acquired respiratory tract infections worldwide, 
and in recent years, resistance to macrolide antibiotics (e.g., 
erythromycin, clarithromycin, and azithromycin) in S. pneu-
moniae has escalated dramatically. Macrolide-resistant S. 
pneumoniae are now more common than penicillin-resistant 
S. pneumoniae in many parts of the world [79]. However, 
both macrolide resistance rates and resistance mechanisms 
may vary considerably depending on location [80]. 
Erythromycin resistance rates range from about 15 % in 
Latin America to as high as 80 % recorded among isolates in 
Far East [81], and these differences probably reflect, in part, 
the variation in antibiotic prescribing behavior between dif-
ferent countries.

Macrolide resistance in S. pneumoniae is mediated pri-
marily by two mechanisms: target modification and active 
efflux. The most common form of target modification is usu-
ally the result of dimethylation of the adenine residue at 
position 2058 on the 23S rRNA by a methylase enzyme [82]. 
This mechanism confers constitutive high-level resistance 
(MIC, >256 mg/L) to 14-, 15-, and 16-member macrolides, 
lincosamides, and streptogramins B, the so-called MLSB 
phenotype. In S. pneumoniae, methylation is erm(B) medi-
ated in almost all cases, although, more rarely, a methylase 
encoded by erm(A) subclass erm(TR) has been implicated 
[83]. Target modification by point mutations in domain II 
and V of 23S rRNA and in the genes encoding riboproteins 
L4 and L22 can also confer macrolide resistance and has 
been documented in clinical isolates from widely distributed 
global sites [84–86].
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In certain countries, such as the USA [87], active efflux is 
the major mechanism for macrolide resistance. It confers 
low-level resistance (MIC, 1–16 mg/L) to 14- and 15-member 
macrolides but not to 16-member macrolides, lincosamides, 
and streptogramin B and is phenotypically referred to as the 
M phenotype. Active efflux is encoded by mef-class genes, 
which include several variants, the abundant mef(A) and 
mef(E), which share 90 % sequence identity, and the rare 
variant mef(I) which has only been described in two Italian 
clinical strains [88].

In pneumococci the three subclasses of mef are carried on 
a number of similar but distinct genetic elements. mef(A) is 
located on the defective transposon Tn1207.1 or the closely 
related Tn1207.3 [89], whereas mef(E) is typically carried on 
the mega (macrolide efflux genetic assembly) element [90]. 
The mef(I) gene exhibits 91.4 and 93.6 % homologies to the 
mef(A) gene of Tn1207.1 and the mef(E) gene of the mega 
element, respectively [88], and is carried on a nonmobile 
composite structure, designated 5216IQ complex [91].

Worldwide erm(B) and mef (A or E) mechanisms account 
for the majority of macrolide resistance among pneumo-
cocci, and the prevalence of these genes varies considerably 
among countries. In recent years, the presence of both the 
erm(B) and the mef genes in S. pneumoniae clinical isolates 
has been increasingly recognized, particularly in Asian 
countries but also in Europe, S. Africa, and the USA [92, 93]. 
The PROTEKT study reported a 12 % global prevalence of 
macrolide-resistant isolates positive for both erm(B) and 
mef(A) in 2003–2004 [81].

The majority of dual-positive isolates exhibit multidrug 
resistance and are clonal lineages of Taiwan19F-14, mostly 
multilocus sequence type 320, 271, and 236 [4, 92–94]. It 
appears that the global increase in macrolide-resistant strains 
carrying both the erm(B) and mef genes is being driven in 
part by the diversification and expansion of this Taiwan19F-14 
clone following conjugate vaccine introduction. This was 
especially true of the major 19A ST320 variant in the USA, 
which became the single most common IPD causing genetic 
complex in the USA prior to PCV13 implementation.

7  �Resistance to Fluoroquinolones

Due to the increased rates of resistance to β-lactam and mac-
rolide antibiotics among pneumococcal strains, fluoroquino-
lones (FQs) are now included among the choices for first-line 
therapy in clinical guidelines for the treatment of respiratory 
tract infections and pneumonia. A direct correlation between 
the use of FQs and the prevalence of resistance in S. pneu-
moniae has been described [95–97]; however, despite the 
increased use of FQs, the resistance of S. pneumoniae to the 
newer members of the family is uncommonly found. Reports 
from Europe, the USA, and Canada showed levels of resis-

tance to levofloxacin and moxifloxacin below 2 % [95–97]. 
Three major events may have contributed to this low level of 
resistance: the replacement of the old FQ ciprofloxacin by 
the more active levofloxacin and moxifloxacin, the introduc-
tion of the pneumococcal conjugate vaccine, and, probably, 
the fact that children who are the main reservoir of pneumo-
cocci are not generally treated with FQs. This is supported 
by a recent study from South Africa showing a rise in FQ 
resistance in pneumococci isolated from children treated 
with FQ due to MDR tuberculosis [98]. In countries that 
report increasing incidence of resistance, the proportion of 
resistant isolates is much higher among older subjects and 
patients with chronic lung disease, a patient population that 
is frequently exposed to FQ [99].

Two mechanisms that decrease susceptibility to FQs in 
pneumococci have been identified: target alteration and 
reduced accumulation due to efflux. Resistance associated 
with target modification requires a combination of mutations 
in the quinolone resistance-determining region (QRDR) of the 
genes encoding the DNA gyrase and DNA topoisomerase IV 
subunits. First-step mutants generally result from spontaneous 
mutations in the preferential target for a given FQ, ParC for 
ciprofloxacin, and levofloxacin or GyrA for moxifloxacin, 
gatifloxacin, and gemifloxacin [100, 101]. Some isolates with 
a first-step mutation in parC gene have ciprofloxacin MICs 
that would indicate they are clinically susceptible (MIC, 
<4 mg/L) and these strains would not be identified using rou-
tine antibiotic susceptibility testing [102]. The population of 
isolates with first-step mutations is important because, com-
pared with strains without these first-step mutations, they are 
more likely to develop high-level resistance during therapy 
with the acquisition of a second-step mutation [103, 104]. In 
the second-step mutants, amino acid substitutions are present 
in both topoisomerase IV and gyrase, most frequently affect-
ing ParC and GyrA and less so ParE and GyrB [105].

Several mutations have been described in these enzymes, 
but only a few have been shown by in vitro studies to confer 
resistance: S81F or Y, C, or I and E85K in gyrA; E474K in 
gyrB; A63T, S79F, or Y or L and D83G or N in parC; and 
E474K and D435N or H in parE [100, 106]. Other frequently 
described mutations are K137N in parC and I460V in parE, 
which appear to not contribute to FQ resistance because they 
are commonly found in susceptible strains, and no evidence 
exists for their conferring FQ resistance in  vitro [107]. A 
Q118K in gyrA together with S79F in parC in a FQ-resistant 
isolate resulted in treatment failure [108].

Another mechanism underlying non-susceptibility to FQs 
in some pneumococcal isolates is an increase in active efflux 
which affects quinolones such as ciprofloxacin [109]. In con-
trast to the mefA gene conferring macrolide resistance, the 
efflux mechanisms in FQ resistance are poorly characterized 
and have primarily been demonstrated in isolates with low-
level quinolone resistance [101]. They are not encoded by 
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resistance genes but are thought to be overexpressed in 
8–45 % of pneumococcal strains [110]. Little is known about 
the mechanism of the expression regulation of PmrA, but the 
efflux pump can be blocked by the plant alkaloid reserpine 
and, to a lesser degree, by verapamil [111]. Efflux may not 
confer complete resistance but may be able to lower intracel-
lular FQ to sublethal concentrations, fostering the occur-
rence of QRDR mutations [112].

In contrast to β-lactam resistance, horizontal gene transfer 
and the role recombination plays in the evolution of FQ 
resistance are uncertain. Both intra- and interspecies trans-
fers of FQ resistance loci have been found to occur in vivo, 
but the frequency of such events appears to be rare. In vitro 
models report a higher frequency for recombination of 
QRDRs between viridans group streptococci and S. pneu-
moniae compared to that of spontaneous mutations [113]; 
however, this level of recombination does not appear to be 
replicated in  vivo [114]. Published studies addressing this 
question of recombination found evidence for horizontal 
gene transfer in 0–11 % of FQ-resistant isolates, and interest-
ingly, this ratio seems to be higher in respiratory isolates than 
in invasive isolates [115–118].

Fluoroquinolone resistance has been reported in a number 
of international pneumococcal clones that have been associ-
ated with the evolution of resistance to penicillin and macro-
lides [119, 120]. However, the role that clonal spread plays in 
the increase of FQ resistance is controversial, with studies 
placing different significance on its importance. The 
increased prevalence of levofloxacin resistance that was 
reported from Hong Kong between 1995 and 2001 was sug-
gested to be associated with the dissemination of strains 
related to the Spain23F-1 clone. However, several studies have 
shown that clonal spread does not play a significant role in 
the increase of FQ resistance [120–122]. Data on levofloxacin-
resistant pneumococci from 25 countries analyzed as part of 
the PROTEKT study (1999–2000) showed the majority were 
genetically unrelated, although 34 % belonged to the 
Spain23F-1 clone [120]. These studies suggest that both clonal 
dissemination and the emergence of newly resistant strains 
contribute to the spread of FQ resistance.

8  �Resistance to Newer Classes 
of Antibiotics

Telithromycin was the first ketolide drug approved for clini-
cal use; however, safety issues have limited the clinical util-
ity of this drug [123]. Both cethromycin (ABT-773) and 
solithromycin (CEM-101), a novel fluoroketolide, have 
shown improved activity against macrolide-resistant as well 
as telithromycin-intermediate and telithromycin-resistant 
organisms [124–126]. This enhanced potency shows prom-
ise for future clinical use for these compounds, subject to 

pharmacokinetic/pharmacodynamic, toxicity, and animal 
infection model studies. High-level telithromycin resistance 
in S. pneumoniae has been experimentally generated by 
mutations in domain II or V of 23S rRNA gene and ribo-
somal proteins L4 and L22 [127] and is easily created from a 
macrolide-resistant strain by the deletion or mutation of the 
region upstream of erm(B) [128]. In contrast, clinical 
telithromycin resistance in S. pneumoniae remains rare. 
Farrell reported that among a worldwide collection of 13 874 
S. pneumoniae isolates, isolated between 1999 and 2003, 
only ten were resistant, with MICs ≥4 mg/L and all con-
tained erm(B) gene [129]. Mutations in 23S rRNA, L4, and 
L22 have also been found in clinical telithromycin-resistant 
isolates [130, 131], and a combination of mutated genes can 
result in a higher telithromycin resistance than mutation of 
only one gene [132, 133]. Wolter and colleagues demon-
strated that erm(B) with a deletion in the leader sequence 
was responsible for high-level telithromycin resistance in a 
strain isolated in Canada in 2007 [134].

Linezolid is the first in the class oxazolidinone that was 
approved for clinical use in 2000 for the treatment of noso-
comial and community-acquired pneumonia. Linezolid 
binds to the 50S subunit of the bacterial ribosome via inter-
actions with the central loop segment of domain V of the 23S 
rRNA to block the formation of protein synthesis initiation 
complexes. To date, linezolid non-susceptible pneumococcal 
strains are extremely rare [129, 135]. Recent data from the 
US LEADER and global ZAAPS surveillance systems show 
no linezolid non-susceptible isolates among 2150 S. pneu-
moniae isolates tested in 2011 [136, 137]. Reports of non-
susceptibility to linezolid have been sporadic among clinical 
isolates of staphylococci and enterococci, and resistance has 
been found to be conferred by mutations in domain V of 23S 
rRNA [138]. In pneumococci, Wolter et  al. [139] have 
described two clinical isolates with decreased susceptibility 
to linezolid (MICs 4  mg/L) which were found to contain 
6-bp deletions in the gene encoding the riboprotein L4. The 
L4 deletions were also found to confer a novel mechanism of 
simultaneous resistance to macrolides, oxazolidinones, and 
chloramphenicol. A more recent study identified two addi-
tional linezolid non-susceptible pneumococci from the USA 
within the Centers for Disease Control and Prevention (CDC) 
Active Bacterial Core Surveillance (ABCs) program with 
mutations and deletions within the rplD gene [140]. Whole 
genome sequencing of linezolid-resistant laboratory-
generated mutants has also revealed a role in resistance for a 
23S rRNA methyltransferase (spr0333) and for the ABC 
proteins PatA and PatB [141]. A proteomic and transcrip-
tomic screen suggested increased energy requirement needs 
associated with the burden of resistance in these 
laboratory-derived mutants [142]. Second-generation oxa-
zolidinones like tedizolid, which is a protein synthesis inhib-
itor, are in clinical development for the treatment of 
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Gram-positive infections. Tedizolid has demonstrated potent 
in  vitro activity against penicillin-resistant S. pneumoniae, 
including linezolid-resistant strains [143].

Resistance to quinupristin-dalfopristin among Gram-
positive cocci has been very uncommon. Two clinical iso-
lates among 8837 (0.02 %) Streptococcus pneumoniae 
isolates were discovered in 2001–2002 with MICs of 4 mg/L. 
Each had a 5-amino acid tandem duplication (RTAHI) in the 
L22 ribosomal protein gene (rplV) preventing synergistic 
ribosomal binding of the streptogramin combination [144].

9  �Resistance to Other Agents

One class of antimicrobial agents previously used often in 
clinical practice is the tetracyclines, which are broad-
spectrum bacteriostatic drugs shown to be active against 
pneumococci. Reflecting patterns of past usage, in some 
countries reported rates of non-susceptibility to tetracyclines 
remain the most frequently observed resistance phenotype 
[145]. In S. pneumoniae tetracycline resistance is due to the 
protection of the bacterial 30S ribosome subunit against anti-
biotic binding by the TetM or TetO [146, 147] proteins, with 
the tet(M) gene being far more common than the tet(O)gene 
in pneumococci. In streptococci, tet(M) is usually associated 
with highly mobile conjugative transposons of the Tn916–
Tn1545 type and large composite structures like Tn5253 and 
Tn3872. A recent study discovered the oldest known exam-
ples of two different Tn916-like, tet(M)-containing elements 
identified among pneumococci dated from 1967 and 1968 
[145]. These transposons often carry other resistance genes, 
such as erm(B) coding for resistance to macrolides, lincos-
amides, and streptogramins B which explains the persistence 
of tetracycline resistance (these transposons continue to be 
selected by macrolides). The comparison of tet(M) sequences 
in multidrug-resistant isolates reveals a high degree of allelic 
variation [148]. There is evidence of clonal distribution of 
selected alleles as well as horizontal movement of the mobile 
elements carrying tet(M) [149, 150].

The use of rifampin combined with either β-lactam antibiot-
ics or vancomycin has been recommended for the treatment of 
meningitis caused by multiresistant pneumococci. Rifampin 
has been used in combined therapy to treat tuberculosis and 
resistant staphylococci, and it is extensively used in the prophy-
laxis of Neisseria meningitidis and Haemophilus influenzae 
type b exposure. The prevalence of rifampin resistance among 
pneumococcal isolates is low at present, and reported rates vary 
between 0.1 % and 1.5 % [151, 152]. Rifampin resistance has 
been described in several bacterial species and is caused by an 
alteration of the β-subunit of RNA polymerase, the target for 
the antibiotic. Resistance to rifampin in pneumococci has been 
linked to mutations in clusters N, I, II, and III of the rpoB gene, 
which encodes the β-subunit [153, 154].

Resistance to chloramphenicol in S. pneumoniae is due to 
the acetylation of the antibiotic by the production of a chlor-
amphenicol acetyltransferase (CAT). The cat gene in pneu-
mococcal isolates is carried on the conjugative transposon 
Tn5253, a composite transposon consisting of the tetracy-
cline resistance transposon, Tn5251, and Tn5252 which car-
ries the chloramphenicol resistance determinant [155]. 
Chloramphenicol-resistant strains have been shown to con-
tain sequences homologous to catpC194 and other flanking 
sequences from S. aureus plasmid pC194 [156].

Trimethoprim and sulfamethoxazole are used extensively 
in combination as the drug co-trimoxazole. Co-trimoxazole 
has been used in the treatment of a range of S. pneumoniae 
diseases, especially in children, because it is inexpensive and 
generally effective. Resistance to co-trimoxazole has 
increased dramatically in many regions of the world, and 
recent surveillance studies show rates ranging from 19 % in 
Europe to around 50 % associated with HIV infection in 
Africa and >60 % in Asia [29, 157, 158]. Resistance to co-
trimoxazole is often associated with resistance to other anti-
biotics, especially to penicillin. Trimethoprim resistance in 
pneumococci has been reported to result from a single amino 
acid substitution (Ile-100 → Leu) in the dihydrofolate reduc-
tase (DHFR) protein [159] and often associated with mosaic 
alleles. Additional mutations have also been reported which 
seem to enhance resistance and modulate the effects of exist-
ing alterations on the affinity of DHFR for its natural sub-
strates [160]. In many cases, resistance to sulfonamides is 
associated with chromosomal mutations within the gene 
encoding dihydropteroate synthase (DHPS). Different stud-
ies have reported the occurrence of single and/or multiple 
amino acid mutations in the DHPS of sulfonamide-resistant 
clinical isolates of S. pneumoniae [161–163]. The use of 
Fansidar therapy for malaria in Africa has been shown to 
increase co-trimoxazole resistance in pneumococci [19].

10  �Clinical Relevance of Antibiotic 
Resistance

When penicillin-resistant pneumococci were first isolated 
from adults, there was an implicit assumption that such 
strains would fail intravenous penicillin therapy [164, 165]. 
As our appreciation of pharmacodynamics has allowed the 
understanding of the time-based mode of action of β-lactams, 
it is clear that the very high levels of penicillin achieved by 
intravenous therapy exceed the MICs of strains up to 8 mg/L 
for most of the short 4–6  h dosing interval for high-dose 
intravenous penicillin [166]. Such highly penicillin-resistant 
strains remain rare, and there is little evidence for the failure 
of intravenous penicillin, amoxicillin, cefotaxime, or ceftri-
axone [167, 168] due to penicillin resistance. It is possible 
that less active intravenous agents such as cefuroxime [169] 
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may fail to treat penicillin-resistant infections, and β-lactams 
with a more Gram-negative spectrum such as ticarcillin 
[164] and ceftazidime [170] should not be used to treat 
penicillin-resistant pneumococcal infections. It is likely that 
oral β-lactam therapy may fail in the management of pneu-
mococcal infections such as otitis media when the strains 
become intermediately (MIC ≥ 0.1 mg/L) resistant to peni-
cillin. Poorly active cephalosporins such as cefaclor fail 
more often than cefuroxime [171, 172], and high-dose 
amoxicillin is the most active oral agent available against 
penicillin-resistant pneumococcal otitis media [173]. It is 
likely that the inferences made for otitis will be similar for 
sinusitis [174]. β-lactam resistance is clinically important for 
meningitis treatment where penicillin has been shown to fail 
[175, 176] even for intermediately resistant strains because 
of the poor penetration of penicillin through the blood-brain 
barrier. Extended spectrum cephalosporins fail too when 
there is full penicillin resistance in meningitis (MIC ≥ 2 mg/L; 
associated with cefotaxime or ceftriaxone MIC’s ≥ 1 mg/L) 
[177, 178]. The empiric therapy therefore of penicillin-
resistant pneumococcal meningitis is cefotaxime plus vanco-
mycin or ceftriaxone plus vancomycin, based on the 
observation that these drugs in combination are able to eradi-
cate cephalosporin-resistant pneumococci from the CSF bet-
ter [178] than either drug alone [179, 180].

Macrolide resistance is associated in most instances with 
MICs > 2 mg/L regardless of the mechanism of macrolide 
resistance, and treatment of these strains with macrolides has 
been shown to fail [181, 182], both in the management of 
otitis media [171, 172] and of pneumonia [183]. These fail-
ures are in keeping with our knowledge of the pharmacody-
namics of these agents [184].

Trimethoprim-sulfamethoxazole has been shown to not 
be able to eradicate from the middle ear, strains resistant to 
that agent [185].

Fluoroquinolones fail to successfully treat pneumococcal 
infections when preexisting resistant strains are present or even 
when first-step mutations in the parC gene are present [186]. 
Immunocompromised patients may be most at risk for repeated 
infections due to fluoroquinolones-resistant strains [187].

11  �Impact of Conjugate Vaccine

The introduction of conjugate pneumococcal vaccine has not 
only reduced the burden of invasive disease in children [188] 
but has impacted on carriage and thus on the burden of dis-
ease in adults by preventing the spread of vaccine-type resis-
tant strains to adults [189]. Direct demonstration of the 
impact of conjugate vaccine on antibiotic-resistant invasive 
disease was demonstrated in the 9-valent conjugate vaccine 
trial in South Africa [190], while multistate studies [191] 
have demonstrated a significant reduction in the proportion 

and absolute incidence of antibiotic-resistant pneumococci 
isolated from blood. Antibiotic resistance however emerged 
in non-vaccine-type pneumococci causing both ear infec-
tions and invasive disease following the 7-valent conjugate 
vaccine introduction in the USA, particularly among sero-
type 19A strains [192, 193]. The increase in serotype 19A 
post-conjugate vaccine in the USA was significantly 
increased among states with higher rates of community anti-
microbial use in children [194]. In addition to direct protec-
tion of children from antibiotic-resistant pneumococci, and 
herd protection of adults to these resistant strains, through 
interruption of their transmission, conjugate vaccine may 
also contribute to reduction in selection of resistance by 
reducing the antimicrobial prescriptions written for vacci-
nated children, compared to controls [195–197].

12  �Concluding Remarks

The multiply resistant pneumococcus continues to have a 
global distribution. Antimicrobial resistance within the 
pneumococcal population emerges and is maintained through 
a complex interplay of many factors. Attempts to reduce the 
burden of resistance in this pathogen are frustrated by wide-
spread empiric therapy for respiratory infections. Both 
appropriate and inappropriate antibiotic uses continue to 
select resistance in this pathogen. Although the conjugate 
vaccine has reduced the burden of resistance in invasive iso-
lates, continued antibiotic exposure is leading to the emer-
gence of resistance in non-vaccine types.
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1  �Introduction

The taxonomy of streptococci has undergone major changes 
during the last two decades. The present classification is 
based on both phenotypic and genotypic data. Phylogenetic 
classification of streptococci is based on 16S rRNA sequences 
[1], and it forms the backbone of the overall classification 
system of streptococci. Phenotypic properties are also impor-
tant, especially for clinical microbiologists. The type of 
hemolysis on blood agar, reaction with Lancefield grouping 
antisera, resistance to optochin, and bile solubility remain 
important for grouping of clinical Streptococcus isolates and 
therefore treatment options [2]. In the following chapter, two 
phenotypic classification groups, viridans group streptococci 
(VGS) and beta-hemolytic streptococci, will be discussed.

Antimicrobial resistance is common among VGS and 
beta-hemolytic streptococci isolates. Beta-lactam resistance 
is widespread among VGS, and resistance rates to other anti-
microbials are continuously increasing. Beta-lactam resis-
tance is uncommon in beta-hemolytic streptococci. 
Macrolide resistance, however, presents a clinical concern in 
the outpatient setting. High-level beta-lactam resistance in 
VGS is a real threat to the treatment of infective endocarditis 
and empirical treatment of sepsis in neutropenic patients. 
Treatment of infections, including pharyngitis, caused by 
macrolide-resistant beta-hemolytic streptococci may also 
become challenging if resistance rates continue to rise.

Infections caused by Gram-positive organisms have 
increased in frequency over time and are almost as common 
as Gram-negative infections. This has been linked to greater 
use of invasive procedures and the increasing proportion of 
hospital-acquired infection. The regular use of broad-spectrum 
antibiotics in increasingly sick patients has likely resulted in 
increased bacterial resistance over time [3]. As a result, imple-
mentation of antimicrobial stewardship and infection control 
processes has become progressively more important in pro-
tecting patients, health-care providers, and communities.

This chapter summarizes the general characteristics of the 
streptococci groups, the current antimicrobial resistance 
trends, resistance mechanisms, and the clinical implication 
of resistance for viridans and beta-hemolytic streptococci.

2  �Characteristics of Non-pneumococcal 
Streptococci

2.1  �Viridans Group Streptococci

Viridans group streptococci form a phylogenetically hetero-
geneous group of species belonging to the genus 
Streptococcus [1]. However, they have some common phe-
notypic properties. VGS are a group of catalase-negative, 
Gram-positive cocci with a chaining morphology upon 
microscopic examination. They can be grouped as alpha- or 
nonhemolytic. They can be differentiated from S. pneu-
moniae by their resistance to optochin and lack of bile solu-
bility, though the distinction between the two groups remains 
difficult due to similar sequence homology [2, 4]. They are 
leucine aminopeptidase positive, pyrrolidonylaryl amidase 
negative, and can be differentiated from Enterococcus spe-
cies by their inability to grow in medium containing 6.5 % 
sodium chloride [2]. Nutritionally variant streptococci were 
once included in VGS but based on molecular data been 
removed to a new genus Abiotrophia [5]. VGS belong to the 
normal microbiota of the oral cavities and upper respiratory 
tracts of humans and animals. They can also be isolated from 
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