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Preface

Gene therapy, on a basic level, is defined as the delivery of nucleic acids to a cell in order to
produce a desired effect. There are many methods that can be utilized in order to deliver
nucleic acids to cells; however, the most efficient and adaptable method is the use of viral
vectors. Viruses have naturally evolved over millennia to develop elegant mechanisms used
to evade host immunity, gain entry to a cell, deliver their genetic material, and hijack host
cell machinery in order to produce progeny virions. Viral vector-based gene therapy har-
nesses this awesome power of nature in order to efficiently deliver a desired genetic payload
to cells of interest. The fundamental concept of a viral vector is relatively simple. First, the
genes from the viral genome that are responsible for viral replication or untoward host
response (i.e., disease) are removed, leaving only the genetic information that is absolutely
essential for viral assembly. Next, the desired genetic payload is inserted into the modified
viral genome. Finally, the resulting recombinant viral vector, containing the desired genetic
material, is assembled in cultured cells and purified.

In its current state, viral vector gene therapy has become commonplace in both the
laboratory and the clinic. Within the laboratory, viral vectors are commonly used as efficient
genetic shuttles. The ability of viral vectors to infect a myriad of cells (both dividing and
nondividing) and deliver various nucleic acids, which can then be integrated into the host
genome or remain episomal, makes them extremely adaptable and powerful tools in bio-
medical research. Additionally, viral vectors are used in the lab to both model disease and
research potential therapeutics. Further down the translational pipeline, viral vectors are
being explored in the clinic to treat a wide range of diseases utilizing vastly different
therapeutic approaches. This includes viral vectors in the treatment of cancers, neurodegen-
erative disease, and pulmonary disorders. Moreover, gene therapy is not limited to simple
genetic overexpression, but can also accomplish a wide range of modalities such as CRISPR/
CAS genome editing or manipulation of the expression of endogenous proteins. The wide
range of problems to which viral vectors have been successfully applied underscores not only
the tremendous potential of this tool but also how far the technology of viral vectors has
grown and continues to grow [1–3]. Indeed, 2017 saw the first viral gene therapy product
gain FDA approval (Luxturna©), paving the way for future efforts.

The idea of utilizing a virus to deliver a desired set of nucleic acids to a cell dates back to
the early 1970s when researchers discovered that retroviruses were capable of acquiring
cellular genes, giving proof in principle to the idea that viruses could be used in order to
deliver nonviral genetic information to cells [4]. Not long after this observation, researchers
were able to successfully generate recombinant viruses that were also capable of delivering
nonviral genetic material to target cells [5–10]. Since these early landmarks in viral vector
history, the field of viral vector gene therapy has grown exponentially. With advances in the
fields of both molecular biology and virology, researchers have “vectorized” an ever-increas-
ing number of different viruses with different capabilities. Further, researchers are constantly
modulating every step of the viral life cycle in order to improve viral genetic delivery, while
also expanding the potential repertoire of functions that a virus can perform. In this way
science is constantly pushing the envelope of what a virus is able to achieve, with the end
result being an unprecedented level of control over an extremely powerful tool.

v



However, as the maxim states, with great power comes great responsibility. Indeed, in
order to achieve optimal results using gene therapy, it is the responsibility of the researcher
to control for every aspect of the experiment. For years, the requisite knowledge necessary
to properly control and conduct a successful gene therapy experiment has been the sole
privilege of a handful of highly specialized laboratories or clinicians around the world.
However, as the overall success of gene therapy has grown, so has the availability of these
powerful tools. Today, the wide availability of viral vectors has made them accessible to
virtually any scientist with the desire.

In spite of this increase in the availability of vectors themselves, the requisite knowledge
that is absolutely essential to conducting a successful gene therapy experiment has not been
made equally available. To successfully utilize viral vectors to their full potential, a large
number of decisions must be made; in some instances prior to even obtaining the vector
itself. It is the goal of this book to provide a comprehensive list of theoretical knowledge and
detailed protocols necessary for researchers, clinicians, and students to successfully utilize
viral vectors for a wide range of gene therapy applications. To begin, an introductory chapter
will provide an overview of basic gene therapy modalities. Subsequent chapters will delve
more deeply into specific protocols, ranging from vector production to delivery methods,
which can be used as step-by-step instructions to successfully execute your desired gene
therapy application.

Grand Rapids, MI, USA Matthew J. Benskey
Fredric P. Manfredsson
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Chapter 1

Basic Concepts in Viral Vector-Mediated Gene Therapy

Matthew J. Benskey, Ivette M. Sandoval, Kathryn Miller,
Rhyomi L. Sellnow, Aysegul Gezer, Nathan C. Kuhn,
Roslyn Vashon, and Fredric P. Manfredsson

Abstract

Today any researcher with the desire can easily purchase a viral vector. However, despite the availability of
viral vectors themselves, the requisite knowledge that is absolutely essential to conducting a gene therapy
experiment remains somewhat obscure and esoteric. To utilize viral vectors to their full potential, a large
number of decisions must be made, in some instances prior to even obtaining the vector itself. For example,
critical decisions include selection of the proper virus, selection of the proper expression cassette, whether
to produce or purchase a viral vector, proper viral handling and storage, the most appropriate delivery
method, selecting the proper controls, how to ensure your virus is expressing properly, and many other
complex decisions that are essential to performing a successful gene therapy experiment. The need to make
so many important decisions can be overwhelming and potentially prohibitive, especially to the novice gene
therapist. In order to aid in this challenging process, here we provide an overview of basic gene therapy
modalities and a decision tree that can be used to make oneself aware of the options available to the
beginning gene therapist. This information can be used as a road map to help navigate the complex and
perhaps confusing process of designing a successful gene therapy experiment.

Key words Viral vector, Gene therapy, Adeno-associated virus, Lentivirus, Adenovirus, Herpes-
simplex virus

1 Introduction

Viral vector-based gene therapy was originally conceived in order to
accomplish a simple goal, to transfer genetic material to a target
cell. Although simple, achievement of this goal produced profound
results. The ability to manipulate gene expression within any
desired cell revolutionized the biomedical field. However, with
the continual improvement of viral vectors, expression cassettes,
and delivery methods, gene therapy has evolved far beyond the
ability to simply transfer a foreign gene to a cell, now enabling
researchers and clinicians to accomplish an astounding number of
sophisticated cellular and molecular manipulations. For example,

Fredric P. Manfredsson and Matthew J. Benskey (eds.), Viral Vectors for Gene Therapy: Methods and Protocols,
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