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We live and work in the age of immunotherapy. 
The modality is now firmly affixed to the triad of 
chemotherapy, radiation therapy, and surgery. This 
book captures the translation of immunology into 
therapies. The migration of bench research to 
bedside experimentation has been largely driven by 
academia and amplified by industry; however, in 
the current age, there is equipoise between the 
not‐for‐profit and for‐profit enterprises regarding 
advancements in the human applications of 
immunotherapies.

The breadth of treatments reflects the complexity 
of the immune system itself. The coordinated 
response of the multiple components of an endog-
enous immune response has generated a portfolio 
of immunotherapy options that are reflected in the 
names of the chapters. Not all chapters, though, are 
created equally. Some immunotherapies are just 
beginning their human experimentation and some 
are seasoned and perhaps even seen as out of vogue. 
Nevertheless, as a whole, these components of 
immune‐based therapies provide patients with 
therapeutic optimism and some with therapeutic 
impact.

This book is a sum of its chapters and thus 
individual immunotherapies. What is not yet evi-
dent is how combinations of immune‐based 
therapies can be harnessed. This is undoubtedly 

needed in order to secure long‐term and complete 
treatment for the majority of malignancies, espe-
cially arising as solid tumors. The coordinated 
response of the endogenous immune system will be 
mirrored by the corradiated application of immu-
notherapies. However, that will be the topic of a 
future book. What is present and is remarkable, is 
that monotherapies based on harnessing the 
immune response have resulted in Lazarus‐type 
moments, are used to prevent cancer, and have 
provided responses in tumors that were previously 
considered untreatable.

Immunotherapy as presently wielded is a 
relatively blunt tool. Yet the immune system is built 
on precision. Academics and industry investigators 
are only beginning to understand how to sharpen 
the therapeutic edge of an applied immune 
response. The proving ground is the human experi-
ence as preclinical models by and large do not yield 
sufficient information regarding efficacy and tox-
icity. Thus, immunotherapy practitioners and 
patients alike are risk takers. Together, they will 
advance the clinical application of the immune 
system so that its complexity can be harnessed as 
an instrument to treat cancer on an individualized 
basis.

This is a good time to be studying immunotherapy, 
and we hope this book rewards your interest.

Introduction





1

Immunotherapy in Translational Cancer Research, First Edition. Edited by Laurence J. N. Cooper,  
Elizabeth A. Mittendorf, Judy Moyes, and Sabitha Prabhakaran.  
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

CHAPTER 11

Introduction

For over a century, the role of the immune system 
in controlling and eradicating tumors has been a 
subject of intense debate. Since the 1800s, it has 
been recognized that the immune system also 
plays an important pathologic protumor role in 
tumor initiation and progression. Virchow com­
mented on the interaction between inflammation, 
leukocytes, and cancer in his article from 1863 [1]. 
More than a hundred years later, we are still extri­
cating the complexities of the interaction between 
cancers and the host immune system. More 
recently, Schreiber, Old, and Smyth described the 
process in which cancer and the immune system 
interact with each other, termed “cancer immu­
noediting” [2]. Cancer immunoediting describes a 
contiguous process that the immune system influ­
ences and shapes developing tumors. This process 
can result in successful rejection of the tumor or 
generate a tumor through immunologic evasion, 
the latter of which we now know can occur by 
multiple mechanisms and more often than not 
through any one of a number of immune suppres­
sive pathways [3].

Despite the long‐standing interest in host 
antitumor immunity, it was only recently that 
immunotherapy emerged as one of the effective 
treatment options for cancer. In the past decade, 
several new immunotherapies, such as immune 
checkpoint blockade agents, tumor antigen–
targeted monoclonal antibodies, and a cell‐based 
dendritic vaccine, were approved by the U.S. Food 
and Drug Administration (FDA) for the treatment 
of multiple cancer types. In particular, the immune 
checkpoint blockade agents, which are treatments 
that target cytotoxic T‐lymphocyte associated 
protein 4 (CTLA‐4), programmed cell death pro­
tein 1 (PD‐1), and programmed cell death ligand 
1  (PDL‐1), have gained impetus as potent anti­
cancer therapies and have shown promising results 
across several tumor types, leading to a widespread 
revolution in cancer treatments and a massive shift 
in laboratory investigations. Since this form of 
therapy targets the host’s regulatory components of 
the immune system rather than specific oncogenic 
mutations or tumor cells themselves, immune 
checkpoint blockade has been shown to be effec­
tive across multiple cancer types. Furthermore, 
given that the immune system has the capacity for 
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long‐term memory, patients who respond to this 
form of immunotherapy frequently have durable 
responses, which can protect against disease 
progression for months and years [4–6].

While the early results of immune checkpoint 
blockade have been quite promising, only about 
a third of patients benefit from single agent 
therapy, accounting for both partial and com­
plete responses, defined by the FDA as the 
objective response rate (ORR). Not all tumor 
types are equally responsive to immune check­
point blockade, for reasons that as of yet remain 
unclear. Emerging studies suggest that combination 
treatments adding additional immunotherapies or 
other modalities to immune checkpoint blockade 
results in ORRs that appear to be higher in many 
cases. However, in most cases the superiority of 
combination therapy over monotherapy is still 
not well proven. Chen and Mellman et al. intro­
duced the concept of the cancer‐immunity cycle, 
which describes the interactions and processes of 
how the immune system recognizes and eradi­
cates cancer cells [7]. To ensure effective 
antitumor activities, a series of stepwise events, 
including release of cancer cell antigens, antigen 
presentation, priming and activation, trafficking 
of T cells to tumors, infiltration of T cells into 
tumors, recognition of cancer cells by T cells, 
and killing of cancer cells, must be initiated 
and  properly expanded. This cancer‐immunity 
cycle hypothesis provides potential opportu­
nities to intervene, and provides rationale for 
combination therapy consisting of multiple 
immunotherapies to improve clinical responses 
[8]. Additionally, several other combination 
approaches, including with chemotherapy, anti­
angiogenic therapy, and hormonal therapy, are 
being considered [5, 9, 10]. In this chapter, 
potential and established biomarkers that can be 
used as prognostic indicators or as identifiers of 
patients who will benefit more from these 
immune checkpoint blockade agents are 
reviewed. Thus, the impressive therapeutic 
activity of immune checkpoint blockade, seen in 
recent years, has solidified the science of transla­
tional biomarkers, which enable more rapid, 
sensible deployment of novel clinical approaches 
for the select groups of patients who are most 
likely to benefit.

Biomarkers for anti‐CTLA‐4

Cytotoxic T‐lymphocyte associated protein 4 
(CTLA‐4) is an immune checkpoint that down‐
regulates immune responses. CTLA‐4 functions 
predominantly early in the cancer‐immunity cycle 
during T cell activation and enhances the immuno­
suppressive activity of regulatory T cells (Treg cells) 
[11, 12]. In contrast to PD‐1 or PDL‐1, which is 
typically thought to modulate antigen‐experienced 
effector cells in inflammatory environments, 
CTLA‐4 engages in the priming phase and regu­
lates the amplitude of early activation of naïve and 
memory T cells [13]. Ipilimumab was the first 
immune checkpoint blockade agent approved by 
FDA, is a humanized monoclonal antibody against 
CTLA‐4, and is indicated for advanced melanoma. 
However, the response rate for single‐agent ipilim­
umab is merely 10%, and ipilimumab has several 
concerning mechanistic‐based toxicities [14]. 
Common serious toxicities associated with ipilim­
umab are dermatitis, enterocolitis, endocrinopa­
thies, liver abnormalities, and uveitis [15]. 
Therefore, it is critical to identify biomarkers that 
can be used to select patients who are more likely to 
benefit from this toxic therapy.

Several serum biomarkers, such as lactate 
dehydrogenase (LDH), C‐reactive protein (CRP), 
vascular endothelial growth factor (VEGF), and 
soluble CD25 (sCD25), have been shown to be 
associated with ipilimumab treatment in patients 
with advanced melanoma [16–19]. Higher baseline 
levels of LDH and VEGF were associated with 
reduced ipilimumab treatment response in patients 
with metastatic melanoma. However, subsequent 
reductions in LDH, CRP, and Tregs as well as an 
increase in absolute lymphocyte count after ipilim­
umab treatment were significantly associated with 
improved overall survival (OS) and disease control 
rate. sCD25 acts as a decoy receptor for IL‐2. While 
recombinant IL‐2 improves efficacy of ipilimumab, 
sCD25 inhibits the anticancer effects of ipilimumab, 
and the high level of baseline sCD25 appears to 
confer resistance to ipilimumab [16]. However, 
most of these studies were small retrospective data­
base reviews, and at this time, no confirmatory 
clinical trials have been done to support the routine 
use of these biomarkers for the selection of patients 
who should receive ipilimumab.
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Given that ipilimumab exerts its antitumor 
activity through activation and increasing prolifer­
ation of T cells, serial measurements of absolute 
lymphocyte counts (ALC) in the blood after 
treatment have also been investigated as a pharma­
codynamic biomarker of ipilimumab [20, 21]. After 
ipilimumab therapy, an ALC ≥ 1000/μL at week 
seven or an increase in ALC from baseline at week 
twelve was significantly associated with improved 
OS [18, 22, 23]. Besides a simple absolute count of 
lymphocytes, which can be heterogeneous, 
CD4+ICOS+ T cells, an activated T cell subset, have 
been used to track immune response after ipilim­
umab therapy as a pharmacodynamics marker. 
Four independent studies demonstrated that 
patients who had a sustained increase in CD4+ICOS+ 
T cells over twelve weeks after ipilimumab therapy 
had significant improvement in OS [24–28]. This 
consistent finding is intriguing because ICOS 
(inducible T cell costimulatory) costimulation is 
associated with Th2 immune responses, suggesting 
the possibility that antibodies are involved in the 
clinical activity of CTLA‐4 blockade [29].

Since T cells recognize processed peptides 
presented by host major histocompatibility com­
plex molecules, mutations in cancers can produce 
unique peptides that can be recognized by T cells, 
termed mutated neoantigens [30]. The antigenicity 
of these neoantigens may affect the function of the 
protein, and a passenger mutation with no 
functional role may still generate sufficient immune 
responses, although the potential for immune 
escape based on antigen loss is still possible. 
However, a greater mutational load in the tumors 
can potentially produce more neoantigens, which 
will result in a larger repertoire of existing tumor‐
specific T cells, and less chances of antigen‐loss 
variant escape. Given the fact that immune check­
point blockade agents exert their activity by 
unleashing these preexisting tumor‐specific T cells, 
it was initially hypothesized that tumors with 
higher mutational loads would respond better to 
this form of therapy [30]. This hypothesis was sub­
stantiated based on the early results of studies with 
ipilimumab, which has activity in the cancer with 
the highest mutational load, melanoma. In two 
melanoma studies of ipilimumab, patients who 
responded to ipilimumab had a statistically 
significant higher median mutation load in their 

tumors compared to patients who did not respond. 
However, there appeared to be no distinct cutoff 
that can be used to identify patients who would not 
benefit from ipilimumab therapy [31, 32]. The 
inability to establish a cutoff may reflect important 
variations such as HLA allelic variation and immu­
nogenicity of the putative neoantigens, both of 
which may limit the utility of the mutational load 
as a response indicator [33].

Despite years of trials and retrospective studies, 
to date no companion diagnostic test has been 
approved by the FDA to identify patients who are 
more likely to benefit from ipilimumab. Thus, 
additional translational studies of patients under­
going therapy should be designed and implemented 
to aid in identifying the patients most likely to 
respond.

Biomarkers for anti‐PD‐1/PDL‐1 
therapies

Programmed cell death protein 1 or PD‐1 (also 
known as PDCD1) and its ligand PD‐1 ligand 1 or 
PDL‐1 (also known as B7‐H1) are key immune 
checkpoints that down‐regulate antitumor effects of 
T cells in the tumor microenvironment [34, 35]. 
PDL‐1 engages PD‐1 and inhibits proliferation and 
cytokine production of T cells [36]. Several preclin­
ical studies demonstrated that inhibition of the 
PD‐1/PDL‐1 interaction enhances T cell responses 
and augments their antitumor activities [34, 37, 38]. 
The potential translational biomarkers for anti‐
PD‐1/PDL‐1 can be categorized into either immune‐
related or genomic‐related biomarkers [39].

Immune‐related biomarkers
PD‐1 and PDL‐1 immune checkpoint blockade 
agents are thought to exert their activity mainly by 
enhancing the antitumor activities of preformed 
host immune responses [40]. Thus, the amount of 
preexisting immune infiltrate in the tumor at base­
line prior to anti‐PD‐1/PDL‐1 treatment was one 
of the first translational biomarker candidates to be 
explored. In melanoma, higher numbers of preex­
isting CD8+ T cells, particularly at the invasive 
tumor margin, have been shown to associate with 
tumor regression in patients treated with anti‐PD‐1 
therapy (pembrolizumab) [40]. Comparing bet­
ween responders and nonresponders, responding 
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patients had significantly higher numbers of CD8+, 
PD‐1+, and PDL‐1+ cells at the invasive tumor 
margin and a more clonal T cell antigen receptor 
repertoire. Furthermore, patients who responded 
to therapy had significant increases in CD8+ T cells 
both inside the tumors and at the invasive margins. 
Similar findings, in which an increase in CD8+ 
T cell infiltration after anti‐PD‐1 therapy correlates 
with tumor regression, were also observed in 
another study with pembrolizumab in melanoma 
and nivolumab in solid tumors in a phase I study 
[41, 42].

Another immune‐related biomarker that has 
received a great deal of attention is tumor cell–
associated PDL‐1 expression. PDL‐1 is widely 
expressed in the tumor microenvironment not 
only on the tumor cells but also in subsets of 
immune cells, particularly macrophages, dendritic 
cells, and activated T, B, and NK cells as well as 
other nonmalignant cells, including endothelial 
cells as part of a physiological process to down‐reg­
ulate host immune responses in inflammatory 
microenvironment [43–45]. The distribution of 
PDL‐1 expression differs among tumor types. In 
certain type of cancers, PDL‐1 is expressed on both 
tumor cells and immune infiltrating cells. These 
types of cancers include squamous cell carcinoma 
of the head and neck (SCCHN), melanoma, breast 
cancer, and renal cell carcinoma [46–50]. However, 
in other forms of cancers such as colorectal (CRC) 
and gastric cancer, PDL‐1 is expressed almost 
exclusively on the immune‐infiltrating cells but 
rarely on the tumor cells [51, 52].

In the initial phase I trial of nivolumab, an anti‐
PD‐1 antibody, in 39 patients with advanced solid 
malignancies, 9 biopsied samples were available for 
PDL‐1 assessment by immunohistochemistry. 
Among these 9 patients, 3 out of 4 patients with 
membranous expression of PDL‐1 responded to 
nivolumab. Objective responses were not observed 
in the other 5 patients without PDL‐1 expression 
[42]. Similar findings were subsequently observed 
in a larger trial of nivolumab, which demonstrated 
no objective response in patients with PDL‐1‐neg­
ative tumors. In contrast, patients with PDL‐1 
expression of ≥5% of tumor cells were twice as 
likely to respond compared to the overall study 
population [39, 53]. While PDL‐1 expression can 
be used to identify patients who are more likely to 

respond to anti‐PD‐1 therapy, subsequent studies 
have shown that objective responses could still be 
observed in some patients with PDL‐1‐negative 
tumors [54]. In an analysis of multiple anti‐PD‐1 
trials, the average ORR of anti‐PD‐1 therapy was 
approximately 29% across 15 trials in various solid 
malignancies. Among patients with PDL‐1‐positive 
tumors, the ORR was 48% compared to 15% in 
PDL‐1‐negative tumors [55]. These findings exem­
plified that PDL‐1 negativity cannot be used to 
exclude patients from anti‐PD‐1 therapies but 
rather to enrich patients who are more likely to 
benefit from this therapy.

Of note, while PD‐1 is the actual target of anti‐
PD‐1 therapy, expression of PD‐1 does not appear 
to provide any additional predictive value [50]. 
Tumeh et al. demonstrated that more complex 
parameters, such as close proximity of PD‐1+ cells 
to PDL‐1+ cells, proliferation of CD8+ T cells mea­
sured by Ki67 and CD8 costaining, and markers of 
IFNγ signaling, provided superior predictive value 
compared to a single marker [40].

There are several technical difficulties and limita­
tions of using PDL‐1 expression as a biomarker for 
anti‐PD‐1/PDL‐1 therapies. First, the expression of 
PDL‐1 is variable in multiple tumor biopsies col­
lected over time and/or from different anatomical 
sites in each individual patient [39]. This variable 
expression represents a potential pitfall of devel­
oping PDL‐1 IHC as an absolute biomarker based 
on a single biopsied tumor specimen. Moreover, the 
tumors used to evaluate PDL‐1 expression were col­
lected after varied duration of treatment among 
multiple clinical trials. Some of the trials used 
tumors collected right before the initiation of 
therapy, and some trials used the tumors from the 
initial diagnosis. The tumors that were collected 
after the initial diagnosis, which could have been 
months or years before the initiation of therapy, 
may not have reflected the PDL‐1 status at the time 
of therapy. Furthermore, the expression of PDL‐1 is 
not uniform within the tumors. Focal expression of 
PDL‐1 could be missed in small core needle biopsy 
specimens, resulting in false negative results [56].

Genomic‐related biomarkers
To date, no specific oncogenic mutations have been 
shown to associate with outcome in patients treated 
with anti‐PD‐1/PDL‐1 therapy as an independent 
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variable. However, several aberrant oncogenic 
drivers and signaling pathways have been shown to 
associate with PDL‐1 expression. PTEN mutations 
resulting in constitutive activation of the PI3K‐
AKT pathway have been shown to associate with 
higher PDL‐1 expression in glioma cells [57]. 
Similar findings were observed with constitutive 
ALK signaling activation, which was found to 
associate with increased PDL‐1 expression via 
activation of STAT3 in certain lymphomas and 
lung cancers [58]. Additionally, in a subset of lung 
adenocarcinomas, KRAS mutations were associ­
ated with increased PDL‐1 expression and denser 
inflammation compared to wild‐type tumors [59]. 
Nevertheless, there appeared to be no significant 
difference in PDL‐1 expression in non‐small‐cell 
lung cancer (NSCLC) tumors with mutant EGFR 
and those with wild‐type EGFR [60]. Furthermore, 
in melanoma, a previous study also demonstrated 
no significant difference in PDL‐1 expression bet­
ween BRAF‐V600E mutated vs. wild‐type tumors 
[61]. Consistent with this finding, the response to 
anti‐PD‐1 therapy appeared to be similar in 
patients with BRAF‐V600E mutation and BRAF 
wild‐type tumors [6, 62].

Given that genes encoding for both PDL‐1 and 
another PD‐1 ligand, PDL‐2, are located on the 
9p24.1 locus, translocations or amplifications of 
9p24.1 locus also have been shown to increase 
PDL‐1 and PDL‐2 expression on the surface of 
tumors. Amplification of 9p24.1 has been observed 
in several tumor types, including Hodgkin lym­
phomas [63, 64], mantel cell lymphomas [65], 
gastric cancers [66], and breast cancer [67]. Up to 
97% of classical Hodgkin’s lymphomas have alter­
ations of the PDL‐1 and PDL‐2 loci: either 
polysomy, copy number gain, or amplification 
resulting in PDL‐1 overexpression. Furthermore, 
consistent with the known capability of virus‐
caused up‐regulation of the PD‐1/PDL‐1 pathway, 
Epstein‐Barr virus infection, which is common in 
Hodgkin’s lymphoma, also contributes to overex­
pression of PDL‐1. As a result of these two 
mechanisms, a large proportion of classical 
Hodgkin’s lymphoma have increased PDL‐1 
expression [68]. Corresponding to these findings, 
the initial phase I study of nivolumab in 23 patients 
with relapsed or refractory Hodgkin’s lymphoma, 
with the majority progressing after autologous 

stem‐cell transplantation and brentuximab vedo­
tin, showed a remarkable ORR of 87%, including 
17% with a complete response, 70% partial 
response, and 13% with stable disease [63, 64]. 
Similar findings were observed in a subsequent 
multi‐center, single arm phase II trial of nivolumab 
in 80 patients with classical Hodgkin’s lymphoma 
after failure of both autologous stem‐cell transplan­
tation and brentuximab vedotin. However, the 
expression of PDL‐1 on Reed‐Sternberg cells was 
not required and patients were enrolled regardless 
of their PDL‐1 expression status. ORR was 
observed in 66.3% of patients, with 9% complete 
response, 58% partial response, and 23% stable dis­
ease [69]. Based on these promising results, the 
FDA granted the accelerated approval of nivolumab 
for the treatment of patients with Hodgkin’s disease 
in this setting.

Similar to that reported with ipilimumab, muta­
tional burden is another key factor that has been 
found to be associated with clinical response to 
anti‐PD‐1/PDL‐1 therapies. Early studies of anti‐
PD‐1 indicated that these agents appear to have 
activity across all cancers with the highest median 
mutation loads, namely, melanoma, NSCLC, 
SCCHN, bladder cancer, and gastric cancer. The 
ORR for anti‐PD‐1 in these cancer types was more 
than 15% across the board [53, 70, 71]. In contrast, 
the ORR is relatively low in cancers with low muta­
tional loads, such as prostate and pancreatic 
cancers. In a small study of patients with lung can­
cer receiving pembrolizumab, higher mutational 
burden was associated with improved response to 
this agent [72]. Nevertheless, and much like that 
observed for ipilimumab, there is no clear cutoff 
for the number of actual mutations that can be 
used for the purpose of patient selection. Currently, 
beyond the number of mutations, there are several 
computational algorithms that can be used to pre­
dict the numbers of potential neoantigens. 
However, to date, these algorithms are still highly 
imperfect and at present not suitable for use for 
routine clinical management.

Another specific genetic subset that has been 
shown to associate with higher mutation burden 
and better response to anti‐PD‐1/PDL‐1 is tumors 
with DNA mismatch repair (MMR) defects. Genes 
in the MMR complex are often found to be mutated, 
deleted, or epigenetically silenced in several 
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cancers, including CRC, gastric, endometrial, 
ampullary, duodenal, and prostate cancers. MMR‐
deficient genotypes account for approximately 4% 
of all solid tumors and can be identified by detect­
ing microsatellite instability (MSI) or by 
immunohistochemical staining of MMR proteins 
[39]. These tumors with MMR defect have a 10‐ to 
100‐fold increase in mutational burden compared 
to MMR‐proficient tumors. Furthermore, colon 
cancers with MSI exhibit several other features that 
predict sensitivity to anti‐PD‐1/PDL‐1 therapy. 
These features include high CD8+ T cell infiltra­
tion, CD4+ T cells with the Th1 phenotype, high 
levels of PD‐1, PDL‐1, CTLA‐4, lymphocyte 
activation gene (LAG3), and IFNγ‐inducible 
immune inhibitory metabolic enzyme (IDO1) [51, 
73]. Despite a generally low rate of response in 
CRC patients, there was a patient with CRC who 
had a durable complete response in the initial phase 
I trial of nivolumab [42]. Subsequent analysis of 
this patient’s tumor demonstrated an MSIhi pheno­
type [74]. This finding was confirmed in a larger 
phase II trial of pembrolizumab in patients with 
tumors harboring MMR defects. In this particular 
trial, patients with MMR‐deficient and ‐proficient 
CRC were enrolled. The ORR was 40% in MMR‐
deficient CRC compared to 0% in MMR‐proficient 
CRC. Similar high response rates were also 
observed in another cohort of patients with MMR‐
deficient non‐CRC with an ORR of 71% [60].

Besides somatic mutations, integration of onco­
genic viruses in cancer genomes represents another 
form of genetic alterations that can produce neoan­
tigens. There are several human cancers that are 
driven by viruses, namely, Epstein‐Barr virus, 
human papillomavirus, Merkel cell polyomavirus 
(MCPyV), human T‐lymphotropic virus 1 
(HTLV‐1), Kaposi sarcoma‐associated herpes virus 
(KSHV), hepatitis B, and hepatitis C viruses. Early 
studies demonstrated that these viral‐associated 
cancers might have high response rates to anti‐
PD‐1/PDL‐1 therapies. Approximately 80% of 
Merkel cell carcinomas are associated with MCPyV 
infection, and patients with Merkel cell carcinoma 
often produce MCPyV T‐antigen‐specific T cells 
and antibodies [75, 76]. A high ORR of 56% was 
observed in a phase II trial of pembrolizumab in 
this group of patients, which might be indicative of 
activation of latent MCPyV‐specific immune 

effectors [77]. Similar findings were also observed 
in hepatocellular carcinoma, in which the ORR was 
36% among hepatitis C infected patients compared 
to 15% in noninfected patients [78].

Approved anti‐PD‐1/PDL‐1 blockade 
agents and biomarkers in clinical use
Since 2014, several agents targeting this particular 
pathway have been approved or are under 
consideration by the FDA. Presently, three PD‐1‐
PDL‐1 targeting agents have been approved by the 
FDA, namely, pembrolizumab, nivolumab, and 
atezolizumab. Multiple other agents targeting this 
particular pathway are currently under clinical 
development. The agents targeting PD‐1 currently 
in clinical development include pidilizumab, 
AMP‐224, and AMP‐514, as well as agents target­
ing its ligand, PDL‐1, including BMS‐936559, 
durvalumab, and avelumab [79].

Pembrolizumab, a humanized monoclonal IgG4 
antibody against PD‐1, was the first PD‐1/PDL‐1 
targeting agent approved by the FDA. It was 
approved in September 2014. Pembrolizumab is 
currently indicated for the treatment of unresect­
able or metastatic melanoma patients, whose 
tumors express PDL‐1, either as an initial treatment 
or subsequent treatment after progressing on ipili­
mumab and/or a BRAF inhibitor, the first or later 
line treatment of patients with metastatic NSCLC, 
and the treatment of patients with recurrent or 
metastatic SCCHN after progressing on platinum‐
containing chemotherapy [80–83].

Similar to pembrolizumab, nivolumab is a 
humanized monoclonal IgG4 antibody against 
PD‐1. Currently, nivolumab is indicated as a 
single agent for the first‐line treatment of patients 
with BRAFV600 wild‐type unresectable or meta­
static melanoma, metastatic NSCLC progressing 
after platinum‐based chemotherapy, advanced 
renal cell carcinoma with prior antiangiogenic 
therapy [84], relapsed Hodgkin lymphoma after 
autologous hematopoietic stem cell transplanta­
tion and posttransplantation brentuximab 
vedotin, and recurrent or metastatic SCCHN pro­
gressing after platinum‐based therapy [64, 85–89]. 
In addition, nivolumab is also indicated in 
combination with ipilimumab in unresectable or 
metastatic melanoma patients with BRAF wild‐
type [90, 91].
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In contrast to pembrolizumab and nivolumab, 
atezolizumab is a humanized monoclonal IgG1 
antibody against PDL‐1. Atezolizumab is indicated 
for the treatment of patients with locally advanced 
or metastatic urothelial carcinoma progressing 
after platinum‐based chemotherapy [92] and 
patients with metastatic NSCLC progressing after 
platinum‐based chemotherapy [93].

At present, two established biomarkers are 
currently in routine clinical use. They are the 
PDL‐1 IHC 22C3 pharmDx assay for pembroli­
zumab in NSCLC and the PDL‐1 IHC 28‐8 
pharmDx assay for nivolumab in nonsquamous 
NSCLC and melanoma. Upon the approval of 
pembrolizumab in NSCLC, the FDA also simulta­
neously approved the companion diagnostic test, 
PDL‐1 IHC 22C3 pharmDx assay, to guide patient 
selection. PDL‐1 IHC 22C3 pharmDx is a 
qualitative immunohistochemical assay using 
mouse monoclonal anti‐PDL‐1 clone 22C3 in for­
malin‐fixed, paraffin‐embedded samples. Tumor 
proportion score (TPS) is used to determine the 
expression level of PDL‐1. PDL‐1 is considered 
positive if TPS ≥ 1% and high PDL‐1 expression is 
defined as TPS ≥ 50%. Currently, pembrolizumab 
has two indications in metastatic NSCLC, 
including the first‐line therapy for NSCLC patients 
whose tumors have high PDL‐1 expression (TPS ≥ 
50%) and no EGFR or ALK genomic aberrations 
[82]. This approval was based on a large phase II 
trial of pembrolizumab in patients with squamous 
and nonsquamous NSCLC, which demonstrated 
significantly higher ORR, improved PFS, and OS 
in patients with tumors expressed PDL‐1 ≥ 50% 
[60]. The second indication includes the second or 
later line of therapy in NSCLC patients progress­
ing on platinum‐based chemotherapy. In this 

indication, the cutoff for TPS is lower than the 
first indication at ≥ 1% rather than ≥ 50%. This 
lower cutoff may be due to enhanced sensitivity to 
immune checkpoint blockade agents among 
patients with platinum resistance. In contrast, 
PDL‐1 IHC 28‐8 pharmDx for nivolumab in 
NSCLC and melanoma was approved as a comple­
mentary companion diagnostic test rather than a 
required test for patient selection. In two phase III 
trials of nivolumab, NSCLC patients whose 
tumors expressed PDL‐1 ≥ 1% using PDL‐1 IHC 
28‐8 pharmDx assay had improved OS, but only in 
the nonsquamous NSCLC group [88, 89]. These 
assays in current clinical use are summarized in 
Table 1.1.

Conclusion

Immunotherapy, particularly with immune check­
point blockade, represents a revolutionary para­
digm shift in cancer treatment. By enhancing 
endogenous host immune responses, rather than 
specifically targeting particular aberrant signaling 
pathways intrinsic to the tumor cell, this form of 
treatment has proven to be effective across multiple 
tumor types. Nonetheless, the response to immu­
notherapy is not universal and specific transla­
tional biomarkers are needed to identify patients 
who are more likely to benefit from this therapy. 
To date, there are only two PDL‐1 immunohisto­
chemistry assays that are approved by the FDA and 
are currently in clinical use. However, as our under­
standing of the interplay between immune system 
and tumor microenvironment grows, novel mech­
anistic‐based biomarkers and combination therapy 
will emerge to improve patient selection for this 
form of therapy.

Table 1.1  Summary of approved biomarkers for anti‐PD‐1/PDL‐1 blockade agents in clinical use.

Assay Agent Disease Setting Cutoff Reference

PDL‐1 IHC 22C3 

PharmDx assay

PDL‐1 IHC 22C3 

PharmDx assay

1st‐line NCSCLC without EGFR or 

ALK mutation

For patient selection

TPS ≥ 50% 82

≥ 2nd‐line NSCLC

For patient selection

TPS ≥ 1% 60

PDL1 IHC 28‐8 

PharmDx assay

Nivolumab Nonsquamous NSCLC

For prognostic purpose

TPS ≥ 1% 89

Note: TPS = tumor proportion score.
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