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 Cancer immunotherapies, which include cancer vaccines, are novel therapeutic modalities 
being added to the armamentarium for cancer management/treatments that are fi nally 
becoming available to cancer patients around the world. In contrast to chemo- and radio-
therapies, cancer vaccines are not normally associated with severe side effects, and unlike 
these therapies which directly kill the tumor cells and normal rapidly dividing cells in the 
body, cancer vaccines and other immunotherapies exert their effect by stimulating the 
body’s immune system to focus on the cancer cells alone, remove them, and consequently 
reduce the severity of the disease, generally without toxicity. Given these characteristics, 
cancer vaccines offer cancer patients a more focused and gentler means of cancer treatment 
that is far less detrimental to their bodies and is cognizant of the patient’s wish for a better 
quality of life. 

 The status of the patient’s immune system is the vital biological element affecting the 
outcome of cancer immunotherapy. However, each individual’s immune status is in turn 
affected by factors including age of the person, stage of the disease, prior treatment 
(chemotherapy or radiation therapy), tumor-induced immunosuppression, and the over-
all well-being of that person. As the term “immunotherapy” implies, the cells of the 
immune system perform the primary role in mediating the outcome of an immunothera-
peutic regimen. 

 Most cancer vaccines to date have been designed to treat cancers that have already 
developed and therefore are termed “therapeutic.” The purpose of these cancer vaccines is 
to stop cancer cell growth and eventually reduce the tumor burden. Some experts in the 
fi eld believe that cancer vaccines may be best suited to prevent cancer from returning or to 
eliminate cancer cells that were not killed by other, more conventional treatments. 

 Whether used as adjunctive or stand-alone therapies, the development of effective can-
cer vaccines requires a thorough understanding of the innate and adaptive immune system, 
immune effector cells, and cancer cells. However, despite the plethora of clinical and basic 
knowledge of cancer and the immune system, the issue boils down to the simple fact that 
the immune system, in most cases, does not see cancer cells as being “nonself” and thus 
dangerous. Even when the immune system does recognize some element of danger, it does 
not usually mount a clinically signifi cant response against well-established tumors. This is 
mainly due to the fact that cancer cells have developed mechanisms that make it challenging 
for the immune system to target them for removal. The most signifi cant issue is that cancer 
cells express normal “self”-antigens on the cell surface in addition to specifi c cancer- 
associated antigens, giving the abnormal cells an advantage against immune surveillance. 
Furthermore, during their rapid proliferation, these cancer cells frequently undergo further 
genetic mutations that may consequently lead to the loss or down-regulation of the cancer- 
associated antigens. Finally, cancer cells generate soluble factors that function to suppress 
an anticancer immune response. 

 Producing an effective therapeutic cancer vaccine has proven to be challenging. To be 
effective, cancer vaccines must achieve two objectives. First, cancer vaccines must stimulate 
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a robust tumor-specifi c immune responses against the correct target. Second, the immune 
responses must be potent enough to overcome the means by which cancer cells evade the 
adaptive immune response. 

 Therapeutic cancer vaccines can be divided into two broad categories, namely, (1) 
whole-cell vaccines, which encompass autologous, allogeneic, and dendritic cell vaccines, 
and (2) peptide or protein antigen vaccines. Dendritic cell vaccines fall into both “camps,” 
since this category can include the use of peptide and/or protein antigens as well as whole- 
cell lysates in the production of these vaccines. 

 The whole-cell vaccine approach encompasses the use of inactivated whole-tumor cells 
and/or whole-cell lysate as the vaccine. As such, these whole-cell vaccines present an array 
of tumor cell-associated antigens to the patient’s immune system. The approach of using 
whole-tumor cell as a vaccine eliminates the signifi cant problem of having to identify the 
crucial antigen(s) for that cancer, most of which remain unknown, but almost always 
requires some type of immune adjuvant. 

 Peptide or protein antigen vaccines can be comprised of synthetic or purifi ed native 
moieties that are representative of the tumor cell antigens displayed by the target tumors. 
These antigens can be used to immunize patients and have been shown to generate an 
immune response capable of destroying cells in the body that display these antigens. These 
types of cancer vaccines are dependent upon knowing the major tumor cell markers/anti-
gens, their structure, and, if peptides are generated, the important epitope(s) required to 
generate a tumor-specifi c immune response. Dendritic cells, which orchestrate the function 
of immune cells, are often used as the “delivery vehicles” for these synthetic peptides and 
proteins to the immune system. 

 Researchers continue to acquire the elements and knowledge required in order to 
design cancer vaccines that can potentially accomplish both goals, i.e., to evoke a tumor- 
specifi c response and overcome the immuno-evasive mechanisms employed by the tumor 
cells. The purpose of this current volume is to gather many of the methods that have been 
developed to manufacture these cancer vaccines under one cover. The chapters are grouped 
according to the purpose or the aim of the cancer vaccine, namely, the manipulation and 
modifi cation of immune cells; the manipulation and modifi cation of tumor cells; and the 
manipulation of immune/tumor interactions and various delivery mechanisms. The vol-
ume also covers the subject of cancer vaccines in a more global sense with its section on the 
advances, challenges, and future of cancer vaccines. 

 In bringing this volume together, we have attempted to gather experts in the various 
subspecialty fi elds of cancer vaccines to share their expertise with current and future cancer 
vaccinologists, researchers, and clinicians. To this end, the authors have shared their expe-
riences and given helpful “tips” through the Notes section in each chapter to aid in the 
development of future cancer vaccine design. It is hoped that the methods and protocols 
that have already been developed will lead to the further generation of cancer vaccines that 
are both safe and effi cacious and that cancer vaccines will be the standard of care in the 
very near future. 

 The coeditors, Dr. Michael Lawman and Dr. Patricia Lawman, are grateful to the many 
authors who took time from their busy schedules to contribute to this volume. Without 
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their efforts, this book would never have materialized. In addition, the coeditors offer 
 special thanks to Dr. Venkata Narasimhulu Kuppala. Speaking for all the contributing 
authors, we also are very grateful for the advice, encouragement, and support given to us 
by Dr. John and Jan Walker, editors in chief for the series  Methods in Molecular Biology , and 
to the publishers Humana Press and Springer Science + Business Media for the opportunity 
to attempt this project.  

    Tampa ,  FL, USA         Michael     J.    P.     Lawman , Ph.D.   
   Patricia     D.     Lawman , Ph.D.      
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    Chapter 1   

 Single-Step Antigen Loading and Maturation of Dendritic 
Cells Through mRNA Electroporation of a Tumor- 
Associated Antigen and a TriMix of Costimulatory 
Molecules 

           Daphné     Benteyn    ,     An     M.    T.     Van     Nuffel    ,     Sofi e     Wilgenhof    , and     Aude     Bonehill     

    Abstract 

   Dendritic cells (DC) are key players in several types of cancer vaccines. Large numbers of DC can easily be 
generated in closed systems from the monocyte fraction of the peripheral blood. They are the professional 
antigen-presenting cells, and electroporation of mRNA-encoding tumor antigens is a very effi cient and a 
relatively simple way to load the DC with antigen. The co-electroporation of a tumor antigen of choice 
and the combination of 3 costimulatory molecules, including CD70, caTLR4, and CD40L (TriMix-DC), 
leads to fully potent antigen-presenting DC able to generate a broad immune response. 

 Here we describe the in vitro transcription of the mRNA and the subsequent generation and electro-
poration of autologous DC used for the treatment of melanoma patients.  

  Key words     Leukapheresis  ,   Dendritic cells  ,   mRNA  ,   Electroporation  ,   Immunomonitoring  ,   Tumor 
antigen  ,   TriMix  

1      Introduction 

 Dendritic cell (DC)-based cancer vaccines are hot topics in the 
antitumor immunology area. DC are the most professional antigen- 
presenting cells and are attractive candidates for therapeutic manipu-
lation of the immune system to induce novel or enhance insuffi cient 
antitumor immune responses present in cancer patients. The types of 
tumor-associated antigens (TAA) for DC loading, DC culture, and 
maturation steps are key variables in the development of DC-based 
products. Different approaches have been used for antigen loading, 
and both defi ned (peptides, protein, mRNA) [ 1 – 7 ] and undefi ned 
(tumor mRNA, tumor lysates) antigens are used [ 8 – 10 ]. Also, for 
the maturation of immature DC, different clinical grade maturation 
protocols are used, among which are classical cytokine cocktails [ 11 ], 
Toll-like receptor ligands [ 12 ], and TriMix maturation [ 6 ,  13 ]. 
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 Our expertise lies in the development of antigen-encoding 
mRNA-electroporated DC-based cancer vaccines. mRNA is a non- 
integrating molecule with a short half-life leading to a transient 
antigen expression mimicking an infection. When treating patients 
with mRNA-electroporated DC, there is no need for prior knowl-
edge of the patient’s HLA type as mRNA encoding the full-length 
TAA ensures presentation of the full antigenic spectrum of epit-
opes [ 5 ]. Both CD8 +  and CD4 +  T cells are necessary to coordinate 
an antitumor response leading to tumor regression [ 14 – 17 ]. 
mRNA coding for the TAA can be genetically modifi ed to present 
peptides in both MHC class I and class II molecules by linking the 
TAA with a MHC class II targeting signal [ 18 ]. In addition, sev-
eral parts of the mRNA can be optimized to enhance the transcrip-
tion rate and stability. In general, mRNA is rapidly degraded 
because of its short half-life and several other characteristics that 
cause mRNA instability, including rare codon usage, low 
GC-content, or presence of negatively cis-acting motifs, hamper-
ing protein translation. Recently, it has been shown that a rational 
gene design, based on modern bioinformatics, followed by the de 
novo generation of a synthetic gene may help to circumvent this 
problem. Several studies have proven the positive impact of in 
silico cDNA optimization [ 19 ,  20 ]. 

 To enable a DC-based vaccine to be fully potent, costimula-
tory signals are necessary. TriMix is the combination of three mol-
ecules, comprising CD40L, constitutive active TLR4 (caTLR4), 
and CD70-encoding mRNA, which in combination with the TAA 
are capable of generating functional mature antigen-presenting 
DC, further referred to as TriMix-DC, which are able to generate 
specifi c immune responses [ 21 ,  22 ]. All these molecules can be 
effi ciently loaded into DC in a single step by co-electroporation. 
A major advantage of this approach is that there is no need to pre-
incubate the DC for up to 48 h with soluble maturation signals 
like pro-infl ammatory cytokines or TLR ligands to achieve matu-
ration, which can render the cells “exhausted” and inferior for vac-
cination purposes. As a result, TriMix-DC can be injected into the 
patient within a few hours after electroporation and will mature 
and secrete most of their immunostimulatory cytokines and che-
mokines in situ. 

 Different routes of immunization can be combined to broaden 
the tissue distribution of antigen-specifi c T cells induced by the 
treatment. Investigators showed that immunization by different 
routes induces specifi c T cells situated at different tissue sites result-
ing in the eradication of tumors located at different body sites [ 23 ]. 
As reported by our group, the combination of intradermal (ID) 
and intravenous (IV) vaccination results in a broad T cell response 
induced by the DC treatment [ 13 ] and leads to enhanced clinical 
responses [ 24 ]. 

 We here describe in detail the production and administration 
procedure of TriMix-DC.  

Daphné Benteyn et al.
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2    Materials 

      1.    pST1/CD40L, pST1/CD70, pST1/sig-caTLR4, and pST1/
sig-TAA-DC-Lamp plasmids (Fig.  1 ).

       2.    GenElute HP Endotoxin-Free Plasmid Maxiprep Kit (Sigma- 
Aldrich, Diegem, Belgium).   

   3.     Sap I restriction enzyme (Fisher Scientifi c, Erembodegem, 
Belgium).   

   4.    3 M sodium acetate, pH 5.2 (nuclease-free).   
   5.    100 % and 70 % ethanol (EtOH).   
   6.    Sterile RNase, DNase, and endotoxin-free water.   
   7.    mMESSAGE mMACHINE ®  T7 Ultra Kit (Life Technologies, 

Merelbeke, Belgium).      

      1.    Peripheral blood mononuclear cells (PBMC) collected through 
leukapheresis ( see   Note 1 ).   

   2.    4-tray Cell Factories ( see   Notes 2  and  3 ) (VWR Nunc, Leuven, 
Belgium).   

2.1  Production 
of Capped mRNA

2.2  Generation 
of Immature DC (iDC)

T7   sig

a

b

T7   sig

MAGE-A3

MAGE-C2

tyrosinase

DC-Lamp 2βglobinUTRs A120

A(120) 

2βglobinUTRsDC-Lamp

DC-Lamp

DC-Lamp

A120
A(120)

2βglobinUTRs

2βglobinUTRs

T7 A120

A(120) 

gp100T7 A120
A(120) 

A120
A(120) 

T7  sig caTLR4 2βglobinUTRs

T7 CD70 2βglobinUTRs A120
A(120) 

2βglobinUTRsCD40LT7 A120
A(120) 

  Fig. 1    Schematic representation of the different mRNAs. ( a ) Schematic representation of the mRNA encoding 
the 4 TAA comprising the vaccine. The T7 promoter, β-globin 3′ untranslated regions (UTRs), poly(A) tail (A120), 
signal sequence (sig) of Lamp-1, and the HLA class II targeting sequence (DC-Lamp) are shown. ( b ) Schematic 
representation of mRNAs coding for the TriMix molecules       
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   3.    X-VIVO ™ -15 medium.   
   4.    Phosphate buffered saline (PBS).   
   5.    Roswell Park Memorial Institute (RPMI)-1640 medium.   
   6.    Granulocyte-macrophage colony-stimulating factor (GM-CSF) 

and interleukin-4 (IL-4) ( see   Note 4 ).   
   7.    Heat-inactivated autologous plasma (AP) ( see   Note 5 ).   
   8.    CELL-DYN Sapphire hematology analyzer (Abbott, Waver, 

Belgium).      

      1.    Serum-free RPMI-1640 medium.   
   2.       Opti-MEM reduced serum medium without phenol red 

(Life Technologies).   
   3.    4-mm electroporation cuvettes (Immunosource Cell Projects, 

Schilde, Belgium).   
   4.    Gene Pulser XCell electroporator (Bio-Rad, Nazareth, Belgium).   
   5.    DC culture medium consisting of RPMI-1640 medium sup-

plemented with 1 % AP, 1,000 U/mL of GM-CSF, and 
500 U/mL of IL-4.   

   6.    15- and 50-mL tubes.   
   7.    Ultra-Low Attachment T-75 fl ask (Elscolab Corning, Kruibeke, 

Belgium).   
   8.    Cryopreservation medium consisting of AP + 10 % DMSO 

(Acros Organics, Geel, Belgium) and 2 % glucose.   
   9.    1-mL cryopreservation tubes.   
   10.    Cryofreezing container (Cryo 1 °C freezing container, rate of 

cooling −1 °C/min) (VWR Nalgene, Leuven, Belgium).   
   11.    PBS.   
   12.    Human serum albumin (HSA).   
   13.    1-mL and 20-mL syringes.       

3    Methods 

 The methods below describe (1) the production of capped mRNA, 
(2) the generation of autologous immature DC, and (3) subse-
quent electroporation of the DC with TriMix and TAA for com-
bined ID and IV administration to the patient. 

  For the production of capped mRNA suitable for electroporation, 
the following procedures must be performed: (1) cloning of the 
gene(s) of interest into a suitable vector and production of plasmid 
DNA, (2) linearization of the plasmid DNA, and (3) in vitro 
transcription of capped mRNA. 

2.3  Electroporation 
of DC for Vaccination

3.1  Production 
of Capped mRNA

Daphné Benteyn et al.
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 For preparation of TriMix-mRNA, the DNA sequences encoding 
the CD40L, CD70, and caTLR4 proteins are cloned into the pST1 
vector [ 25 ] (provided by Dr. U. Sahin, Johannes Gutenberg 
University, Mainz, Germany) by using standard molecular cloning 
techniques. The extracellular part of the TLR4 is deleted resulting 
in the caTLR4 with the intracellular and transmembrane fragments 
[ 26 ] fl anked by a signal sequence. For preparation of TAA mRNA, 
the DNA sequence encoding full-length TAA, fl anked by the sig-
nal sequence of the Lamp-1 and the HLA class II targeting 
sequence of DC-Lamp [ 18 ], is cloned into the pST1 vector by 
using standard molecular cloning techniques. The signal sequence 
will translocate newly synthesized proteins to the endoplasmic 
reticulum while the DC-Lamp targeting sequence will provide 
transport to the HLA class II compartments ( see   Note 6 ). 

 The pST1 vector contains a bacteriophage T7 promoter, which 
controls in vitro transcription. Downstream from the insert, a 
poly(A) tail of 120 adenines is present. Between the coding region 
and the poly(A) tail, 2 consecutive human β-globin 3′ untranslated 
regions (UTRs) are present. Before in vitro transcription of the 
mRNA, the plasmids are linearized ( see   Note 7 ) with the  Sap I 
restriction enzyme, resulting in an unmasked poly(A) tail with a 
free 3′ end (Fig.  1 ). After cloning, suffi cient amounts of plasmid 
DNA are prepared with the GenElute HP Endotoxin-free Plasmid 
Maxiprep Kit according to the manufacturer’s instructions. 
Optionally, DNA sequences can be optimized in silico to maximize 
translational effi ciency ( see   Note 8 ).  

  Prior to the in vitro transcription, linearization of 100 μg plasmid 
with 100 U  Sap I restriction enzyme in a total volume of 500 μL is 
performed, followed by ethanol precipitation. In vitro transcription 
of capped mRNA is performed with T7 RNA polymerase by using 
the mMESSAGE mMACHINE ®  T7 Ultra Kit according to the 
manufacturer’s instructions. This kit is designed for the in vitro 
synthesis of large amounts of effi ciently and correctly capped 
mRNA with a poly(A) tail suitable for cancer vaccines ( see   Note 9 ). 
After transcription, the remaining plasmid DNA is removed by 
DNase treatment to reduce the risk of introducing foreign DNA 
into the cells. Size and integrity of the mRNA are checked by gel 
electrophoresis and quantity and purity are determined by 
spectrophotometry. Good quality mRNA is then stored at −20 °C 
in small aliquots ( see   Note 10 ).  

  This method describes the generation of clinical grade DC in vitro 
from plastic adherent monocytes in GM-CSF and IL-4 containing 
medium.

    1.    Adjust the concentration of the washed peripheral blood 
mononuclear cells (PBMC) to 10 × 10 6  cells/mL X-VIVO ™ -15 
medium supplemented with 2 % AP.   

3.2  Production of 
In Vitro Transcribed 
Capped mRNA

3.3  Generation 
of Immature DC

mRNA Electroporation of Dendritic Cells
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   2.    Bring 800 mL of the cell suspension into 1× 4-tray Cell Factory.   
   3.    Allow plastic adherence of the DC precursors (CD14 +  mono-

cytes) for 1.5–2 h at 37 °C ( see   Note 11 ).   
   4.    Remove the nonadherent cells for cryopreservation and wash 

the Cell Factory once with 250 mL of X-VIVO ™ -15.   
   5.    Bring 800 mL of RPMI-1640 medium supplemented with 1 % 

AP, 1,000 U/mL of GM-CSF, and 500 U/mL of IL-4 into 
the Cell Factory.   

   6.    Incubate the cells at 37 °C and 5 % CO 2  in a humidifi ed 
incubator.   

   7.    On days 2 and 4 of DC culture, add the same amount of 
GM-CSF and IL-4 to the cells as on day 0 in 20 mL of RPMI- 
1640 medium supplemented with 1 % AP.   

   8.    On day 6 of DC culture, the cells are harvested for subsequent 
vaccine preparation.   

   9.    An in-process quality control is performed on day 6 including 
viability, sterility, and mycoplasma detection.      

      1.    Prepare a 50-mL tube with 30 mL of RPMI-1640 medium 
supplemented with 1 % AP, 1,000 U/mL of GM-CSF, and 
500 U/mL of IL-4 (at 37 °C).   

   2.    Adjust the physical parameters of the Gene Pulser XCell elec-
troporator as follows: voltage 300 V, capacitance 450 μF, and 
resistance ∞Ω.   

   3.    Wash 50 × 10 6  DC with 10 mL of Opti-MEM.   
   4.    While performing the washing step, prepare the following 

mRNA electroporation mix in a fi nal volume of 600 μL of 
Opti-MEM:
   20 μg of CD40L mRNA  
  20 μg of CD70 mRNA  
  20 μg of caTLR4 mRNA  
  60 μg of sig-TAA-DC-Lamp mRNA      

   5.    Resuspend the washed DC in the mRNA electroporation mix 
and transfer into a 4-mm electroporation cuvette.   

   6.    Insert the cuvette into the electroporation chamber and trig-
ger the pulse.   

   7.    Immediately after the electroporation, transfer the DC to the 
50-mL Falcon tube with 30 mL of RPMI-1640 medium sup-
plemented with 1 % AP, 1,000 U/mL of GM-CSF, and 
500 U/mL of IL-4 and rinse the electroporation cuvette twice 
with DC culture medium.   

3.4  Electroporation 
of DC for Vaccination

Daphné Benteyn et al.
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   8.    If you have performed different electroporations (with different 
TAA), pool the different DC into 1 Ultra-Low Attachment 
T-75 fl ask and incubate the electroporated DC for 3.5–4 h in 
a humidifi ed incubator at 37 °C and 5 % CO 2  ( see   Note 12 ).   

   9.    Harvest the electroporated DC and freeze them at 
±12.5 × 10 6  per cryotube ( see   Note 13 ).   

   10.    Perform quality control ( see   Note 14 ).   
   11.    For vaccination, thaw four cryotubes of electroporated DC 

( see   Note 13 ) and let them rest for 1.2 h in X-VIVO ™ -15 sup-
plemented with IL-4 and GM-CSF.   

   12.    For intravenous administration, resuspend 20 × 10 6  electropor-
ated DC in 15 mL of 0.9 % NaCl/1 % HSA and transfer the 
DC to a sterile 20-mL syringe.   

   13.    For intradermal administration, resuspend 4 × 10 6  electropor-
ated DC in 250 μL PBS supplemented with 1 % HSA and 
transfer the DC to a sterile 1-mL syringe.   

   14.    The DC can now be used for vaccination.      

  We treat patients with recurrent stage III or stage IV melanoma in 
academic, single-center clinical trials. These patients are 
incorporated in the study after written informed consent and with 
approval of the study protocol by the institutional ethical committee 
and national competent authorities. 

 DC therapy is administered by 4 biweekly intradermal (ID) 
and intravenous (IV) injections, and a 5th administration is sched-
uled 8 weeks after the 4th immunization in the absence of disease 
progression. TriMix-DC are administered IV during a 15-min 
infusion by constant fl ow rate in a peripheral vein. At the same 
time, TriMix-DC are injected ID at two different anatomical sites 
(axilla and inguinal region). Each patient is closely monitored for 
at least 1 h after the end of the IV administration ( see   Note 15 ). 

 Patients undergo two leukaphereses, one before treatment and 
one after the 4th administration ( see   Note 16 ). DC therapy is 
 prepared from the fi rst leukapheresis and the nonadherent fraction 
of both aphereses is frozen for immunomonitoring. 

 Tumor response assessments (by RECIST) are performed by 
[(18)F]-fl uorodeoxyglucose positron emission tomography/com-
puted tomography (FDG-PET/CT) at baseline and in weeks 8, 
16, and 24. 

 Immunomonitoring is performed both on delayed type IV 
hypersensitivity (DTH) skin infi ltrating lymphocytes (SKILs) 
[ 27 ] and on peripheral blood CD8 +  T cells [ 13 ]. One week after 
the fourth DC administration, a small amount of TriMix-DC 
(5 × 10 5 ) is injected ID to induce a DTH from which skin biopsies 
are taken 48 or 72 h later. After 2.5 weeks of in vitro culture in 
the presence of 100 U/mL IL-2, SKILs are harvested.    

3.5  Patients, 
Treatment Schedule, 
Clinical Evaluation, and 
Immunomonitoring

mRNA Electroporation of Dendritic Cells
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Their  antigen-specifi c    activation (CD137 upregulation [ 28 ]), 
cytolytic capacity (CD107a upregulation [ 29 ]), and cytokine 
release (IFN-γ and TNF-α) in response to autologous EBV-B 
cells expressing the antigens present in the TriMix-DC vaccine are 
assessed. For immunomonitoring of the peripheral blood of the 
patients, CD8 +  T cells are stimulated weekly with autologous 
TriMix-DC co-electroporated with one of four different tumor 
antigens at a 10:1 ratio for 2 or 3 weeks. Their antigen specifi city 
is then determined as for the SKILs. 

 A schedule of the TriMix-DC administrations, leukaphereses, 
clinical evaluation, and immunomonitoring assays is given in 
Fig.  2 .

4        Notes 

     1.    Leukapheresis is performed with a COBE Spectra Apheresis 
System (CaridianBCT, Zaventem, Belgium) under continuous 
supervision of a trained physician, and approximately 12 L of 
blood is processed. The leukapheresed PBMC are then washed 
with a COBE 2991 Cell Processor (CaridianBCT) to remove 
contaminating platelets. Samples from the washed cell suspen-
sion are tested for hematocrit, total white blood cell count, and 
platelet count.   

   2.    DC for vaccination must be produced in a clean room follow-
ing the current guidelines of Good Manufacturing Practice. 
We have designed a system to produce large amounts of DC in 

-x 0 1 2 74 5 63 8 16 24

DC therapy preparation
Immunomonitoring of peripheral 

blood

1st line 
treatment

Immunomonitoring of
peripheral blood and DTH

ID administration of autologous TriMix-DCs

IV administration of autologous TriMix-DCs

Leukapheresis Total body FDG-PET/CT

DTH and biopsy for T cell-culture

14 15

  Fig. 2    Treatment schedule of melanoma patients receiving ID and IV administration of autologous TriMix-DC. 
Clinical evaluation and immunomonitoring time points are indicated       

 

Daphné Benteyn et al.



11

a closed system using Cell Factories suitable for clinical use 
[ 30 ]. Tubing sets with sterile connections and septa for injec-
tions to transfer the PBMC to the culture vessel and to per-
form the necessary washing steps, the addition of cytokines 
and AP, and the harvesting were designed. Typically, four to 
fi ve Cell Factories can be fi lled with the PBMC of one single 
leukapheresis.   

   3.    When granulocyte contamination of the leukapheresis product 
is less than 5 %, monocyte enrichment is performed by coun-
terfl ow elutriation instead of by plastic adherence. Before elu-
triation, monocyte and granulocyte content of the PBMC are 
measured using the CELL-DYN Sapphire hematology ana-
lyzer. Continuous counterfl ow elutriation of leukapheresed 
PBMC is performed with the Elutra Cell Separation System 
(CaridianBCT) with single-use, functionally sealed disposable 
Elutra sets (CaridianBCT). After priming, the leukapheresis 
product is loaded via the inlet pump into the constantly rotat-
ing (2,400 rpm) elutriation chamber. The automation mode 
produces fi ve elutriation fractions (F1–F5), each specifi ed by a 
centrifuge speed, elutriation buffer fl ow rate, and a process vol-
ume. All fractions are collected in RPMI-1640 medium sup-
plemented with 1 % AP. The fi nal monocyte-enriched fraction 
(F5) is collected into the fi nal collection bag when the centri-
fuge is stopped, i.e., the collection of the chamber content 
with the rotor off. All procedures are conducted according to 
the manufacturer’s recommendations. After elutriation, DC 
culture is started by seeding 400–600 × 10 6  monocytes per 
4-tray Cell Factory in 800 mL of RPMI-1640 medium supple-
mented with 1 % AP, 1,000 U/mL of GM-CSF, and 500 U/
mL of IL-4.   

   4.    GM-CSF and IL-4 are prepared in-house but are also com-
mercially available. The cytokines prepared in-house are 
animal- protein- and endotoxin-free. Their biological activity 
is titrated against standards obtained from the National 
Institute for Biological Standards and Controls (NIBSC, 
South Hills, UK).   

   5.    AP is collected from each patient and decomplemented at 56 °C 
for 50 min. Then, plasma is centrifuged at 23,000 ×  g  for 20 min 
at 4 °C. Human AB serum can be used as an alternative.   

   6.    The primary aim of this approach is to obtain HLA class 
II-mediated presentation of antigen-derived CD4 +  helper T 
cells in addition to HLA class I-mediated CD8 +  cytotoxic T 
cells. Both are pivotal for the induction of an effective and 
long-lasting antitumor immunity [ 17 ]. Tumor-specifi c anti-
gens MAGE-A3 and MAGE-C2 and differentiation antigens 
gp100 and tyrosinase were chosen. Almost every TAA- 
encoding sequence can be used for cloning.   

mRNA Electroporation of Dendritic Cells
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   7.    Plasmid DNA must be linearized with a restriction enzyme 
downstream of the insert to be transcribed. Circular plasmid 
templates will generate extremely long, heterogenous RNA 
transcripts. It is important to examine the linearized template 
DNA on a gel to confi rm that cleavage is complete.   

   8.    Our observations report increased expression of CD40L and 
caTLR4 after in silico optimization (GENEART). Nevertheless, 
for some genes, no major impact on gene expression is 
observed, including CD70 expression.   

   9.    A modifi ed cap, Anti-Reverse Cap Analog (ARCA), is used 
which allows T7 RNA polymerase to synthesize RNAs capped 
exclusively in the correct orientation. Substitution of tradi-
tional cap analog with ARCA allows for synthesis of capped 
RNAs that are 100 % functional, in contrast to transcription 
reactions using traditional cap analog where only half of the 
cap analog is incorporated in the correct orientation. As a 
result, ARCA Cap mRNA molecules are more effi ciently trans-
lated and much higher protein expression levels can be achieved 
than from mRNA made with the standard cap.   

   10.    Gel electrophoresis of the transcribed mRNA should confer 
one single, sharp band. If not, mRNA might be degraded or 
improperly digested. mRNA quantity is measured at 260 nm 
and 280 nm. Pure RNA has an A260/A280 ratio of 1.9–2.1. 
If not, RNA might be contaminated with protein or DNA. 
After aliquoting and freezing, avoid freeze-thawing the mRNA.   

   11.    Plastic adherence of the PBMC in Cell Factories is not feasible 
in RPMI-1640 medium. Therefore, we use X-VIVO ™ -15 
medium.   

   12.    We typically perform eight electroporations, 2× with 50 × 10 6  
DC with TriMix-mRNA plus TAA (either gp100, MAGE-A3, 
MAGE-C2, or tyrosinase). This yields enough electroporated 
DC for one treatment cycle.   

   13.    DC are frozen in cryotubes at ±12.5 × 10 6  DC per tube in 
1 mL of AP with 10 % DMSO and 2 % glucose. The DC are 
slowly frozen to −80 °C using a cryofreezing container and 
subsequently stored in liquid nitrogen until use. For thawing, 
DC are quickly thawed in a 37 °C water bath, transferred to 
DC culture medium, and pelleted at room temperature. The 
thawed DC are then resuspended in 5 mL of pre-warmed cul-
ture medium. Cell number and viability are determined with 
trypan blue. Typically, cells are >80 % viable and >90 % of the 
frozen cells are recuperated after thawing.   

   14.    The fi nal product must be monitored and reported prior to its 
release for clinical use. The endpoints for the quality control 
are the number of DC, purity (determined by fl ow cytometric 
light scatter properties) and viability (determined by trypan 
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blue exclusion), electroporation effi ciency (measured by the % 
of cells expressing CD70), the immuno-phenotype (including 
CD40, CD80, CD83, CCR7, CD14 expression), and func-
tional characterization by IL-12p70 secretion between 0–24 h 
and 24–48 h. DC-therapy samples are analyzed for sterility by 
long-term microbiological culture and tested for mycoplasma 
infection by PCR.   

   15.    Post-infusion grade 2 chills are observed in some patients 
receiving IV infusion. Chills typically start about 15 min after 
the end of the IV infusion of TriMix-DC and resolve spontane-
ously within 30 min.   

   16.    In an ongoing phase II clinical trial, patients are treated with a 
combined ID/IV [ID (4 × 10 6  DC) and IV (20 × 10 6  DC)] 
TriMix-DC therapy in combination with an antibody directed 
against the cytotoxic T-lymphocyte antigen 4 (anti-CTLA-4; 
ipilimumab). In this study, patients undergo a leukapheresis 
before the start of the treatment and a buffy coat at the end of 
the treatment.         
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    Chapter 2   

 Generation of Multiple Peptide Cocktail-Pulsed Dendritic 
Cells as a Cancer Vaccine 

           Hyun-Ju     Lee    ,     Nu-Ri     Choi    ,     Manh-Cuong     Vo    ,     My-Dung     Hoang    , 
    Youn-Kyung     Lee    , and     Je-Jung     Lee     

    Abstract 

   Cancer immunotherapy based on dendritic cell (DC) vaccination has promising alternatives for the treatment 
of cancer. A central tenet of DC-based cancer immunotherapy is the generation of antigen-specifi c cyto-
toxic T lymphocyte (CTL) response. Tumor-associated antigens (TAA) and DC play pivotal roles in this 
process. DCs are well known to be the most potent antigen-presenting cells and have the most powerful 
antigen-presenting capacity. DCs pulsed with various TAA have been shown to be effective in producing 
specifi c antitumor effects both in vitro and in vivo. Several types of tumor antigens have been applied in 
cancer treatment including tumor RNA, lysates, apoptotic bodies, heat shock protein, peptides from TAA, 
and allogeneic tumor cells. Among them, the use of immunogenic HLA-A*0201-specifi c epitopes from 
multiple TAA enhances induction of antigen-specifi c CTL and associated therapeutic effi cacy in HLA-
A*0201 +  cancer patients. The current chapter provides a detailed protocol of generating multiple peptide 
cocktail-pulsed DC to elicit CTL with a broad spectrum of immune responses against the related tumor 
antigens.  

  Key words     Cancer immunotherapy  ,   Dendritic cells  ,   Multiple peptide  ,   Tumor-associated antigens  , 
  Cytotoxic T lymphocytes  

1      Introduction 

 Dendritic cells (DCs) are the most attractive and potent antigen- 
presenting cells for targeted immunotherapy in cancer. First, several 
physiological aspects of DC including DC type and maturation sta-
tus can be easily manipulated during ex vivo generation. Second, 
tumor-associated antigens (TAA) can be loaded in a controlled and 
feasible manner using peptides, proteins, or RNA. Third, autolo-
gous tumor cells such as dying tumor cells or whole tumor RNA can 
be used as tumor antigens to target patient-specifi c DC vaccination 
for successful cancer immunotherapy [ 1 – 7 ]. Animal models demon-
strated that TAA-loaded DCs are capable of eliciting protective and 
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therapeutic antitumor responses [ 8 ,  9 ]. Clinical trials also showed 
immunologically and clinically promising effects of antigen-loaded 
DC administered as a cancer vaccine [ 10 ,  11 ]. 

 Although DC-based immunotherapy is a promising approach 
to augment tumor antigen-specifi c cytotoxic T lymphocyte (CTL) 
responses in cancer patients, tumor immune escape mechanism via 
downregulation or complete loss of TAA and MHC class I mole-
cules, escaping death receptor signaling, impaired antigen process-
ing may limit the susceptibility of tumor cells to the immune attack 
[ 12 ]. Therefore, targeting of multiple TAA and concomitant gen-
eration of CTL responses may represent one strategy to circum-
vent this potential drawback. Recently, several studies demonstrated 
that cancer immunotherapy using DC pulsed with multiple pep-
tide cocktail derived from multiple (4 or 5) TAA with repeated 
boosting generates feasible and effi cient cellular antitumor 
responses in patients with hormone-refractory prostate cancer and 
multiple myeloma [ 13 – 15 ]. 

 We describe here a universal protocol to generate DC pulsed 
with multiple peptide cocktail based on our and other groups. It is 
necessary that more suitable, immunogenic TAA and powerful DC 
should be chosen for a strong and effi cient antitumor immune 
responses using multiple peptide cocktail-pulsed DC.  

2    Materials 

      1.    Vacutainer blood collection tubes with sodium heparin (Becton 
Dickinson, Franklin Lakes, NJ, USA).   

   2.    15-mL and 50-mL polypropylene tubes.   
   3.    Lymphoprep  d  = 1.077 (Axis-Shield Po CAS, Oslo, Norway).   
   4.    1× phosphate-buffered saline (PBS).   
   5.    Iscove’s Modifi ed Dulbecco’s Medium (IMDM) (Invitrogen, 

Gibco ®  by Life Technologies™, Grand Island, NY, USA) with 
10 % fetal bovine serum (FBS).   

   6.    MACS buffer: 0.5 % bovine serum albumin (BSA) and 2 mM 
EDTA in PBS and pH 7.2 (Miltenyi Biotec, Auburn, CA, USA).   

   7.    Medium for human CD14 +  monocytes: IMDM with 10 % FBS.   
   8.    Medium for human CD3 +  T cells: Roswell Park Memorial 

Institute (RPMI)-1640 (Invitrogen) with 10 % FBS.   
   9.    Isolation columns for human CD14 +  monocytes and CD3 +  T 

cells (Miltenyi Biotec).   
   10.    MACS separation kit (Miltenyi Biotec).   
   11.    CD14 microbeads, human (Miltenyi Biotec).   

2.1  Isolation of 
CD14 +  Monocytes and 
CD3 +  Lymphocytes 
from Peripheral Blood
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   12.    CD3 microbeads, human (Miltenyi Biotec).   
   13.    MACS columns and MACS separators (MS, LS) (Miltenyi 

Biotec).   
   14.    Allegra X-12 centrifuge (Beckman Coulter, Brea, CA, USA).      

      1.    Medium for DC culture: IMDM with 10 % FBS.   
   2.    Medium for washing the cells: 1× PBS.   
   3.    6-well or 24-well culture plates.   
   4.    Cytokines for DC differentiation:

   (a)    50 ng/mL recombinant human granulocyte-macrophage 
colony-stimulating factor (GM-CSF) (Peprotech, Rocky 
Hill, NJ, USA) or 1,000 U/mL GM-CSF (Immunex, 
Seattle, WA, USA).   

  (b)    20 ng/mL recombinant human interleukin-4 (IL-4) 
(Peprotech) or 1,000 U/mL IL-4 (R&D Systems, 
Minneapolis, MN, USA).       

   5.    Cytokines for DC maturation 1 [ 13 ,  14 ]:
   (a)    20 ng/mL recombinant human tumor necrosis factor-α 

(TNF-α) and GMP grade (CellGenix, Freiburg, 
Germany).   

  (b)    10 ng/mL recombinant human interleukin-1β (IL-1β) 
and GMP grade (CellGenix).   

  (c)    1,000 U/mL recombinant human interleukin-6 (IL-6) 
and GMP grade (CellGenix).   

  (d)    1 μg/mL prostaglandin 2 (PGE 2 ) (Pharmacia & Upjohn, 
Dubendorf, Switzerland).    

      6.    Cytokines for DC maturation 2 [ 15 ]:
   (a)    1,000 U/mL recombinant human interferon-α (IFN-α) 

(R&D Systems, Minneapolis, MN, USA).   
  (b)    10 ng/mL recombinant human TNF-α (TNF-α) (R&D 

Systems).    
      7.    Cytokines for DC maturation 3 (with simple modifi cation: 

αDC1-polarizing cocktails) [ 16 ]:
   (a)    50 ng/mL recombinant human TNF-α (Peprotech).   
  (b)    25 ng/mL recombinant human IL-lβ (Peprotech).   
  (c)    3 × 10 3  IU/mL recombinant human IFN-α; (Intron 

A-IFN-α-2b) (LG Life Science, Chonbuk, Korea).   
  (d)    100 ng/mL recombinant human interferon-γ (IFN-γ) 

(Peprotech).   
  (e)    Poly-I:C 20 μg/mL (Sigma-Aldrich, St. Louis, MO, USA).    

2.2  Generation of 
Immature and Mature 
DC

Multiple Cocktail-Pulsed Dendritic Cells
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            1.    Two popular databases for MHC ligands and peptide motifs 
are available.
   (a)    Peptide-binding database 1: Bioinformatics & Molecular 

Analysis Section (BIMAS),   http://www-bimas.cit.nih.
gov/molbio/hla_bind/       

  (b)    Peptide-binding database 2: SYFPEITHI,   http://www.
syfpeithi.de/    .          

      1.    T2 cell line (ATCC, Manassas, VA, USA).   
   2.    Human β2-microglobulin (working concentration of 3 μg/

mL) (Sigma-Aldrich).   
   3.    PBS with BSA (PBA) [ 20 ]: 0.9 % sodium chloride (NaCl), 

0.5 % BSA, 0.02 % sodium azide (NaN 3 ), or FACS buffer, 1× 
PBS and 1 % FBS.   

   4.    The Brefeldin A (BFA) solution: 1,000×, working concentra-
tion of 3 μg/mL (eBiosciences Inc., San Diego, CA, USA).   

   5.    Fluorescein isothiocyanate (FITC)-labeled anti-HLA-A*0201 
monoclonal antibody (mAb) BB7.2 (Becton Dickinson 
Pharmingen).   

   6.    FACS calibur cell sorter (Becton Dickinson Pharmingen).   
   7.    Win MDI version 2.9 (Bio-Soft Net, developed by  John Trotter , 

Salk Institute, San Diego, CA, USA).      

      1.    Multiple peptides derived from tumor-associated antigen may 
be obtained from various sources.   

   2.    6-well culture plates (Becton Dickinson Pharmingen).   
   3.    15-mL polypropylene tubes.   
   4.    IMDM medium with 10 % FBS.      

      1.    Cryotubes.   
   2.    2× freezing medium A: RPMI-1640 and 40 % FBS.   
   3.    2× freezing medium B: RPMI-1640 and 20 % dimethyl sulfox-

ide (DMSO).   
   4.    Cryo 1 °C Nalgene™, freezing container (Thermo Fisher 

Scientifi c Inc, Rochester, NY, USA) with isopropanol.      

      1.    Mouse antihuman CD80 mAb conjugated with PE (Becton 
Dickinson Pharmingen).   

   2.    Mouse antihuman CD83 mAb conjugated with FITC (Becton 
Dickinson Pharmingen).   

   3.    Mouse antihuman CD86 mAb conjugated with PE (Becton 
Dickinson Pharmingen).   

   4.    Mouse antihuman CCR7 mAb conjugated with FITC (R&D 
Systems).   

2.3  Synthesis of 
Multiple Peptide 
Cocktail Derived from 
Tumor Antigens

2.4  Binding Affi nity 
and Stability

2.5  DC Pulsing by 
Multiple Peptide 
Cocktail

2.6  DC Harvest 
and Storage

2.7  Phenotypic 
Analysis of Multiple 
Peptide 
Cocktail-Pulsed DC
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   5.    Mouse IgG1, k, isotype control (Becton Dickinson Pharmingen).   
   6.    Mouse IgG1, k, isotype control (Becton Dickinson Pharmingen).   
   7.    Mouse IgG 2A , isotype control (R&D Systems).      

      1.    IL-2, 25 ng/mL (Peprotech).   
   2.    Interleukin-7 (IL-7) 10 ng/mL (Peprotech).   
   3.    50 mL CTL medium: 22.5 mL RPMI-1640, 22.5 mL, AIM-V 

(Invitrogen), 5 mL FBS, and 0.5 mL penicillin-streptomycin. 
The AIM-V medium is a mixture of HEPES-buffered 
Dulbecco’s Modifi ed Eagle Medium and Ham’s Nutrient 
Mixture F12 that had been supplemented with purifi ed human 
albumin, transferrin, insulin, and a proprietary mixture of puri-
fi ed factors.       

3    Methods 

      1.    Collect blood in heparinized tubes and dilute 1:2 with 1× PBS   
   2.    Overlay 30 mL of diluted blood over 15 mL of Lymphoprep 

in each 50-mL tube.   
   3.    Centrifuge at 1,000 ×  g  for 25 min, at room temperature or 

21 °C (acceleration, 5; deceleration, 0).   
   4.    Harvest the buffy coat layer (PBMC fraction) after 

centrifugation.   
   5.    Wash the cells twice with 1× PBS at room temperature.      

      1.    Suspend PBMC in cold (4–8 °C) MACS buffer: PBS pH 7.2, 
0.5 % BSA, and 2 mM EDTA.   

   2.    Isolate CD14 +  monocytes and CD3 +  lymphocytes by the posi-
tive selection systems, respectively, according to the manufac-
turer’s instructions ( see   Note 1 ).   

   3.    Store the isolated CD3 +  lymphocytes in vapor phase of liquid 
nitrogen until needed.      

      1.    After the last wash of the monocytes, add fresh culture medium 
(IMDM with 10 % FBS), containing at least 50 ng/mL 
GM-CSF and 20 ng/mL IL-4 at a seeding density of 
5 × 10 5  cells/mL/24-well plate or 2 × 10 6 /2 mL/6-well plate.   

   2.    On day 2 of the culture, discard half of the medium and add 
the same amount of fresh medium, pre-warmed to room tem-
perature, with the 2× concentrated growth factors (100 ng/
mL of GM-CSF and 40 ng/mL of IL-4).   

   3.    On day 4 of the culture, repeat  step 2 .   
   4.    On day 6, take out the half of the spent medium and add new 

medium containing GM-CSF (optional) and 2× concentrated 

2.8  In Vitro Induction 
of Multiple 
Peptide-Specifi c CTL

3.1  Isolation of 
Peripheral Blood 
Mononuclear Cells 
(PBMC)

3.2  Isolation of 
CD14 +  Monocytes and 
CD3 +  Lymphocytes 
from PBMC

3.3  DC Generation 
( See   Note 2 )
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