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Preface

The use of stem cells and genes has become an area
of increasing research in both basic science and clinical
trials. This book provides a blend of these two areas
and is intended to provide the reader with the most
up-to-date status of not only stem cell and genes, but
also progress in the area of tissue engineering to
enhance retention. These new therapeutic options are
intended for patients with all forms and stages of car-
diovascular disease, with the goal of reducing the

XV

limitations of their condition and the risk to their lives
and well being.

The book is dedicated to all of the patients now
afflicted and all those who are at risk, or will develop
cardiovascular disease in the future, and the growing
number of students, trainees, research scientists, and
clinicians involved in the care of these patients with
the goal of finding new therapeutic options to reduce
the limitations of their condition.
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All humans are developmental products of stem
cells. The union of our father's sperm and our
mother’s egg generated billions of stem cells that
through genetic signaling became every organ in our
body and all about us, including our appearance, our
soul, and our intellect. Each of us also has a “rescue”
system of stem cells circulating in the blood and resid-
ing in our heart (and other organs) that is intended to
repair injuries. However, early after birth, the heart’s
ability to regenerate itself is inhibited [1]. Improving
our understanding of stem cells and building on the
capabilities of the rescue stem cell system may ulti-
mately enable researchers to use cell therapy not only
to repair injuries locally, but also to regenerate the
whole heart and other organs, when necessary.
Although preclinical studies provide valuable informa-
tion, proof of the safety and efficacy of stem cell ther-
apy has and will continue to come from studies in
humans with cardiovascular diseases—the best model
for this work. Thus, we should carry on our human
research of stem cell therapies as Shakespeare urged,
“till truth makes all things plain.”"

Multiple small-scale clinical studies of cell therapy
for cardiovascular diseases have shown that these treat-
ments are safe and may provide clinical benefits [2—10].
Studies have examined a variety of cell types, including
bone marrow-derived mononuclear cells, bone
marrow-derived aldehyde dehydrogenase-bright stem
cells, adipose tissue-derived mesenchymal cells, and
cardiac stem cells. For example, Perin and colleagues
[6] found transendocardial injections of autologous
bone marrow-derived mononuclear cells to be safe in
patients with end-stage ischemic heart disease, and
their findings suggested that the treatment may have
had positive effects on myocardial perfusion and

contractility. Likewise, transendocardial injections of
autologous bone marrow-derived aldehyde
dehydrogenase-bright stem cells in patients with ische-
mic heart failure were found to be safe and to poten-
tially contribute to improvements in perfusion and left
ventricular (LV) function [9]. In a study examining the
use of autologous adipose tissue-derived mesenchymal
cells in patients with ischemic cardiomyopathy, the
cells were found to be safe when injected transendocar-
dially, and the treated patients showed preserved LV
function and possible benefits in coronary blood flow,
scar size, and LV contractility [7]. Furthermore, a study
by Bolli and colleagues [Cardiac Stem Cell Infusion in
Patients with Ischemic CardiOmyopathy (SCIPIO) trial]
[2] showed that intracoronary infusion of autologous c-
kit" cardiac stem cells after coronary artery bypass sur-
gery was safe in patients with post-infarction LV dys-
function, and that this treatment led to a significant
increase in LV ejection fraction (LVEF), a reduction in
infarct scar size, and improvements in the New York
Heart Association (NYHA) functional class and quality
of life. In the CADUCEUS (CArdiosphere-Derived
aUtologous stem CElls to reverse ventricUlar
dySfunction) trial [4,5], investigators showed that intra-
coronary infusion of cardiosphere-derived cells (a mix-
ture of resident cardiac stem cells, including
mesenchymal cells, CD105% cells, and c-kit™ cells [11])
obtained from endomyocardial biopsy specimens in
patients with recent large myocardial infarcts resulted
in reduced infarct mass and improved regional LV
function in patients with LVEFs of 25% to 45%.

Larger clinical studies have also shown the safety
and potential efficacy of stem cell therapy in heart dis-
ease [12—15]. In the REPAIR-AMI (Reinfusion of
Enriched Progenitor cells And Infarct Remodeling in

*Modified from a manuscript published in Circulation Research 2014;115(12);271—-78.

*A Midsummer Night’s Dream, Act V, sc. 1, line 128.
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Acute Myocardial Infarction) study [13], for example,
the intracoronary administration of unfractionated
mononuclear cells taken from patients’” bone marrows
resulted in a small, but significant, increase in LVEF in
patients with acute ST-segment elevation myocardial
infarction (MI) when the patients’ pretreatment LVEFs
were less than 48%. In treated patients from the same
REPAIR-AMI trial, the risk of death, recurrent MI, and
rehospitalization also decreased [12]. In a trial from the
Cardiovascular Cell Therapy Research Network, trans-
endocardial injections of autologous bone marrow-
derived mononuclear cells in patients with ischemic
cardiomyopathies and no other option for revasculari-
zation resulted in a small but significant increase in
LVEF [15]. This increase correlated with the percentage
of CD34" and CD133" cells in the bone marrow sam-
ples. Specifically, every 3% increase in CD34" or
CD133" cells was associated with an absolute unit
increase in LVEF of 3% or 5.9%, respectively, in a multi-
variable model that included age and treatment as pre-
dictor variables (P = 0.04 for both). The therapeutic
potential of CD34" cells has also been suggested by
positive findings by Losordo et al. in a trial of patients
with refractory angina where patients who received
intramyocardial injections of the low-dose treatment
(1X10° autologous CD34" cells/kg body weight)
showed a subsequent decrease in angina frequency and
improvement in exercise tolerance [14]. Although these
examples suggest that stem cell therapy may be benefi-
cial for some patients, the measurable effects have gen-
erally, even in larger trials, been modest. Thus, a better
understanding of the factors that contribute to the effec-
tiveness of stem cell therapy is needed.

Adult stem cells have also been used to treat patients
with nonischemic cardiomyopathies. Vntovec et al.
administered CD 34" cells to 28 patients by the intra-
coronary route and had 27 control patients [16]. In the
cell-treated patients, CD 34" cells were mobilized by
granulocyte-colony stimulating factor and collected by
aphaeresis. After a one-year follow-up, patients treated
with cells had an increase in LVEF from 25.5% to 30%
(P = 0.03) and a decrease in NT-pro BMP from
2069 " 1996 pg/ml to 1037 I 950 pg/ml (P = 0.01). A
secondary end point of one-year mortality or heart
transplantation was lower in patients receiving stem
cell therapy (2/28, 7%) than in controls (8/27, 30%)
(P = 0.03), and the stem cell therapy was the only pre-
dictor of outcome by multivariate analysis (P = 0.04).
The beneficial effect was sustained during a 5-year fol-
low-up [17] and was greater when the cells were given
by the transendocardial rather than the intracoronary
route of administration [18]. Similar benefit has been
reported by Wang et al. when autologous mesenchymal
cells were used to treat patients with idiopathic dilated
cardiomyopathies [19].
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Beneficial results treating patients with coronary
heart disease and refractory angina with CD 34" cells
by NOGA catheter have been reported in 167 patients
who received 1 X 10° or 5 10° cells /hg of mobilized
CD 34" cells or an equal volume of diluent [14].
Patients with refractory angina who received intra-
myocardial injections of autologous CD 34" cells (10°
cells/hg) had significant improvements in angina fre-
quency and exercise tolerance [14]. Mathiasen et al.
showed similar benefit in treating patients with coro-
nary artery disease (CAD) and refractory angina with
bone marrow-derived mesenchymal cells over a 3-year
follow-up with reduced hospital admissions for cardio-
vascular disease and excellent long-term safety [20].
Others have reported similar beneficial results in simi-
lar patients when bone marrow-derived stem cells
were used [21,22].

Clinical studies of stem cell therapy in patients with
ischemic cardiomyopathies have revealed several criti-
cal limitations and have raised important points to
consider. One major limitation is that human stem cells
become dysfunctional with age [8,15,23]. In addition,
stem cells become less able or unable to replicate them-
selves in older individuals (i.e., in those > 60 years of
age) [8,23]. Furthermore, the absolute numbers of stem
cells in the bone marrow and in the circulation are
reduced in older adults. Similarly, the number and
effectiveness of bone marrow-derived and circulating
stem cells are also reduced in patients with severe dis-
eases and risk factors for cardiovascular disease
[24—28]. Therefore, notwithstanding its elegance, the
human rescue system of stem cells is unable to repair
damage in the hearts of those in whom repair is most
often needed. Another potentially important limitation
is that in many of the trials of stem cell therapy in
patients with cardiovascular disease, the composition
(i.e., the cellular make-up) and potency of the trans-
planted cell product is different for each patient
because of the inherent heterogeneity of products iso-
lated from individual patients. This likely contributes
to variations in outcomes. While these realizations are
sobering, they are also critical issues to consider when
designing, implementing, and interpreting the results
of any stem cell clinical trial involving patients with
cardiovascular disease.

As we learn the capabilities and limitations of spe-
cific stem cell populations through preclinical and clin-
ical research, we can use this information to design
more effective stem cell therapies. As noted above,
because the patients in these clinical studies are gener-
ally older and may have multiple co-morbidities, the
stem cells isolated from them may be less potent. One
approach that can be used to circumvent this issue is
the use of allogeneic stem cells. Mesenchymal stem
cells, which can be found in the bone marrow, adipose
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tissue, or myocardium, may not be immunologically
rejected when taken from one person and transplanted
into another; thus, it appears to be feasible to use mes-
enchymal stem cells from youthful donors to treat
aging individuals with cardiovascular diseases [29,30].
Indeed, when allogeneic mesenchymal cells from a
healthy young donor were injected transendocardially
into patients with ischemic or nonischemic cardiomy-
opathy, positive results were observed in those
patients who received a high cell dose, including
improved LV function and coronary blood flow and
substantially reduced rates of death, progressive heart
failure, and hospital readmission [29].

Another approach that could be used to improve
cell therapy in patients who are older and may have
multiple co-morbidities is to rejuvenate the patient’s
senescent stem cells. In a study by Madonna and col-
leagues [1], the induced overexpression of telomerase
reverse transcriptase and myocardin in mesenchymal
stromal cells from aged mice resulted in improvements
in cell function both in vitro and in vivo. Likewise,
ex vivo modification of senescent human cardiac pro-
genitor cells with PIM-1 kinase has been shown to
increase cellular proliferation and survival [31].
Furthermore, Sanada and colleagues [32] have shown
in a mouse model that older hearts have more quies-
cent c-kit" cardiac stem cells than younger hearts, but
that stem cell factor can be used to stimulate these cells
and effectively reverse aging cardiomyopathy.

Studies have also indicated that the efficacy of stem
cell treatments can possibly be enhanced by using spe-
cific cell combinations. In a porcine model of MI,
Williams and colleagues [33] showed that a combina-
tion of mesenchymal and c-kit" stem cells improved
LV function and reduced infarct size significantly
more than either cell type did alone. The encouraging
results with cardiosphere-derived cells in patients with
ischemic cardiomyopathy also suggest that using a
combination of stem cells may be more effective than
using a single type of stem cell [4,5].

Therefore, clinical trials assessing the use of select
adult stem cells for treating patients with ischemic car-
diomyopathies have produced encouraging results
that suggest these therapies are safe and may poten-
tially improve clinical outcomes, including LV func-
tion, infarct size, and the occurrence of future adverse
clinical events. However, the studies performed to
date have been relatively small, and the follow-up for
these studies has been limited to only a few months to
years. Furthermore, when designing future studies,
clinicians should continue to build on what is now
known about stem cell biology and should try new
approaches based on this information, such as using

Measure for Measure, Act I, sc. 4, lines 435—436.

allogeneic mesenchymal stem cells from young donors,
rejuvenated autologous stem cells, and/or specific
combinations of stem cells that have been shown to
produce better effects in relevant preclinical evalua-
tions. In addition, because some patient-specific fac-
tors, such as baseline bone marrow composition and
LVEF [13,15], have been shown to be associated with
improved outcomes after stem cell therapy, it may be
beneficial to select more targeted study populations in
future studies.

Every human being has an elegant system of rescue
stem cells that potentially may enhance the repair pro-
cess after injury. We must find ways to maximize the
benefits of this system and the body’s stem cells by
producing cell therapies that can repair and regenerate
organs and possibly even delay the aging process. As
with most medical breakthroughs, the development of
successful stem cell therapies will be achieved through
small, incremental improvements. Clinical trials are a
vital part of this process because proof of the safety
and efficacy of stem cell therapy can come only from
studies in humans with cardiovascular disease.
Ultimately, we have the opportunity to develop a
more personalized approach to stem cell therapy for
heart disease. It is evident that we are on the right
path of discovery in this field, and we should, there-
fore, have the fortitude to continue. As Shakespeare
also admonished, let us not “lose the good we oft
might win, by fearing to attempt.”*

GENE THERAPY

The other area in which clinical trials are a critical
method to enhance our understanding of the mechan-
isms involved in native tissue repair is targeted gene
therapy. There is strong preclinical evidence that the
major mechanism by which stem cells affect their bene-
fit is via paracrine release of a variety of trophic sub-
stances (e.g.SDF-1) that then activate resident stem cells
[34,35]. This hypothesis was confirmed by the work of
Dzau [34] who showed that the supernatant from stem
cells in culture was as effective as transplantation of the
cells alone. This has led to the hypothesis that delivery
of sufficient quantities of targeted genes to the area of
injury or dysfunction could potentially be as effective
as stem cell delivery in driving native tissue repair.

Preclinical research has identified several types of
potential target genes, which can be delivered as syn-
thesized human genes and cause no immune stimula-
tion, and therefore have a minimal risk equivalent to
autologous stem cells. Some of the very first trials of
regenerative medicine for cardiovascular disease tested
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pro-angiogenic genes like vascular endothelial growth
factor (VEGF) [35,36] and fibroblast growth factor FGF)
[37] for both peripheral vascular disease and refractory
angina, largely relying on delivery via percutaneous
injections into the gastrocnemius muscle. The results
of these trials were not as positive as anticipated, per-
haps related to a variety of factors such as dose, route,
and vector used.

Subsequently, several new target genes have moved
to clinical trials, primarily for heart failure, including
those with direct inotropic stimulation of beta adrener-
gic signaling, including calcium handling proteins
such as SERCA-2a [38,39] and adenyl cyclase [40].
Other target genes now in clinical trial include those
involved in stem cell homing and have other beneficial
cardiac effects such as stromal cell-derived factor 1
(SDF-1) [41,42] and Neuregulin (NRG-1) [43]. These
genes have been delivered by variable methods includ-
ing intracoronary, intramyocardial, and most recently,
retrograde via the coronary sinus. Importantly, the
transfection rates achieved by these methods of gene
delivery have ranged from 40% to 50%, and evidence
of expression of the genes ranging 10—25 days. The
encouraging results of early phase trials with these tar-
geted genes (unpublished) have led to recent comple-
tion of a Phase IIB trial with SERCA-2a in 240 patients,
and the Neuregulin gene in nearly 300 patients. Phase
III trials of both genes are planned to begin enrollment
by publication of this book. Similarly, a Phase IIB trial
is planned for the SDF-1 gene in patients with ischemic
cardiomyopathy, with potential rolling enrollment to a
Phase III trial.

The entire field of gene therapy for cardiovascular
disease is reviewed in detail in this book, and demon-
strates the potential of this alternative or complemen-
tary approach to tissue repair. Collectively, these trials,
and those with cell therapy, demonstrate the impor-
tance of clinical trials in the rapid progress in field of
enhancing tissue repair for cardiovascular diseases.

TISSUE ENGINEERING

One of the limitations of current approaches to stem
cell therapy is the very short retention time (days to at
most a few weeks), where cells remain in the target tis-
sue after being transplanted. A great deal of progress
has been made in the field of tissue engineering to
design new methods to increase cell retention. These
include remarkable work on the development of scaf-
folds using both natural and synthetic materials,
including extra cellular matrix, to hold either stem
cells or genes for slow and programmed release. In
addition, scaffolds are being developed with cells
implanted for delivery to the target tissue.

One of the most exciting approaches to tissue engi-
neering is the concept of organogenesis, or creation of
whole organs potentially to be used for elective, off-
the-shelf transplantation. Research in this area has
demonstrated both the complexity of individual tissues
and cells within each organ, the challenging require-
ments of creating equipment to sustain and test these
constructs while maintaining sterility including bior-
eactors, as well as which cell to use, and lessons show-
ing the astounding plasticity of transplanted cells [44].
Each of these approaches in tissue engineering is
reviewed in detail in this section of the book.

The goal of using stem cell and gene therapy to
enhance tissue repair of acute and chronic diseases to
create new treatments to reduce the significant mor-
bidity of cardiovascular diseases has come a long way
in the past decade. The field of regenerative medicine
is an excellent example of bidirectional flow, or trans-
lational medicine, between the basic and clinical
sciences. Shortcomings in clinical trials have driven a
good deal of basic research which has led to further
understanding of the important mechanisms involved
in cell homing and viability, as well as strategies to
enhance cell homing such as hypoxia and gene trans-
fection. Another focus of both basic and clinical science
is on reversing a potential significant limitation of cell
therapy which is the adverse effects of aging on stem
cell number and function. Finally, basic research has
led to the identification of many new sources and
types of cells, including importantly the safety and use
of allogeneic cells, which are now being evaluated in
clinical trials using new routes of delivery.

This book is designed to provide the reader with an
in-depth review of the current state of this field, as
well as a look at the many future directions. We await
the results of the clinical trials and basic research that
together will advance the clinical implementation of
these therapies. We believe that we are on the thresh-
old of a new era in regenerative medicine taking
advantage of the lessons learned in the past decade,
and the strategies moving into clinical trials. We thank
all of the authors and contributors who have worked
so hard to produce the chapters of this book, and with-
out whom this book would not have been possible.
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Introduction and Overview of Stem Cells
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One of the most exciting advances in medicine today
has been the use of stem cell and gene therapy for repair
in both acute and chronic illness. Stem cells have been
shown to be the primary mechanism for tissue repair
everywhere in the body, and not limited to cardiovascu-
lar disease. Some even believe that diseases such as ath-
erosclerosis represent a failure of stem cells. However,
because cardiovascular disease has become the leading
cause of death and morbidity in the world [1-3], this
area has seen the greatest evaluation by clinical trials of
cell therapy in the field known as regenerative medicine.
This introductory chapter is designed as a guide to
understanding the new sources and types of stem cells
now being examined in clinical trials, as well as the sur-
face markers that help identify each type of cell.

WHAT IS REGENERATIVE MEDICINE?

Regenerative medicine can be defined as the use of
stem cell or gene therapy to repair or recover damaged
organs, tissues, or vessels. Stem cells have been the
predominant therapy used to date, as they are the
most immediately mobilized response to acute injury,
but the use of targeted gene therapy is also being
explored vigorously (see Part II on Gene Therapy).
There are many examples in nature of tissue regenera-
tion, including the newt, which can regenerate an
entire limb within 6 weeks of amputation, and the zeb-
rafish, which can restore amputation of the distal car-
diac apex within 10—14 days [4]. The liver is the
human organ most capable of regeneration [5].

Attempts to induce the heart to regenerate run con-
trary to the long-held tenant that the heart is a postmi-
totic, terminally differentiated organ [6,7]. However,
programmed cell death, or apoptosis, occurs in the
heart as in every other organ and tissue. Estimates of
the loss, and therefore turnover, of the heart during a
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lifetime range between 50% and 3—4 fold [8]. Millions
of people are living beyond 80 years of age without
evidence of cardiac dysfunction, which by definition,
requires the capacity of the myocardium to regenerate.

Many important lessons have been learned over the
past decade, but it has been more challenging than antici-
pated to identify the mechanisms that will enable us to
achieve significant regeneration of new functional cardio-
myocytes and vasculature. Our understanding of the
mechanisms involved in cell therapy has evolved as has
our understanding of stem cell biology, including identifi-
cation of factors such as chemokines, cytokines, adhesion
molecules, and matrix metalloproteins that are involved
in tissue repair (see Chapter 39). This knowledge has led
to an increasing number of clinical trials that have also
helped to move the field forward. However, questions
remain including identification of the optimal cell type
and number, the method and timing of delivery, and
ways to potentially precondition cells or target tissue to
enhance responses. In addition, extensive research is now
focused on ways to enhance cell retention in the target tis-
sue and to gain a better understanding of the importance
of the extracellular matrix in this process (see Part II on
Tissue Engineering). Here, we provide an introduction to
the terminology and basics of stem cells used to drive
native tissue repair and regeneration and a firm founda-
tion of the current status of knowledge in this field.

WHAT DEFINES A STEM CELL?

A stem cell can be defined by two specific
characteristics:

1. Endless self-renewal, with no limitations or
maximum number of replications.

2. Capability to differentiate into any tissue type and
cell line in the body. The bone marrow provides

© 2016 Elsevier Inc. All rights reserved.
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two primary types of stem cells: those that will form
all of the hematopoietic cells in the body, including
red blood cells, white blood cells, platelets,
lymphocytes, macrophages, etc. [9], and those from
ectoderm, endoderm, and mesoderm origins that
can differentiate into all tissue types in the body.
Most stem cells have a predominant form(s) of cell
that they differentiate into, which helps define them
in the laboratory. For example, mesenchymal stem
cells are characterized by differentiating into bone,
cartilage, and adipose tissue [10,11], but they can
also differentiate into functioning cardiomyocytes,
blood vessels, and even neuronal tissue. This
differentiation capacity is true of mesenchymal cells
whether they originate from the bone marrow,
adipose tissue, umbilical cord, or even placenta.

Types of Stem Cells

Stem cells may be classified in many different ways.
The most traditional classification of stem cells is based
on their plasticity or developmental versatility. They
may thus be classified as totipotent (can give origin to
an entire organism), pluripotent (can give rise to all tis-
sues), and multipotent (can give rise to a limited range
of cells within a tissue).

Stem cells may also be classified according to their
origin.

Embryonic: These pluripotent cells may carry a high
risk of development of unusual tumors called terato-
mas [12]. Research on embryonic stem cells is currently
limited to basic science studies to help understand
mechanisms of stem cell function. There are no clinical
cardiac trials of embryonic stem cells. Their use has
been associated with a significant controversy because
of the moral and ethical issues surrounding their use.

Adult stem cells: These are multipotent cells that are
undifferentiated cells in a differentiated tissue. They
are used in widespread clinical investigations.

Stem cells are commonly classified according to cell
surface markers. Many surface markers help identify
individual types of stem cells. This feature aids in sep-
arating specific cell types by flow cytometry and other
methods to obtain pure cell cultures. However, not
every stem cell has a specific set of surface markers.
For example, mesenchymal stem cells may have sev-
eral different surface markers rather than one defining
characteristic set of markers [13]; however, their
unique feature of adherence to plastic surfaces helps
define this cell type. Table 1.1 provides a list of the
common surface markers that help define a specific
type of stem cell.

Stem Cell Sources

Another common way to classify stem cells is
according to their source. Although stem cells were
originally thought to be restricted primarily to adult
bone marrow and embryos, the number of cell sources
(from different tissues) has expanded significantly.

Bone Marrow

The bone marrow, although no longer the sole source
of adult stem cells, is by far the greatest reservoir of stem
cells. Its composition includes largely mononuclear cells,
of which 95% are hematopoietic precursors, and an array
of natural killer—type cells, as well as T and B lympho-
cytes [7,14,15]. In addition, other types of stem and pro-
genitor cells, including endothelial progenitor cells
(EPCs) [16], make up 1—2% of the total cell composition,
and mesenchymal stromal cells (MSCs) constitute only
0.01—0.2%. Clinical trials have examined the use of the
entire bone marrow mononuclear cell (BMMNC) popu-
lation, as well as selected cell populations such as
CD34 + EPCs, CD133 + smooth muscle progenitors, or,
more recently, MSCs [17,18].

One of the lessons learned from the use of autolo-
gous bone marrow is of particular importance for
treating patients with cardiovascular disease, who are
often over the age of 60 years—the number and func-
tional capacity of bone marrow cells decreases with
each decade of life [19]. This is due in part to the well-
documented reduction in telomere length of both
hematopoietic and other stem cells with advancing age
[20—22] (see Chapter 5), which may limit the capacity
for these cells to respond as effectively as needed for
optimal tissue repair. Clearly, there is often a disparity
between chronologic and physiologic age, and no
absolute age should be considered an exclusion for
autologous cell therapy.

The bone marrow is the source of several other cells
that have been developed for clinical use, including
the multipotent adult progenitor cell (MAPC) [23] as
well as the derivation into cardiac MSCs [24] (see
below for details). Another fraction of cells from the
bone marrow is characterized by the presence of an
enzyme (aldehyde dehydrogenase; ALDH) and not by
cell surface markers; this population is highly enriched
for mesenchymal and EPC activities [25,26].

Adipose Tissue

Perhaps, one of the most unexpected sources of
stem cells is adipose tissue. Several studies have
shown that there are 500—2000 times more stem cells
per gram of tissue in abdominal adipose tissue than
there are in bone marrow in age-adjusted comparisons
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