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Immunotherapies have emerged as highly promising approaches to treat cancer patients. 
The clinical efficacy of immunotherapy is limited to a minority of cancer patients. Thus, 
new approaches to improve the efficacy of immunotherapies for most patients are critically 
needed. Strategies to improve the efficacy of immunotherapy rely on both an enhanced 
understanding of the tumor/immune interface at the cellular and molecular level and an 
ability to select appropriate patients for a specific immunotherapy agent or combination 
therapy. Optimized biomarker strategies could help elucidate both of these areas and allow 
cancer immunotherapy to be tailored to the individual patient’s disease.

This book evaluates the criteria currently used for the diagnosis and prognosis of cancer 
and for the prediction of its responsiveness to immunotherapy. Here, we endeavor to frame 
technical aspects within the boundaries of their suitability to address fundamental questions 
related to cancer immune responsiveness. We emphasize that methods should be attuned 
to the biology investigated and be gradually implemented from simplest to most compli-
cated according to the proven need in the systematic quest to circumvent cancer immune 
responsiveness.

The positive reactions and feedback to the previous volume Molecular Diagnostics for 
Melanoma in 2014 that we edited for Springer have been appreciated and reinforced the 
importance of the biomarker focus to the disciplines of diagnosis and prediction in cancer. 
Melanoma has led the field of cancer in which immunotherapy has produced major clinical 
inroads. Despite their paradigm-shifting success in melanoma therapy, most patients still do 
not respond (or respond durably) to checkpoint inhibitors. A more complete understand-
ing of the determinants of response, either from clinical or basic studies, could lead to more 
rationally targeted immunotherapies as well as novel ones. Why do some patients respond 
to immunotherapy while others do not? Speculation about this question is at the frontier of 
immunotherapy and immunobiology. Many questions remain about how best to select 
patients who will benefit from checkpoint inhibitors and how to optimally combine differ-
ent complementary immunotherapy approaches with each other and with traditional cancer 
treatments. Therefore, the focus of the current volume has adjusted the focus to biomarkers 
for immunotherapy. The specific intent of this volume is to provide up-to-date information 
for the biomarkers and assays with the potential to predict responsiveness and the methods 
to assess them in clinical samples.

The critical importance of clinically applicable biomarkers based on the immunoprofil-
ing prompted the addition of a new editor, Alessandra Cesano, MD, PhD, who is currently 
chief medical officer of the NanoString Technologies, Inc., has been a colleague for years, 
and has been extremely active member of the Society of Immunotherapy of Cancer. She is 
an extremely welcomed addition as the third editor of this book.

Based on broad needs and interest in enhancing the clinical results for immunotherapy, 
the chapters are focusing on methods for well-standardized assays that can be applied in 
research laboratory and have the potential to be translated into the clinic. It is reasonable 
to speculate that mutational load allows for more neoantigens and therefore more likeli-
hood of response to checkpoint inhibitors. Indeed, mutation burden alone has been 
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correlated with the response of melanoma to ipilimumab and clinical benefit to anti-PD-1/
PD-L1 inhibitors for NSCLC, bladder cancer, and head and neck cancers. The volume 
includes chapters on different aspects of tumor mutation burden analysis and interpreta-
tion. Computational and experimental approaches that consider the prediction of the opti-
mal load of antigens on MHC molecules are also included.

There are chapters on the use of patients’ samples of gene expression profiling to iden-
tify the differences between responders and nonresponders for immunotherapy. Such a 
strategy has the potential to more accurately apply drugs to patients who will benefit and 
avoid the cost and potential side effects for patients who won’t benefit and need alternative 
therapies.

Several studies have linked the presence of tumor-infiltrating immune cells to prognos-
tic and predictive benefit from immunotherapy. Clinical immunotherapy trials suggested 
that tumors with a high number of inflammation-causing T cells were more responsive to 
the immunotherapy-based drugs. Tumors with low inflammation, or low numbers of T 
cells, were less responsive to checkpoint inhibitors, highlighting the potential role of cyto-
toxic T-cell biomarkers such as CD8. Thus, in situ detection methods can have great poten-
tial value in patient selection and deserve systematic validation. Infiltrating immune cells 
into the tumor microenvironment are effectively captured through spatial and pictorial 
representations that inform on the antitumor immune activity. Mapping of the immune 
tumor microenvironment when applied in a systematic way provides the investigators a 
method to understand the tumor microenvironment activity and its interface with the 
immune system. Many IHC-based assays, including multiplex setup using different techni-
cal approaches, continue to emerge and have been discussed in this volume.

The range of information required to effectively select the best therapeutic combina-
tion for a patient has expanded enormously with the addition of many immune-oncology 
agents with different mechanisms of action. Because of the complexity of the 
immune response and tumor biology, it is unlikely that a single biomarker will be adequate 
to predict clinical response as demonstrated in multiple studies. Systems that systematically 
integrate each patient’s morphological and molecular information that can be correlated to 
patient outcomes are needed. Thus, chapters focusing on the important role of integrating 
comprehensive research data for developing clinically relevant information were included in 
this book.

We hope that this book provides its audience with a deeper understanding of the broad-
ening scope of the biomarker methods and needs to improve the outcome from immuno-
therapy. The editors made sure that the features input from experts in the field dedicated to 
translate scientific research from bench to bedside were included. The book provides not 
only details about the technical, standardization, and interpretation aspects of the methods 
but also introduces the reader to the background information. The complexities and intri-
cacies of the tumor biology that justify the biomarker and assay development based on the 
scientifically rigorous research are also mentioned. The chapters’ providers ensured that the 
highest standards are maintained, and each chapter contains hands-on, practical sugges-
tions, illustrations, and examples throughout. We are proud of this book on so many aspects 
and hope that the commitment and the expertise of the contributors to this volume will be 
appreciated by the readers.

Bethesda, MD, USA� Magdalena Thurin 
Seattle, WA, USA � Alessandra Cesano 
Menlo Park, CA, USA � Francesco M. Marincola 
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Chapter 1

Status of Immune Oncology: Challenges and Opportunities

Alessandra Cesano, Francesco M. Marincola, and Magdalena Thurin

Abstract

This volume is intended to review the methods used to identify biomarkers predictive of cancer responsive-
ness to immunotherapy. The successful development of clinically actionable biomarkers depends upon 
three features: (a) their biological role with respect to malignant transformation and tumor progression; 
(b) the ability to detect them with robust, reliable, and clinically applicable assays; and (c) their prognostic 
or predictive value, as validated in clinical trials.

Identifying biomarkers that have predictive value for patient selection based on the likelihood of ben-
efiting from anticancer immunotherapy is a lengthy and complex process. To date, few predictive biomark-
ers for anticancer immunotherapy have been robustly analytically and clinically validated (i.e., PD-L1 
expression as measured by IHC assays and microsatellite instability (MSI)/dMMR as measured by PCR or 
IHC, respectively).

This introductory chapter to this book focuses on scientific and technical aspects relevant to the iden-
tification and validation of predictive biomarkers for immunotherapy. We emphasize that methods should 
address both the biology of the tumor and the tumor microenvironment. Moreover, the identification of 
biomarkers requires highly sensitive, multiplexed, comprehensive techniques, especially for application in 
clinical care. Thus, in this chapter, we will define the outstanding questions related to the immune biology 
of cancer as a base for development of the biomarkers and assays using diverse methodologies. These bio-
markers will likely be identified through research that integrates conventional immunological approaches 
along with high-throughput genomic and proteomic screening and the host immune response of indi-
vidual patients that relates to individual tumor biology and immune drugs’ mechanism of action.

Checkpoint inhibitor therapy (CIT) is by now an accepted modality of cancer treatment. However, 
immune resistance is common, and most patients do not benefit from the treatment. The reasons for resis-
tance are diverse, and approaches to circumvent it need to consider genetic, biologic, and environmental 
factors that affect anticancer immune response. Here, we propose to systematically address fundamental 
concepts based on the premise that malignant cells orchestrate their surroundings by interacting with 
innate and adaptive immune sensors. This principle applies to most cancers and governs their evolution in 
the immune-competent host. Understanding the basic requirement(s) for this evolutionary process will 
guide biomarker discovery and validation and ultimately guide to effective therapeutic choices. This vol-
ume will also discuss novel biomarker approaches aimed at informing an effective assay development from 
a mechanistic point of view, as well as the clinical implementation (i.e., patient enrichment) for immune 
therapies.

Key words Cancer immune resistance, Predictive biomarkers, Checkpoint inhibitors
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Abbreviations

CDR3	 Complementarity determining region 3
CIT	 Checkpoint inhibitor therapy
FDA	 Food and Drug Administration
FFPE	 Formalin-fixed paraffin-embedded
HLA	 Human leukocyte antigen
ICD	 Immunogenic cell death
ICR	 Immunologic constant of rejection
IFN	 Interferon
IHC	 Immunohistochemistry
IL	 Interleukin
IO	 Immune oncology
MOA	 Mechanism of action
MSI-H/dMMR	 Microsatellite instability high/deficient mismatch repair
PD-L1	 Programmed death-ligand 1
STAT	 Signal transducer and activator of transcription
TCR	 T cell receptor
TILs	 Tumor-infiltrating lymphocytes
TIS	 Tumor inflammation signature
TMB	 Tumor mutation burden
TME	 Tumor microenvironment

1  Introduction

In biology the answers pre-exist; it is the question that needs to be discovered 
Jonas Salk, 1969 [1]

At no time this quote from Jonas Salk has been as pertinent as in 
this era of high-density data generation. Perhaps, the answer to the 
multifaceted question, “Why do some patients and their cancer 
respond and others to not to immunotherapy?” is already waiting in 
the meanders of large data pools and it is up to us to educate our 
queries to turn them into biologically dissectible elements.

Checkpoint inhibitor therapy (CIT) with anti-PD-1/PD-L1 
and CTLA-4 inhibitors has proven to be a successful approach to 
anticancer immunotherapy because it has shown significant 
improvement in patient survival in multiple histologic types of 
advanced metastatic solid tumors [2]. In addition, several other 
immune oncology (IO) approaches such as adoptive cellular ther-
apy and oncolytic virus-based products have shown promising 
results in specific indications [3–5]. However, the majority of 
advanced cancer patients receiving IO drugs do not benefit from 
these treatments. Many variables affect the efficacy of the response 
and additional inhibitory checkpoints can play a significant role in 
inhibiting anticancer response. Tumor heterogeneity at the steady 
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state is another obstacle to the success of cancer immunotherapy. 
Tumor escape mechanism(s) such as the development of cancer 
cell-resistant clones as well as antigen negative selection contribute 
to the therapeutic failures particularly in dynamic evolution of the 
tumor microenvironment (TME) in response to the selective pres-
sure exercised by initially successful treatment [6]. Finally, several 
categories of circumstantial factors not directly related to the 
genetics of the host or the somatic evolution of the cancer cells 
such as environmental and behavioral factors, presence of comor-
bidities and respective non–cancer-related therapies and previous 
host immune status related to the age and the history of individual 
patients may affect responsiveness to therapy. An interesting cir-
cumstantial factor that may play a role in immune responsiveness 
to adoptive cell therapy is the quality of the cellular product.

Therefore, we emphasize that the quest for biomarkers that 
may predict responsiveness to help patient stratification should 
take into account several coordinates that determine the natural or 
treatment-induced evolution of cancer in the immune competent 
host including (1) the genetic background of the host; (2) the 
somatic genetic, epigenetic, and functional adaptation of cancer 
cells; (3) the circumstantial modifiers, and (4) the dynamic evolu-
tion in time determining immune escape, epitope spreading, and 
modifications induced by concomitant treatment [7].

These coordinates must be considered particularly when novel 
combinatorial approaches are sought based on diverse experimen-
tal evidence for their immune resistance [8, 9]. We recently assem-
bled an inventory of mechanisms extracted from the public domain 
that have been proposed to be determinants of cancer immune 
resistance. We distillated them into a unified “theory of everything” 
[9]. We first segregated cancer immune landscapes into immune 
“active” versus immune “silent” according to the expression of a 
transcriptional signature termed “the immunological constant of 
rejection” (ICR) [10, 11]. The ICR defines the continuum of can-
cer immune surveillance bearing favorable prognostic and predic-
tive connotation [12]. We then considered the unsupervised 
distribution of the expression of transcriptional signatures associ-
ated with immune regulatory properties in the cancer microenvi-
ronment [9]. These include other immune checkpoints [13], 
regulatory T cells [14], IL-23/IL-17 axis [15], myeloid suppres-
sor cells [16], Indoleamine 2,3-dioxygenase 1 (IDO) [17], immu-
nogenic cell death (ICD) [18], TAM  family of tyrosine kinase 
receptors [19], hypoxia [20], cancer-associated fibroblasts [21], 
and barrier molecules [22]. In addition, oncogenic pathways asso-
ciated with cancer immune landscapes were included such as the 
MAPK [11], the β-catenin [23], and the PI3K-γ [24] signatures. 
Self-organizing clustering assigned signatures to immune landscapes 
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and the significance was assessed by gene enrichment analysis. This 
approach demonstrated that all immune regulatory functions per-
tain to immune active cancers [9]. In addition, the PI3K-signature 
was preferentially expressed in the immune active landscape likely 
as a hallmark of myeloid cell function [25] rather than intrinsic 
cancer cell biology [26]. Immune silent cancers defined by lack of 
the expression of the ICR signature were depleted of all immune 
regulatory functions but were enriched with signatures related to 
specific oncogenic processes such as the activation of the β-catenin 
and of MAPK pathways [9]. In addition, we previously observed 
that silent cancers are characterized by a distinct mutational profile 
characterized by a low mutational burden resulting in decreased 
alterations of oncogene and tumor suppressor gene function [8, 
27, 28]. Thus, silent cancers have a “cleaner” mutational 
footprint.

The observation that all immune regulatory functions, be it 
harbinger of immune effector or immune suppressive activity, were 
coexpressed led to the hypothesis that cancer evolution in the 
immune competent host faces a stochastic binary choice: some 
cancers orderly accrue a succession of genetic alterations that lead 
to essential growth advantages in avoidance of unnecessary func-
tions similarly to the developmental process applied by stem cells in 
forming organs. When deviations occur from this orderly process, 
and cancer growth becomes dependent predominantly on genetic 
instability, a “trial-and-error” reshuffling of genetic traits gives 
growth advantage. The latter, however, appends the stochastic risk 
of gradually accumulating unnecessary functions such as tissue 
remodeling and chemoattraction that may trigger immune recog-
nition [29]. In addition, it is possible that genetic instability may 
result in a disorderly cell cycle prone to ICD. Currently, the effi-
cacy of immunotherapy is limited by mechanisms of resistance. 
These mechanisms of resistance not only define the outcomes and 
limit current immunotherapy but also point to future need to cat-
egorize cancer patients to facilitate antitumor immunity. Future 
studies should build on those trials and seek additional biomarkers 
that might improve the antitumor immune response, with the 
ultimate goal of increasing the rates of lasting responses to 
immunotherapy.

The enrichment of immune functions within the active land-
scape suggests that immune resistance to CIT in tumors is due to 
the presence of alternative compensatory regulatory mechanisms 
that surmount its effects. We refer to this mechanism as compensa-
tory immune resistance. It is likely that the cancer immunity cycle 
described by Chen and Mellman [30] pertains particularly, and 
perhaps exclusively, to the cross talk of immune cells with cancer 
cells in immune active tumors.

Alessandra Cesano et al.
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Conversely, immune silent cancers are unlikely to respond to 
CIT because immune checkpoints are irrelevant to their natural 
history. We refer to this as primary immune ignorance. We may 
then refer to circumstantial immune resistance when factors extrin-
sic to the intrinsic biology of the host and its cancer play a modifiers 
role including the quality of the cell product in adaptive cell therapy 
approaches [31] .

In addition, it is possible that the immune responsive tumors 
may become resistant in response to selective pressure during 
successful therapy, thus developing escape mechanisms; we define 
this phenomenon as acquired or secondary immune resistance. 
Finally, we should refer to pseudo immune resistance when treat-
ment cannot be completed due to limiting toxicity or requires 
administration of immune-suppressive drugs to control the auto-
immune associated side effects that disable full potentiality of an 
IO approach.

2  From Immunology Back to Cell Biology

According to the current understanding of the role played by 
cancer genetics and its intrinsic cell biology in determining immune 
responsiveness, we propose that the primary questions to be 
addressed in the field of IO are whether:

	 1.	Cancer is primarily a cell biology problem whereby malignant 
cells orchestrate changes in their surroundings or whether 
other environmental or germline factors play a significant 
role.

	 2.	The immune response against cancer is primarily determined 
by innate immune mechanisms alerted by the release of 
damage-associated molecular patterns by cancer cells undergo-
ing ICD or is primarily determined by self–nonself discrimina-
tion induced for instance by the expression of neoepitopes by 
the mutated cancer cells.

In this chapter, we postulate that the intrinsic biology of the 
cancer cell largely orchestrates its surroundings through the release 
of factor that stimulate the growth of a supportive stromal and 
vascular architecture in the developing new tissue as suggested by 
the Virchow’s “healing wound” model [10, 29]. The cross talk 
with host cells may also result in varying degrees of chemoattrac-
tion of innate and adaptive immune cells, thus turning the cancer 
into a chronically inflamed tissue [29]. This collateral effect may 
not occur in all but only in the immune-active cancers, while the 
immune silent cancers follow a tissue remodeling biology closer to 
natural organ development rather than wound healing.

Status of Immune Oncology: Challenges and Opportunities
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We propose in addition, that a stochastic process led by genetic 
instability encompasses an excessive accumulation of “trial-and-
error” attempts that may destabilize the cell cycle and gradually 
degenerate into stress-associated ICD [32]. This notion is sup-
ported by the observation that the ICD signature is exclusively 
associated with the immune active phenotype [9], which in turn is 
characterized by genetic instability and increased mutational 
burden [33]. The relationship between immunogenicity and 
increased mutational burden has been ascribed to increased chances 
of developing neoantigens [34]. Here, we propose an alternative 
explanation related to the destabilization of the cellular life cycle 
resulting in the release of damage-associated molecular patterns 
more in line with Polly Matzinger’s danger model [35]. Whether 
the former or the latter interpretations are correct remain to be 
defined in the context of human tumor biology, and these diverse, 
though not necessarily mutually exclusive, interpretations need to 
be taken into consideration when predictive and mechanistic bio-
markers are sought.

At the end, despite elegant experimental models supporting 
either theory, the lead role played in humans by cancer cell biology 
and the response to it by adaptive and innate immune mechanisms 
remain to be defined.

3  A Systematic Quest Toward Understanding and Circumventing Cancer 
Immune Resistance

With the augmented interest in CIT and IO in general, the number 
of patients enrolled in clinical trials has increased exponentially 
including large randomized studies in which treatment efficacy in 
different patient populations can be evaluated. This provides an 
unprecedented opportunity to acquire precious samples to dissect 
the phenotype and genomic underpinning of immune responsive-
ness directly in human samples. Ayers et al. [36] used a transcrip-
tional signature comparable to the ICR [9] termed “the tumor 
inflammation signature” (TIS) to define cancer immune landscapes 
that predicted immune responsiveness. They observed that the 
expression of interferon (IFN)-γ-related transcripts in pretreatment 
lesion is a strong predictor of immune responsiveness to CIT. This 
is very similar to previous observations in patients receiving sys-
temic human recombinant interleukin-2 (IL-2), where the hallmark 
IFN-γ signaling signature of the ICR was the best predictor of com-
plete responses [37]. Similarly, the expression of the IFN-γ-related 
chemokines CXCL-9, CXCL-10, CXCL-11, and CCL5  in mela-
noma lesion harvested for the expansion of tumor-infiltrating lym-
phocytes (TILs) representative of the ICR was a strong predictor of 
response to TIL therapy [38]. This and other comprehensive analyses 
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of pretreatment lesions using high-throughput technologies have 
better framed the biology of cancer immune responsiveness as dis-
cussed elsewhere [9, 28]. What is needed now is a systematic, 
hypothesis-driven design of future clinical trials that may expedite 
the collection of useful information to compare immune and tumor 
profiling data generated by different groups to integrate into data-
base to be available for secondary analysis of determinants of cancer 
immune responsiveness [8, 28].

4  Framing the Question

What are the reasons that may determine human cancer immune 
resistance?

Most frequently, clinical trials include pretreatment tumor biopsies 
collection. These may provide important insights about the biol-
ogy relevant to immune-responsiveness. In 2002 we published the 
result of a prospective molecular profiling of melanoma metastases 
in patients undergoing tumor antigen vaccination in combination 
with the systemic administration of IL-2 that suggested classifiers 
of immune responsiveness. We concluded that that “immune 
responsiveness might be predetermined by a tumor microenvironment 
conducive to immune recognition” [39]. Since then several studies 
have shown that tumors that are characterized by an immune active 
immune environment are more likely to respond to IO including 
CIT [36]. Interestingly, as previously described, the “immune sig-
nature” defining active tumors includes many transcripts that can 
be observed across several tumor types and includes, as described 
in the theory of everything, all immune effector and regulatory 
components [28]. The signature can be therefore, an indicator of 
immune activation status but it does not inform about the mecha-
nisms of immune responsiveness. Although suboptimal but good 
example of the predictive biomarker is the assessment of the expres-
sion of the Programmed-Cell Death  Receptor (PD-1)-Ligand 1 
(PD-L1/CD274) by cancer and/or immune cells at baseline, that 
is, before targeting the PD-1/PD-L1 pathway. It may be that the 
expression of the molecule targeted by CIT has little to do with the 
mechanistic interpretation that is frequently offered but rather it is 
a marker “associated” with an immune responsive phenotype as 
checkpoint inhibitors and their ligands are part of the extended 
signature of immune responsiveness where multiple rather than a 
single factors contribute to immune responsiveness in the context 
of compensatory immune resistance [28]. Although, overall, the 
extent of pretreatment and especially treatment-induced intratu-
moral T cell infiltration correlates with clinical responses, thereby 
supporting unleashing of tumor-specific T cells as the primary basis 
of anti-PD-1 therapy, the mechanistic basis for the variation in 

4.1  Predicting 
Immune 
Responsiveness 
and the Role 
of Pretreatment 
Biopsies
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response patterns or long-term clinical benefits (i.e., survival) 
remains poorly explained. Thus, a careful distinction must be made 
between predictive biomarkers that represent an association rather 
than having mechanistic significance even in cases when the latter 
would seem otherwise intuitive.

There is currently little agreement over systemic parameters that 
are informative about treatment efficacy. Although associations 
have been proposed, most bear limited predictive value and 
mechanistic significance [40]. Most importantly, there is no known 
relationship between biomarkers accessible through the peripheral 
circulation and cancer immune landscapes although the latter have 
been shown to be closer predictors of responsiveness to IO 
approaches.

One of the salient goals in biomarker studies should address 
the alignment of systemic immune status with the corresponding 
tumor immune landscape. An example of a sound hypothesis-
driven strategy is based on Peter Lee’s seminal observation that 
circulating immune cells in patients with cancer display a damp-
ened response to IFN stimulation compared with normal individu-
als. The assessment of signal transducer and activator of transcription 
(STAT)-1 phosphorylation ex vivo can reproducibly demonstrate 
this defect [41]. The deficiency is patient-specific and is dependent 
on tumor burden as dampening worsens progressively with advanc-
ing stages of disease. Yet a large proportion of patients is not 
affected and maintains normal phosphorylation of  STAT-1 until 
the latest stages of disease progression. To our knowledge, no 
study has addressed the relationship between cancer immune land-
scapes and decreased  STAT-1 phosphorylation, although we 
observed that overexpression of nitric oxide synthase 1 ( NOS1) by 
melanoma cell lines could reproduce in  vitro the dampening of 
IFN responsiveness in lymphocytes [42]. We suggest that the 
STAT-1 phosphorylation of circulating immune cells in response 
to IFN could be a specific biomarker of cancer immune landscapes. 
We also hypothesize that immune-active cancers are those most 
likely to induce such deficiency via compensatory immune regula-
tory activity that may reverberate in the peripheral circulation. The 
value of an easily accessible circulating biomarker representative of 
cancer immune landscapes could have important implications in 
understanding the mechanisms of immune responsiveness particu-
larly during the evolving phases of therapy.

An obvious requirement for the understanding of immune respon-
siveness is validation of the mechanism of action (MOA) predicted 
for a given agent and the target organ and the defined metrics of 
changes compared with paired pretreatment biopsies. Intuitively, 
this seems a paramount requirement, yet clinical trials rarely include 
the collection of on-treatment biopsies and even less frequently 
paired pretreatment and on-treatment biopsies in which the “Δ” 

4.2  Systemic Effects 
of Therapy

4.3  On-Target Effects 
of Therapy and the 
Critical Role of 
On-Treatment 
Biopsies: the Value 
of “Δ”
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changes from baseline can be accurately documented to assure 
that interpatient differences are truly due to distinct effects of 
treatment rather than intrinsic tumor heterogeneity.

We propose that validation of the MOA is critical for framing 
the definition of human cancer immune responsiveness. Various 
scenarios can be foreseen that define the algorithm of immune 
responsiveness:

	 1.	The postulated MOA may never materialize in the target tissue, 
as the treatment does not reach its goal. It would be surprising 
to observe clinical regressions in such cases.

	 2.	The MOA may differ from the predicted one. For instance, 
based on the observation that lymphocytes disappear from the 
circulation within minutes from the systemic administration of 
human recombinant IL-2 in association with a cytokine storm 
responsible for a massive capillary leak syndrome, it was 
assumed that IL-2 worked primarily by promoting trafficking 
of T cells to the tumor site. Serial biopsies of tumors performed 
during administration demonstrated that this was not the case: 
no lymphocytes appeared at the tumor site, but systemic 
administration of IL-2 induced a massive release of cytokines 
by IL-2-receptor bearing cells at the systemic level that in turn 
resulted indirectly in the polarization of tumor-associated mac-
rophages toward an M1 phenotype [43].

	 3.	The MOA is consistently observed independent of responsive-
ness. This observation suggests that additional modifiers are 
responsible for effectiveness and the MOA may be necessary 
but not sufficient. This could be the case for the lack of respon-
siveness to CIT observed in patients expressing the targeted 
checkpoints in an immune active landscape. Compensatory 
immune resistance may prevent effectiveness despite a positive 
pharmacodynamics outcome.

	 4.	The MOA is not observed consistently, and its occurrence is 
tightly associated with outcome. This observation could provide 
mechanistic validation of the relevance of the MOA and at the 
same time provide reasons for immune resistance. This could 
be the case for primary immune resistance to CIT. The MOA 
is not being demonstrable in silent tumors in response to CIT 
simply because the targeted molecules are not expressed. In 
this case a link with causality can be established.

	 5.	The MOA is not observed consistently but the phenotypic fea-
tures are not associated with treatment outcome. This would 
question the significance of the MOA and several scenarios 
could be hypothesized:

	 (a)	� No responses are seen in the absence of MOA.
	 (b)	�Responses are seen exclusively in the presence of MOA but 

not consistently (suggesting other factors affecting the 
outcome beyond the MOA).
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	 (c)	� Responses are not related with the presence of MOA, thus 
questioning its biological relevance.

	 6.	The MOA can be observed consistently but with subtle quanti-
tative or qualitative variations that can be identified, thus 
comparing responding vs. nonresponding patients.

We believe that this is a critical tactic to frame the quest to 
understand immune responsiveness and efforts should be 
encouraged to validate the MOA during clinical trials in rela-
tion to outcome. In addition, the assessment of pretreatment 
tumor biology and paired on-treatment qualitative and quanti-
tative changes will be critical. The utility of both exome and 
transcriptome sequencing data generated from pretreatment 
tumor samples for the identification of potential determinants 
of response to anti-PD-1 should be highlighted.

Acquired (also referred to as secondary) immune resistance may or 
may not stem from successful treatment. However, it is likely that 
phenotypic alterations leading to immune resistance are more likely 
to occur under selective pressure. We have previously shown [39, 
44] in the context of systemic IL-2 administration in combination 
with anticancer vaccines that lack of responsiveness is predominantly 
due to short-term and limited MOA rather than a selection mecha-
nism of resistant tumor clones, while dramatic alterations, for 
instance, in antigen and/or human leukocyte antigen (HLA) expres-
sion most likely occur in recurring lesions after a preliminary response 
to therapy [44–47]. Most recently, interesting functional alterations 
in cancer cells related to responsiveness along IFN signaling have 
been described [48, 49]. Furthermore, ∼30% of B-ALL patients 
successfully treated with anti-CD19 CAR-T cells relapse with CD19 
negative disease [50]. Understanding secondary immune resistance 
not only can therefore enlighten about practical combinatorial 
approaches aimed at preempting and/or overcoming phenotypic 
changes but also may provide critical insights about the important 
mechanistic requirements for immune responsiveness similarly to 
the value of gene knockout in experimental systems.

5  Dissecting the Question

In the previous sections, we focus on the basic concepts relevant to 
the dissection of immune landscapes and their dynamic changes in 
relation to various mechanisms of immune resistance. However, 
cancer immune responsiveness is a multifactorial and complex phe-
nomenon [51]. Thus, we propose in the context of the critical 
questions discussed above, that the correlative studies should be 
developed based on the specific elements according to biological 

4.4  Posttreatment 
Biopsies and Acquired 
(Secondary) Immune 
Resistance
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mechanism of different tumor types. Therefore, integration of 
multidisciplinary expertise (including tumor immunologists, 
geneticists, cell biologists, molecular biologists, biophysicists, com-
putational analysts), is needed to guide scientific approaches and 
technologies for discovery and analytical validation of biomarker 
assays for clinical application. Below, we propose the following 
categories of questions should be addressed:

6  Host Germline Influence on Immune Responsiveness

It is likely that the host’s immune status, whether determined by 
the genetic background or by environmental adaptations through 
the life time may influence the progression of cancer and its respon-
siveness to immunotherapy through an interplay of inherited and 
acquired factors similarly to the determinism of autoimmunity [52], 
since it is likely that cancer rejection is part of the broadly conserved 
phenomenon of immune-mediated tissue-specific destruction [10]. 
However, the germline contributions to immune responsiveness 
have not been systematically explored and establishing a link 
between host’s genetic background and cancer immune phenotypes 
may guide biomarker discovery and contribute to the description of 
an immune-favorable patient phenotype within distinct therapeutic 
contexts. Several aspects of this complicated contribution to 
immune responsiveness will be discussed in the appropriate part of 
the book. Here, however, we would like to outline the postulated 
mechanisms by which the genetic background of the host may 
affect immune responsiveness.

The role of germline variants in cancer responsiveness to 
immunotherapy may determine:

	 1.	Cancer immune landscapes.
	 2.	Cancer immune responsiveness within distinct immune 

landscapes.
	 3.	Intrinsic biology of cancer cells (since cancer cells incorporate 

in their genome functional variants that may affect their 
response to immunogenic stimuli).

	 4.	Susceptibility to immune stimulation in relation to susceptibil-
ity to autoimmunity.

	 5.	Genetic instability (i.e., BRCAness).
	 6.	Modify cancer biology in association with somatic alterations.
	 7.	Determine polymorphism of immune response receptors (i.e., 

CTLA-4).

Status of Immune Oncology: Challenges and Opportunities



14

7  Tumor Genetic Alterations and the Microenvironment

The accumulation of different genetic and epigenetic alterations is 
at the origin of intertumor and intratumor heterogeneity impact-
ing cancer pathways, driving phenotypic variation, and posing sig-
nificant challenges to personalized cancer medicine. Beyond these 
effects, an open question in IO is whether and how tumor intrinsic 
features affect the characteristic of the TME.

The following research questions addressing the role of 
genomic or nongenomic features that contribute to CIT response 
patterns should be asked to assess omics-scale features related to 
clinical response and survival patterns in order to gain insights into 
potential strategies for patient stratification and identification of 
CIT combinatorial therapies:

	 1.	Mutational burden in determining immune landscapes and 
immune responsiveness.

	 2.	Recurrent predicted neoepitope or experimentally validated 
neoepitopes derived from somatic nonsynonymous mutations 
that are critical for deriving clinical benefits from CIT therapy 
and HLA class I and II binding prediction.

	 3.	Functional mutations (gain or loss of function) within cancer 
driver genes or tumor suppressor genes, respectively and their 
effects on the TME.

	 4.	Genetic imbalances in determining immune landscapes and 
immune responsiveness.

	 5.	Genetic rearrangements (chromosomal/locus or gene specific) 
in determining immune landscapes.

	 6.	Numerical or structural genetic instability in determining 
immune landscapes.

	 7.	Transcriptional signatures indicating differentially expressed 
genes between the responding versus nonresponding 
tumors.

	 8.	Regulatory mechanisms in determining immune landscapes 
(β-catenin, MAP-kinases, the role of STAT-3.

	 9.	Monoallelic expression in shaping TME.
	10.	Epigenetic regulation in shaping TME.

8  Role of the Environment

Circumstantial factors extrinsic to cancer cell biology or inherited 
genetic determinants may affect immune responsiveness to various 
degrees: this may include both environmental and behavioral factors 
and their interplay such as [53–55] the following:
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	 1.	Nutritional status and its effects on the immune function.
	 2.	Microbiome and immune responsiveness.
	 3.	Role of comorbidities in determining immune responsiveness.

These studies require a complex interaction of various disciplines 
spanning from metagenomics to epidemiology on one end and 
basic cellular immune biology on the other end that will be 
addressed in appropriate parts of this book.

9  Promising Approaches for IO Biomarkers

Research in the field of IO biomarkers already considers many 
aspects discussed above and seeks to characterize the relationship 
between the immune system, the tumor and its microenvironment, 
and the host. To identify IO biomarkers that measure the interplay 
between the immune system and the tumor, biomarker research 
and discovery is focusing on several key areas including markers of 
inflammation, tumor antigens and neoantigens, immune suppres-
sion markers, and host environment factors. The simultaneous 
evaluation and integration of multiple biomarkers may provide a 
more accurate and comprehensive assessment of the TME. This 
will help with achieving the goal of IO biomarker development to 
enable a more personalized approach to treatment by identifying 
patients who are likely to respond to specific immunotherapies.

The progress in fully realizing the potential of biomarker-
driven assignment for anticancer approaches requires the develop-
ment and implementation of novel clinical-grade biomarkers able 
to guide the selection of a single therapy agent or combination of 
drugs with complementary mechanisms of action targeting multi-
ple mechanisms of response as well as of immune escape. Predictive 
biomarkers for immunotherapy differ from the biomarkers used for 
targeted therapies that are based on the presence of specific genetic 
aberration targeted by the drug (Table 1).

Table 1 
Comparison of biomarkers for targeted and immunotherapy

Driver mutations IO Biomarkers

Examples BRAF, EGFR, ALK, MET-specific 
mutations or fusions

PD-L1, tumor-infiltrating lymphocytes, MDSC, 
metabolic mediators, inflammation signatures

Target Tumor Tumor and TME

Presence Constitutive Dynamic and inducible

Metrics Presence/binary decision Level of expression (continuous variable), functional 
information, activation status
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Biomarkers for immunotherapy require comprehensive 
approaches that encompass the complexity of the immune system 
and tumor biology which cannot be addressed by the use of a sin-
gle analyte biomarker. Therefore, investigation of the biology and 
genomics of both the tumor and the host immune system is critical 
to recognize potential biomarkers. The availability of novel plat-
forms and technologies should facilitate the integration of the 

Table 2 
Emerging tissue-based biomarkers predictive of immune-checkpoint inhibitor response

Platform Biomarker Assay examples

Immunohistochemistry 
(IHC)

PD-L1 Dako 22-8,a Dako 22C-3,b 
Ventana Assaysc [58–61]

TILs/CD8+ T cells Higher baseline and posttreatment 
CD8+ T cell density [60–62]

Panels of tumor and TME markers 
CD3, CD8, CD4, FoxP3, CD68, etc.

Multiplex immunohistochemistry 
(mIHC) [62–65]

CD8+, CD3+ T cell density Immunoscore; HalioDx Marseille, 
France [58]

MSH2, MSH6, MLH, PMS2 expression Deficient mismatch repair 
(dMMR) [66–69]

DNA sequencing Total number of mutations per DNA 
coding region

Tumor Mutation Burden (TMB) 
[70–72]

MSI markers (BAT25, BAT26, D2S123, 
D5S346, and D17S2720)

Microsatellite instability high 
(MSI-H) [66–69]

Targeted DNA sequencing 324/468 
gene mutations panel

Foundation One/MSK-IMPACT 
assays [73, 74]

DNA/RNA sequencing Transcriptomic data filtered for putative 
neoantigens

Neoantigen burden [75–78]

Quantification of complementarity-
determining region 3 (CDR3) in the 
T cell receptor (TCR)

TCR clonality [62, 79]

Gene expression 
signatures

18-gene expression signature Tumor Inflammation Score (TIS) 
[36]

770-gene expression panel PanCancer IO 360™ assay 
(NanoString Technologies Inc., 
[80]) [37–39]

Gene expression profile Teff Roche [81]
aDAKO 22-8: https://www.agilent.com/en-us/pd-l1-ihc-28-8-overview
bDAKO 22C-3: https://www.agilent.com/en/product/pharmdx/pd-l1-ihc-22c3-pharmdx
cVentana: https://www.agilent.com/en-us/pd-l1-ihc-28-8-overview
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molecular features of the tumor and the host factors for the 
development of multiplex profiles to guide personalized treatment 
in the future. However, before a candidate biomarker and/or new 
technology can be used in a clinical setting, rigorous steps to dem-
onstrate the analytical and clinical validity of the biomarkers are 
required [56, 57]. Examples of technical platforms used for bio-
marker assays that have been already approved/cleared by U.S. 
Food and Drug Administration FDA or have shown preliminary 
evidence of an association with clinical benefit from immunothera-
peutic interventions are presented below (Table 2).

10  Conclusions

This introductory chapter is meant to provide considerations for 
future systematic approaches for the understanding of human 
cancer immune responsiveness, by focusing on the delineation of 
fundamental biomedical questions that need to be addressed and 
the logical sequence in which they need to be considered. The idea 
is to weigh on the role that a transdisciplinary approach inclusive of 
genetics, genomics, computational biology, and cell biology may 
bear on the solutions for strategies to develop personalized 
approaches to immunotherapy for cancer.

Current work in immunotherapy continues to identify various 
tumor response and resistance mechanisms, and several promising 
biomarkers have been identified. However, future work is needed 
to develop biomarkers encompassing different mechanisms of 
tumor/host and different methods, in order to improve the effi-
cacy of immunotherapy for the majority of patients.
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Chapter 2

Immunological Targets for Immunotherapy: Inhibitory  
T Cell Receptors

Diwakar Davar and Hassane M. Zarour

Abstract

Tumor development is characterized by the accumulation of mutational and epigenetic changes that trans-
form normal cells and survival pathways into self-sustaining cells capable of untrammeled growth. Although 
multiple modalities including surgery, radiation, and chemotherapy are available for the treatment of can-
cer, the benefits conferred are often limited. The immune system is capable of specific, durable, and adapt-
able responses. However, cancers hijack immune mechanisms such as negative regulatory checkpoints that 
have evolved to limit inflammatory and immune responses to thwart effective antitumor immunity. The 
development of monoclonal antibodies against inhibitory receptors expressed by immune cells has pro-
duced durable responses in a broad array of advanced malignancies and heralded a new dawn in the cancer 
armamentarium. However, these remarkable responses are limited to a minority of patients and indica-
tions, highlighting the need for more effective and novel approaches. Preclinical and clinical studies with 
immune checkpoint blockade are exploring the therapeutic potential antibody-based therapy targeting 
multiple inhibitory receptors. In this chapter, we discuss the current understanding of the structure, ligand 
specificities, function, and signaling activities of various inhibitory receptors. Additionally, we discuss the 
current development status of various immune checkpoint inhibitors targeting these negative immune 
receptors and highlight conceptual gaps in knowledge.

Key words Immunotherapy, Inhibitory receptors, PD-1, CTLA-4, TIM-3, TIGIT, LAG-3, BTLA, 
VISTA

1  Introduction

Cancer cells produce tumor antigens (TA) that are recognized by T 
cells and can induce tumor rejection [1]. The presence of CD8 
tumor-infiltrating T lymphocytes (TIL) is usually a marker of good 
clinical outcome in multiple primary solid tumors [2–5]. However, 
spontaneous and vaccine-induced TA-specific T cells often fail to 
impede the growth of tumors in patients with advanced cancer [6, 7].

Multiple negative immunoregulatory pathways impede T cell–
mediated tumor destruction in the tumor microenvironment 
(TME), contributing to the paradoxical coexistence of TA-specific 
CD8+ T cells and tumor progression in cancer patients. Among 
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them, inhibitory receptors (IR) like PD-1 and CTLA-4 play a criti-
cal role in dampening T cell functions. Immunotherapies with 
immune checkpoint inhibitors directed against these immunoreg-
ulatory pathways provide long-term clinical benefits to patients 
with a growing range of solid tumors [8].

The development of monoclonal antibodies (mAb) targeting 
immune checkpoint receptors cytotoxic T lymphocyte associated 
antigen-4 (anti-CTLA-4) and programmed death 1 (PD-1) are 
proof of this therapeutic strategy. In this review, we discuss the 
preclinical and early clinical data supporting the rationale for cur-
rent and future combinatorial therapeutic strategies targeting 
inhibitory immune checkpoints.

Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4, CD152) 
is an activation-induced glycoprotein that belongs to the immuno-
globulin (Ig) superfamily. CTLA-4 is homologous to the T cell 
costimulatory protein CD28; but where CD28 provides the 
costimulatory signal required for antigen-specific T cell activation 
and expansion after the initial interaction between T cell receptor 
(TCR) and antigen presenting cells (APCs), CTLA-4 downregu-
lates T cell responses [9–12]. CTLA-4 contains an extracellular V 
domain, a transmembrane domain, and a cytoplasmic tail. CTLA-4 
cytoplasmic tail is structurally and functionally similar to CD28: it 
has no intrinsic catalytic activity but contains both a YVKM motif 
that can bind phosphatidylinositol 3-kinase (PI3K), protein phos-
phatase 2 A (PP2A) and SHP-2 and a separate proline-rich motif 
able to bind SH3 containing proteins [13].

CTLA-4 is constitutively expressed on regulatory T cells 
(Tregs), while expression on CD8+ T cells primarily occurs after 
initial activation. T regs primarily store CTLA-4 intracellularly 
within endosomes—providing a large intracellular pool that can be 
rapidly cycled to the cell surface upon activation. CTLA-4 has two 
natural ligands found on APCs: CD80 (B7.1) or CD86 (B7.2) 
[14–16].

Unlike CD28 and PD-1 which are robustly expressed on cell sur-
faces, CTLA-4 is primarily distributed intracellularly where it is 
constitutively present as a homodimer [17, 18]. Although CTLA-4 
signaling has been shown to be linked to phosphorylation of CD3ζ 
[19], disruption of ZAP-70 microclusters [20], and interaction 
with PI3K [21] or SHP-2 [22] or serine/threonine phosphatase 
PP2A [23], multiple other studies have shown that CTLA-4 inhib-
itory signaling was unrelated to each of these interactions [24–28]. 
Molecular imaging experiments have shown that both T regs and 
CD8+ T cells compete for the same ligands at the immune synapse 
in a cell-intrinsic fashion [29]. This suggests that upon antigen 
exposure, CTLA-4 binds CD80 and CD86 with greater affinity 
and avidity compared to CD28, enabling it to outcompete CD28 
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for ligand binding [30, 31] and argues that some measure of the 
inhibitory activity of CTLA-4 is due to ligand-dependent signal-
ing. However, CTLA-4 inhibitory activity also results in ligand 
downregulation on APC via a transendocytic mechanism [32]. 
This mechanism is stimulated by TCR engagement, is cell-extrinsic, 
and has been observed in both T regs and CD8+ T cells [32]. 
Overall, these findings suggest that the primary inhibitory effect of 
CTLA-4 is to control access of CD28 to CD80/CD86 ligands and 
argues that the effects of CTLA-4 signaling are complex, contra-
dictory and context-dependent.

Separately, other data suggest that some measure of CTLA-4’s 
inhibitory effects on the T reg compartment is mediated by either 
intratumoral Treg depletion or reduced Treg suppressive activity 
[33–36]. CTLA-4 therapy is associated with an increase in the 
CD8 T cell–Treg ratio within tumors [37–43]. The effect of 
CTLA-4 blockade on the Treg compartment appears to be 
Fc-gamma receptor (Fc-γR) dependent and is associated with the 
presence of Fc-γR expressing macrophages [44, 45]. This effect is 
isotype dependent and antibodies with improved Fc effector func-
tion are associated with improved activity preclinically [46].

The discovery of the inhibitory function of CTLA-4 led to a series 
of experiments testing CTLA-4 inhibition in various murine tumor 
models. In 1996, Leach and colleagues demonstrated that 
antibody-mediated CTLA-4 blockade led to tumor rejection of 
transplantable mouse colon cancer and fibrosarcoma [47]. CTLA-4 
blockade resulted in immunologic memory as previously chal-
lenged mice subsequently rejected implanted tumors without addi-
tional CTLA-4 blockade. CTLA-4 blockade was ineffective as a 
single-agent in B16 melanoma and SM1 mammary carcinoma [48, 
49], although combining CTLA-4 blockade with GM-CSF-
secreting vaccines resulted in tumor eradication [48, 49].

These results spurred the development of two anti-CTLA-4 
mAb: ipilimumab (MDX-010; Medarex and Bristol-Myers 
Squibb) and tremelimumab (CP-675,206 or ticilimumab; Pfizer 
and Medimmune). Although both ipilimumab and tremelim-
umab are fully humanized mAb, ipilimumab belongs to the 
IgG1κ class and has a half-life of 12–14  days, while tremelim-
umab is a IgG2 mAb with a longer half-life of 22 days. The first 
clinical data came from a dose-escalation study in patients with 
advanced melanoma where authors reported two partial responses 
in a cohort of 17 patients treated with a single-dose of ipilim-
umab 3 mg/kg [50]. Subsequent studies tested a variety of doses 
and schedules in various diseases including melanoma [51] and 
lymphoma [52]. These early studies revealed three hallmark fea-
tures: a clear dose–response relationship with greater responses at 
higher doses (albeit with a higher incidence of toxicity), a unique 
spectrum of “immune related adverse events” (irAE) that reflected 
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