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Preface

The clinical definition of stress is a physical, mental, or emotional factor that causes 
bodily or mental tension. On a whole-body level, stresses can be induced by envi-
ronmental, psychological, or social situations or by illness, or from a medical pro-
cedure. At the cellular level, stress can be induced by a wide variety of conditions 
including heat shock, cold shock, pH shift, hypoxia, UV light, and during wound 
healing or tissue remodeling. Increased expression of heat shock proteins (HSP) 
protects the cell by stabilizing unfolded proteins, giving the cell time to repair or 
resynthesize damaged proteins.

The book Heat Shock Proteins and Stress provides the most comprehensive 
review on contemporary knowledge on the role of HSP in stress. Using an integra-
tive approach to understanding the regulation of HSP responses, the contributors 
provide a synopsis of novel mechanisms by which HSP responses are regulated 
under normal physiological and pathophysiological conditions.

To enhance the ease of reading and comprehension this book has been subdi-
vided into various sections: Section I reviews current progress on our understanding 
of HSP in cellular stress; Section II evaluates the role of HSP in oxidative stress; 
Section III focuses the reader on the role of HSP in stress response pathway in inver-
tebrates, vertebrate, plants, and aquatic organisms.

Key basic and clinical research laboratories from major universities and aca-
demic medical hospitals around the world contribute chapters that review present 
research activity and importantly project the field into the future. The book is a must 
read for researchers, postdoctoral scholars, and graduate students in the fields of 
Translational Medicine, Clinical Psychology, Human Physiology, Zoology, Botany, 
Biotechnology, Molecular Medicine, Infectious Diseases, and Pathology.

Toledo, OH, USA Alexzander A. A. Asea 
Houston, TX, USA  Punit Kaur 
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Chapter 1
Molecular Chaperones and the Nuclear 
Response to Stress

Lynn Boyd and Katherine M. Sampuda

Abstract Chaperones are a well conserved class of proteins that reside in many 
different cellular compartments. The nucleus is a compartment of special interest 
because it houses the genetic material and allows for the expression and mainte-
nance of genes. Many chaperones localize to the nucleus under stress conditions. 
The current body of evidence indicates that the nuclear function of chaperones is 
similar to chaperone function in the cytoplasm. Emerging evidence on the nuclear 
import pathway for chaperones suggests that novel pathways exist that allow chap-
erones to enter the nucleus under conditions of environmental stress. One such path-
way, the Hikeshi pathway, is responsible for the transport of HSP70 and possibly 
other molecular chaperones.

Keywords Chaperone · HSP · HSP70 · Nuclear import · Protein aggregation · 
Stress

Abbreviations

CHIP c-terminus of Hsc70-interacting protein
HOP HSP70/HSP90 organizing protein
HSF1 Heat shock factor 1
HSP Heat shock protein
PQC Protein quality control
sHSP Small heat shock protein
SING Stress induced nuclear granule
TPR Tetratricopeptide repeat
UPS Ubiquitin protein system
UV Ultraviolet
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1.1  Introduction

The different compartments of the eukaryotic cell each have their own characteristic 
proteome. Each compartment possesses a protein quality control (PQC) system that 
functions to monitor and repair damage to the proteome. The nucleus is a compart-
ment of special interest since it houses the genetic material which must be main-
tained, replicated, and protected from damage. Several human diseases, such as 
Huntington’s disease, are associated with protein misfolding in the nucleus. It has 
been reported that the nucleus is the most susceptible compartment in regards to 
protein damage following a heat insult and this damage can be mitigated by overex-
pression of a nuclear targeted molecular chaperone, HSP70 (Hageman et al. 2007). 
This suggests that chaperones can work similarly in the nucleus and cytosol. The 
nucleus differs from other membrane-bound compartments in that trafficking 
between the nucleus and cytosol is more dynamic than that of the other organelles 
such as the ER or mitochondria. Thus, it has been more difficult to discern which 
PQC pathways might be specific to the nucleus versus cytosol. The nuclear pore 
provides a channel through which small proteins can travel freely and in both direc-
tions between the nucleus and cytosol. Larger proteins must use a transport pathway 
to travel through the nuclear pore. Many molecular chaperones are localized to both 
the nucleus and cytosol. Molecular chaperones are known mediators of protein fold-
ing and thus may be required during times of proteotoxic stress. Chaperones recog-
nize exposed hydrophobic patches on a protein’s surface and help the protein to 
refold into its proper conformation. Several chaperones are known to relocate to the 
nucleus under stress conditions (discussed below). Although, most studies have 
looked at the stress of elevated temperature, some recent studies have shown that 
other types of stress can also induce this nuclear response.

Several neurodegenerative diseases are associated with nuclear protein aggre-
gates. A link between these aggregation events and chaperones is well established. 
First, chaperones have been shown to localize to these aggregates (see Table 1.1). 
Second, overexpression of chaperones is known to reduce the level of nuclear aggre-
gates (reviewed in Nath and Lieberman 2017). Third, reduced expression or muta-
tions in chaperones makes cells more susceptible to nuclear aggregation events 
(Nath and Lieberman 2017). In addition to nuclear protein aggregates, several other 
nuclear bodies have been described. In several cases, chaperones have been shown 
to localize to these nuclear bodies. Table  1.1 shows known nuclear bodies and 
nuclear aggregates that are associated with localization of chaperones.

There are a large number of individual chaperones and co-chaperones that have 
been identified. Generally, these can be divided up into several different classes: the 
HSP60 family, the HSP70 family, the HSP90 family, the HSP100 family, the 
HSP110 family, and the small heat shock proteins (sHSP). Additionally, there are 
several co-chaperone families including HSP40 (DNAJ) proteins and the TPR 
domain containing proteins (such as HOP/Sti1). First, we discuss the entry of these 
proteins into the nucleus. Next, we look at the evidence surrounding the actual func-
tion of these chaperones inside the nucleus.

L. Boyd and K. M. Sampuda
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1.1.1  Nuclear Protein Quality Control

The presence of chaperones and ubiquitin proteasome pathway components in the 
nucleus suggests that PQC in the nucleus may work similarly to the cytosolic sys-
tem. Although it has been suggested that misfolded nuclear proteins might be 
exported from the nucleus for degradation (Chen and Madura 2014), other reports 
have suggested just the opposite, that some proteins are imported into the nucleus 
specifically for degradation. The most detailed description of nuclear protein quality 
control comes from studies in the budding yeast, Saccharomyces cerevisiae. The 
ubiquitin pathway enzymes Cdc34p, Ubc1p, and San1p target four temperature sen-
sitive nuclear proteins for degradation by the 26S proteasome (Gardner et al. 2005). 
Further studies in S. cerevisiae identified a chaperone-assisted degradation pathway 
where Hul5, an E3 ligase associated with the 26S proteasome, HSP70, and Bag102, 
a co-chaperone, mediate the tagging and the removal of the nuclear kinetochore 
component Spc7–23 (Kriegenburg et  al. 2014). In mammalian COS cell culture, 

Table 1.1 Nuclear bodies and aggregates with chaperone localization

Nuclear bodies with chaperone localization

Nuclear body Chaperone protein Reference
Clastome Hsc70, Hsp70 (Lafarga et al. 2002)
Cajal body NOPP140, Telomere Cajal body protein 

1 (TCAB1), Survival Motor Neuron 
(SMN)

(Isaac et al. 1998; Raimer 
et al. 2016)

Nuclear speckles HSPB1, alpha B-crystallin (HSPB5), 
HSPB7, Hsp27 (Drosophila), HSPA6 
(HSP70B’), HSPA1A (HSP70–1)

(Bao et al. 2002; Van den 
IJssel et al. 2003; Michaud 
et al. 2008; Vos et al. 2009)

Nuclear stress body HSF1, HSF2 (Morimoto and Boerkoel 
2013)

Nuclear stress granules HSF1, HSF2, and Hsp70 (Alastalo et al. 2003; Sarge 
et al. 1993)

PML body DEK proto-oncogene, death domain- 
associated protein 6 (DAXX), ATP- 
dependent helicase ATRX (ARTX), and 
histone cell cycle regulator (HIRA)

(Ivanauskiene et al. 2014)

Nuclear aggregates with chaperone localization
Disease Chaperone protein Reference
Huntington’s disease 
(Poly (Q) aggregate)

Hsp70, Hsc70, Hsp26 and Hsp104 (Jana et al. 2000; Walter 
et al. 2011)

Spinobulbar muscular 
atrophy (Poly(Q) 
aggregate)

Hsp70, Hsp90, HDJ-2/HSDJ (Cummings et al. 1998; 
Stenoien et al. 1999)

Dentatorubral 
Pallidoluysian atrophy 
(Poly(Q) aggregate)

HDJ-2/HSDJ, HSP70 (Cummings et al. 1998)

Spinocerebellar Ataxia 
(Poly(Q) aggregates)

HDJ-2/HSDJ, Hsc70 (Hsp73), Hsp70 
(Hsp72)

(Chai et al. 1999; 
Cummings et al. 1998)

1 Nuclear HSP Stress Response
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modified β-galactosidase from Escherichia coli was shown to be degraded rapidly 
in the nucleus whereas its unmodified form remained stable (Tsuneoka and Mekada 
1992). However, the molecular pathways of nuclear PQC in mammalian cell culture 
have yet to be discovered. In the nematode, C. elegans, expression of chaperones 
can repress the formation of stress induced nuclear granules (SINGs) (Sampuda 
et al. 2017). These nuclear granules contain high concentrations of ubiquitin and 
proteasome and occur after exposure to proteotoxic stress such as high salt or oxida-
tive stress, but not in response to heat shock. The SINGs may be sites of localized 
protein degradation in the nucleus. That the expression of chaperones can repress 
SING formation suggests that SINGs are a nuclear response to protein misfolding.

Many chaperones like heat shock protein 70 (HSP70), heat shock protein 90 
(HSP90) and small heat shock proteins (sHSP) are induced by heat shock and other 
stress conditions. Heat shock induced expression of chaperones is mediated by the 
heat shock factor 1 (HSF1) transcription factor (Brunquell et al. 2016; Shibata and 
Morimoto 2014). Since many key chaperones are above the size of free diffusion 
through the nuclear pore transport into the nucleus would require some sort of trans-
port mechanism such as that involving the Ran and importin proteins (Weis 2003). 
The topic of yeast nuclear chaperones and their role in nuclear PQC has recently 
been reviewed (Jones and Gardner 2016). In this chapter, we will first discuss the 
circumstances and mechanisms for delivery of chaperones into the nucleus. In the 
following section, we discuss the known functions of those chaperones in the 
nucleus.

1.1.2  Nuclear Import of Chaperones

In addition to responding to heat stress, chaperones are constitutively expressed 
under normal physiological conditions. They help to fold newly synthesized pro-
teins as they leave the ribosome and aid in protein translocation across the mem-
brane. However, during stress conditions such as heat shock, chaperones shift to 
refolding thermally damaged proteins to prevent them from aggregating. Chaperone 
expression is upregulated by HSF1. In unstressed states, cytosolic HSF1 monomers 
are suppressed by a chaperone complex consisting of molecular chaperones HSP70 
and HSP90. During stressed conditions like heat shock, cadmium sulfate, or azeti-
dine, HSP70 and HSP90 release HSF1 and interact with misfolded proteins. 
Unbound HSF1 is then translocated into the nucleus to form a transcriptionally 
active HSF1 trimer that binds to heat shock elements found upstream of HSP genes. 
Upon recovery from heat shock, HSP70 binds to HSF1 and translocates to the cyto-
sol where HSP90 binds to form the HSP70/HSP90 complex to inhibit HSF1 
(Trinklein et al. 2004).

After transcription, heat shock proteins are translated in the cytosol where many 
of them function. As previously mentioned, a portion of these chaperones translo-
cate to the nucleus. Nuclear import of many of these chaperones requires active 

L. Boyd and K. M. Sampuda
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transport. In some cases, chaperones contain a nuclear localization sequence that 
promotes transport through a classical nuclear import pathway. In other cases, chap-
erones have been known to piggyback into the nucleus as they transport proteins 
from the cytosol into the nucleus (Melchior and Gerace 1995).

The classical nuclear import pathway revolves around the Importin α/β family. In 
this pathway, importins bind to cargo proteins and help transport them across the 
membrane and into the nucleus. Once the cargo protein is in the nucleus, Ran 
GTPase binds to the importin prompting the release of the cargo protein. Importin 
is then shuttled back into the cytosol by Ran (Melchior and Gerace 1995). This 
pathway is reliant on the Ran gradient, which is higher in the nucleus and lower in 
the cytosol. Heat shock, oxidative stress, and UV irradiation downregulate the clas-
sical importin α/β-mediated pathway by altering the distribution of Ran (Czubryt 
et al. 2000; Kodiha et al. 2004; Kose et al. 2012; Yasuda et al. 2006).

The yeast chaperone HSP104 has a nuclear localization signal and is imported 
into the nucleus after heat shock (Tkach and Glover 2008). Interestingly, nuclear 
import under heat stress does not depend upon the nuclear localization signal and 
must depend upon some non-canonical import pathway. In the yeast, Saccharomyces 
cerevisiae, both starvation and ethanol stress induced nuclear accumulation of the 
HSP70 family member Ssa4p (Chughtai et  al. 2001; Quan et  al. 2004). Nuclear 
localization following starvation is dependent upon a short hydrophobic region near 
the N-terminus on the protein and requires the activity of β importin. Nuclear local-
ization following ethanol stress also depends upon β importin and the N-terminal 
domain.

CHIP (C-terminus of Hsc70-interacting protein) is a TPR family co-chaperone 
and E3 ligase that ubiquitinates proteins that HSP70 and HSP90 are unable to fold. 
After heat stress, CHIP localizes predominantly to the nucleus (Dai et al. 2003). 
This localization coincides with the translocation of HSF1 into the nucleus and it 
has been proposed that CHIP functions as a regulator of HSF1 activity in the nucleus 
(Dai et al. 2003).

The co-chaperone HOP (HSP70/HSP90 organizing protein) serves as a linker for 
the HSP70 and HSP90 chaperones. Thus, it plays a crucial role in linking these two 
major chaperone activities. HOP contains a bipartite nuclear localization signal 
required for its nuclear localization under non-stress conditions. However, its trans-
location into the nucleus following stress does not depend upon this NLS (Daniel 
et al. 2008).

The classical import pathway is reduced during stress conditions (Kodiha et al. 
2004). However, chaperones still localize to the nucleus. This implied that a non- 
canonical import pathway was utilized by molecular chaperones. Kose et al. (2012) 
showed that a carrier protein, Hikeshi, does not bind to Ran and functions under 
heat shock to transport HSP70 into the nucleus. This pathway was termed the 
Hikeshi-mediated nuclear import pathway. It is currently unclear if chaperones 
other than HSP70 are transported by the Hikeshi pathway.

1 Nuclear HSP Stress Response
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