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Preface

Viruses are obligate parasites relying on the exploitation of host cell processes and
resources for replication. The interplay between host and viruses remains largely
unknown. Life cycles for individual viruses have been defined with functions
ascribed for many viral proteins. The discovery of RNA interference (RNAi) and
the subsequent development of tools to specifically silence individual cellular genes
enabled genome-wide studies, interrogating gene function in a spectrum of pro-
cesses, advancing developmental biology, and infectious disease. The advent of
functional genomics allowed for the interrogation of the virus–host cell interactions
and probing the genome for a role in the virus replication.

Libraries of arrayed siRNAs against human or mouse genomes have been
available for more than a decade. More recently, microRNA (miRNA) mimic and
inhibitor libraries have also become available for genome-wide screening, and most
recently gene editing, e.g. CRISPR/Cas, has also become available. These
approaches combined with transcriptomic and proteomic analyses have enabled the
identification of new players in the host–virus interactome. Importantly, advances in
recombinant technology, virology, and systems biology have allowed mapping
of the interaction between cellular and viral gene products, including viral and
cellular non-coding RNAs allowing for a better understanding of novel gene
functions and pro- and anti-viral activities. These discoveries have provided an
opportunity for the development of novel therapeutics and approaches to improve
viral vaccines and vaccine production.

This volume presents a current understanding of the interplay between host cells
and viruses during infection and replication. The first chapters present our
knowledge of coronavirus, flavivirus, and human immunodeficiency virus (HIV),
virus–cell interactions, i.e. three positive-sense RNA viruses (Coronaviridae,
Flaviviridae, and Retroviridae), respectively. The volume then moves to address to
negative-sense RNA viruses, with chapters on Ebola virus (Filoviridae), influenza
virus (Orthomyxoviridae), and two viruses from the Paramyxoviridae family.
The respiratory syncytial virus (RSV) chapter discusses the role of miRNAs in
infection, while the henipavirus chapter explores diverse aspects of virus–host
interactions. The volume finishes with a chapter on non-coding RNAs involved in
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herpesvirus infection, a double-stranded DNA virus (Herpesviridae). These
chapters capture many aspects of viral genomes and life cycles, including seg-
mented, integrating, and latent genomes, acute, chronic, and latent infections, as
well as vector-borne viruses. This volume provides a representation of virus–host
interactions and a valuable resource for advancing our understanding. We are
grateful to the authors for their expertise and contributions to this remarkable
volume.

Athens, USA Ralph A. Tripp
S. Mark Tompkins

vi Preface



Contents

Host Factors in Coronavirus Replication . . . . . . . . . . . . . . . . . . . . . . . . 1
Adriaan H. de Wilde, Eric J. Snijder, Marjolein Kikkert
and Martijn J. van Hemert

Roles of Pro-viral Host Factors in Mosquito-Borne
Flavivirus Infections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Rafael K. Campos, Mariano A. Garcia-Blanco and Shelton S. Bradrick

Role of Innate Genes in HIV Replication . . . . . . . . . . . . . . . . . . . . . . . . 69
Kerstin Schott, Maximilian Riess and Renate König

Host Factors Involved in Ebola Virus Replication . . . . . . . . . . . . . . . . . 113
Angela L. Rasmussen

Role of Host Genes in Influenza Virus Replication . . . . . . . . . . . . . . . . . 151
Megan L. Shaw and Silke Stertz

A Functional Genomics Approach to Henipavirus Research:
The Role of Nuclear Proteins, MicroRNAs and Immune
Regulators in Infection and Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Cameron R. Stewart, Celine Deffrasnes, Chwan Hong Foo,
Andrew G.D. Bean and Lin-Fa Wang

Roles of Non-coding RNAs in Respiratory Syncytial
Virus (RSV) Infection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Ralph A. Tripp and Abhijeet A. Bakre

Roles of Non-coding RNAs During Herpesvirus Infection . . . . . . . . . . . 243
Meaghan H. Hancock and Rebecca L. Skalsky

vii



Host Factors in Coronavirus Replication

Adriaan H. de Wilde, Eric J. Snijder, Marjolein Kikkert
and Martijn J. van Hemert

Abstract Coronaviruses are pathogens with a serious impact on human and animal
health. They mostly cause enteric or respiratory disease, which can be severe and
life threatening, e.g., in the case of the zoonotic coronaviruses causing severe acute
respiratory syndrome (SARS) and Middle East Respiratory Syndrome (MERS) in
humans. Despite the economic and societal impact of such coronavirus infections,
and the likelihood of future outbreaks of additional pathogenic coronaviruses, our
options to prevent or treat coronavirus infections remain very limited. This high-
lights the importance of advancing our knowledge on the replication of these
viruses and their interactions with the host. Compared to other +RNA viruses,
coronaviruses have an exceptionally large genome and employ a complex genome
expression strategy. Next to a role in basic virus replication or virus assembly,
many of the coronavirus proteins expressed in the infected cell contribute to the
coronavirus-host interplay. For example, by interacting with the host cell to create
an optimal environment for coronavirus replication, by altering host gene expres-
sion or by counteracting the host’s antiviral defenses. These coronavirus–host
interactions are key to viral pathogenesis and will ultimately determine the outcome
of infection. Due to the complexity of the coronavirus proteome and replication
cycle, our knowledge of host factors involved in coronavirus replication is still in an
early stage compared to what is known for some other +RNA viruses. This review
summarizes our current understanding of coronavirus–host interactions at the level
of the infected cell, with special attention for the assembly and function of the viral
RNA-synthesising machinery and the evasion of cellular innate immune responses.
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1 Introduction

Around the end of 2002, an outbreak of a previously unknown severe acute res-
piratory syndrome (SARS) started in South East China and Hong Kong.
Accelerated by air travel, the disease rapidly spread to several parts of the world and
displayed pandemic potential. SARS-coronavirus (SARS-CoV) was identified as
the causative agent of this zoonotic infection (Drosten et al. 2003; Ksiazek et al.
2003; Kuiken et al. 2003; Peiris et al. 2003), which resulted in >8000
laboratory-confirmed cases and 774 associated deaths worldwide (WHO 2004).
Although in terms of death toll not comparable to influenza, HIV or HCV, the 2003
SARS-CoV outbreak caused worldwide public concern and seriously affected the
global economy [estimated losses $30–100 billion; (Keogh-Brown and Smith
2008)]. SARS-CoV initially causes lower respiratory tract disease, which can lead
to a progressive and potentially lethal atypical pneumonia with clinical symptoms
that include fever, malaise, lymphopenia, and in some cases also diarrhea. Two
years after the outbreak, horseshoe bats were identified as the likely reservoir of the
SARS virus, whereas civet cats probably have served as intermediate host during
the zoonotic transfer to humans (Lau et al. 2005; Li et al. 2005b). Adaptation to the
human host required a small number of mutations in the receptor-binding domain of
the SARS-CoV spike (S) protein, which mediates cell binding and entry (Li et al.
2005c) (see Chap. 2). There is increasing evidence that SARS-like coronaviruses
continue to circulate in bats and that these may have the potential to readily cross
the species barrier and emerge as human pathogens (Ge et al. 2013; Menachery
et al. 2015). Such zoonotic scenarios therefore remain a serious public health
concern.

Almost a decade after the SARS-CoV outbreak, the next zoonotic coronavirus
emerged: Middle East Respiratory Syndrome coronavirus (MERS-CoV) (de Groot
et al. 2013). The virus was first isolated in June 2012 from a 60-year-old Saudi
Arabian male who died from acute respiratory distress syndrome (ARDS) and
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multiple organ failure, including renal failure (Zaki et al. 2012; van Boheemen et al.
2012). Also MERS-CoV can cause a lower respiratory tract infection with symp-
toms that include coughing and high fever. By the end of 2016, more than 1850
laboratory-confirmed MERS-CoV cases had been recorded, with a mortality rate of
about 35% (WHO 2016). MERS-CoV is assumed to be transmitted to humans from
camels and serological studies in the latter animals revealed that they have harbored
MERS-CoV or MERS-CoV-like viruses for decades (Muller et al. 2014).

Besides the zoonotic SARS- and MERS-CoVs, the coronavirus family includes
four ‘established’ human coronaviruses (HCoVs), of which HCoV-OC43 and
-229E have already been known since the 1960s. These two viruses cause mild
respiratory disease and, after rhinoviruses, are a leading cause of common colds
(10–30% of the cases) (van der Hoek 2007; McIntosh et al. 1967; Hamre and
Procknow 1966). More recently, following intensified screening for coronaviruses,
two additional HCoVs were discovered, HCoV-NL63 (van der Hoek et al. 2004)
and HCoV-HKU1 (Woo et al. 2005). Interestingly, recent findings suggest that also
HCoV-NL63, -229E, and -OC43 originate from zoonotic transfer from bats (Huynh
et al. 2012; Corman et al. 2016; Vijgen et al. 2006; Corman et al. 2015).
Coronaviruses also cause a range of infectious diseases in animal species, some
with serious (economical) consequences for the livestock industry. This is illus-
trated by the recent emergence of a novel variant of porcine epidemic diarrhea
virus, which is closely related to a strain that caused a large outbreak in China in
2010, killing almost one million piglets [for a recent review, see (Lin et al. 2016)].

The economic impact of coronavirus infections, the past and likely future
emergence of pathogenic zoonotic coronaviruses and the lack of effective antiviral
strategies have made it painfully clear that our preparedness to treat or prevent
coronavirus infections are very limited. This highlights the importance of advancing
our knowledge on the replication of these viruses and their interactions with the host.

Coronaviruses are positive-stranded RNA (+RNA) viruses with, for this kind of
viruses, exceptionally large genomes of *30 kb. They have a polycistronic gen-
ome organization and employ a unique transcription mechanism to generate a
nested set of subgenomic (sg) mRNAs. These are used to express the open reading
frames (ORFs) located downstream of the replicase ORFs 1a and 1b (see Fig. 1a),
which encode structural and accessory proteins. The sg mRNAs are 3′ co-terminal
but they also contain a common 5′ leader sequence. The leader and ‘body’ segments
of the sg RNAs are joined during discontinuous negative strand RNA synthesis,
which produces a subgenome-length template for each of the sg mRNAs [(Sawicki
and Sawicki 1995), for a recent review, see (Sola et al. 2015)].

Following entry and uncoating, the coronavirus replicative cycle (see Fig. 1a)
starts with the translation of the 5′-proximal ORFs of the viral genome (ORF1a and
ORF1b), which results in the synthesis of two large replicase polyproteins (pp1a
and pp1ab). Synthesis of pp1ab, a C-terminally extended form of pp1a, involves a -1
ribosomal frameshift (RFS) into ORF1b occurring near the 3′ end of ORF1a. This
regulatory mechanism is thought to have evolved to downregulate expression levels
of ORF1b-encoded proteins compared to ORF1a-encoded nonstructural proteins
(nsps) (Brierley and Dos Ramos 2006; Brierley et al. 1989). Ultimately, 15 or 16
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mature replicase proteins are released from pp1a and pp1ab due to proteolytic
cleavages performed by two or three ORF1a-encoded proteases. Nsp3 contains one
or two papain-like protease domains (PL1pro and PL2pro, or PLpro for SARS-CoV
and infectious bronchitis virus) that process the nsp1-4 part of the replicase
polyproteins. The remaining cleavage sites are processed by the viral main protease
that resides in nsp5, a chymotrypsin-like enzyme also known as 3C-like protease
(Snijder et al. 2016). A schematic overview of the proteolytic processing and
domain structure of the SARS-CoV replicase is presented in Fig. 1b. The replicase
proteins contain a variety of (enzymatic) activities and functions that are required
for viral RNA synthesis and capping (Perlman and Netland 2009; Snijder et al.
2016), such as the RNA-dependent RNA polymerase (RdRp; nsp12), a helicase
(nsp13), RNA cap-modifying methyltransferases (nsp14 and nsp16), and an
exoribonuclease (nsp14). Together with recruited host cell proteins, the coronavirus
nsps form membrane-associated replication and transcription complexes [RTCs;
(van Hemert et al. 2008)], which localize to a network of virus-induced membrane
structures in the perinuclear region of the infected cell (Knoops et al. 2008; Gosert
et al. 2002; van der Meer et al. 1999; Brockway et al. 2003; Stertz et al. 2007; Ulasli
et al. 2010). Many of the nsps appear to have multiple functions in the synthesis or
processing of viral RNA, or in virus–host interactions aiming to create an optimal
environment for coronavirus replication, for example by facilitating viral entry,
gene expression, RNA synthesis or virus release. Moreover, to further enhance viral
replication, host gene expression and antiviral defenses are targeted in several ways.
Coronavirus–host interactions also play a decisive role in viral pathogenesis and the
ultimate outcome of infection.

JFig. 1 Outline of the coronavirus replicative cycle and replicase polyprotein organization, based
on SARS-CoV. a Schematic overview of the coronavirus replicative cycle. Following entry by
receptor-mediated endocytosis and release of the genome into the cytosol, genome translation
yields the pp1a and pp1ab replicase polyproteins. Following polyprotein cleavage by multiple
internal proteases, the viral nsps assemble into an RTC that engages in minus-strand RNA
synthesis. Both full-length and subgenome (sg)-length minus strands are produced, with the latter
templating the synthesis of the sg mRNAs required to express the structural and accessory protein
genes residing in the 3′-proximal quarter of the genome. Ultimately, novel genomes are packaged
into nucleocapsids that become enveloped by budding from smooth intracellular membranes, after
which the new virions leave the cell by following the exocytic pathway. See text for more details.
b The 14 open reading frames in the genome are indicated, i.e., the replicase ORFs 1a and 1b, the
four common CoV structural protein genes (S, E, M, and N) and the ORFs encoding so-called
‘accessory proteins.’ The bottom panel explains the organization and proteolytic processing of the
pp1a and pp1ab replicase polyproteins, the latter being produced by −1 ribosomal frameshifting.
The nsp3 (PLpro) and nsp5 (3CLpro) proteases and their cleavage sites are indicated in matching
colors. The resulting 16 cleavage products [nonstructural proteins (nsps)] are indicated, as are the
conserved replicase domains. Domain abbreviations and corresponding nsp numbers: PLpro,
papain-like proteinase (nsp3); 3CLpro, 3C-like protease (nsp5); TM, transmembrane domain (nsp3,
nsp4, and nsp6); NiRAN, nidovirus RdRp-associated nucleotidyl transferase (nsp12); RdRp,
RNA-dependent RNA polymerase (nsp12); ZBD, zinc-binding domain (nsp13); HEL1, super-
family 1 helicase (nsp13); ExoN, exoribonuclease (nsp14); N7-MT, N7-methyl transferase
(nsp14); endoU, uridylate-specific endoribonuclease (nsp15); 2′-O-MT, 2′-O-methyl transferase
(nsp16). Adopted with permission from (Snijder et al. 2016)
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Due to the exceptional size of their +RNA genome and proteome, and the
resulting complexity of the interactions with the host, our knowledge of host factors
involved in coronavirus replication is still in an early stage compared to what is
known for some other +RNA virus groups. In this review, we will summarize our
current understanding of coronavirus–host interactions at the level of the infected
cell, with special attention for the assembly and function of the viral
RNA-synthesizing machinery and the evasion of cellular innate immune responses.

2 Host Receptors Involved in Coronavirus Entry

Entry into the target cell constitutes the first critical step in the coronavirus repli-
cation cycle. The major determinant for this step is the efficient binding of the
coronavirus S glycoprotein to a protein-receptor on the cell surface. The coron-
avirus S protein is a type 1 glycoprotein that consists of S1 and S2 subunits and is
present on the virion surface as a trimer. (Li 2016; Hulswit et al. 2016). The S1
region is involved in receptor binding and contains N- and C-terminal domains
(S1-NTD and S1-CTD, respectively) (Walls et al. 2016) that may both act as
receptor-binding domain (RBD), with the major determinants of cell tropism
residing in S1-CTD. The elongated S2 regions form the stalk of the spike trimer and
are mainly involved in triggering the fusion of the viral envelope and target cell
membranes [for recent reviews on coronavirus entry and spike protein organization,
see (Li 2016; Hulswit et al. 2016)].

The S1-NTD is mainly involved in facilitating virus binding and entry, by
interacting with glycans on the host cell surface. Based on the crystal structure of
the betacoronavirus S1-NTD and the sequence conservation among the S1-NTDs of
other coronaviruses, all coronavirus S1-NTDs are thought to share a galectin fold
that mediates binding to sialic acids, like N-glycolylneuraminic acid (Neu5Gc),
N-acetylneuraminic acid (Neu5Ac), and/or 5-N-acetyl-9-O-acetylneuraminic acid
(Neu5,9Ac2) (see (Li 2016), and references herein). An exception is the murine
hepatitis virus (MHV) S1-NTD, which binds the N-terminal D1 domain of carci-
noembryonic antigen-related cell adhesion molecule 1 (CEACAM1), a type-I
membrane protein belonging to the immunoglobulin superfamily (Walls et al. 2016;
Williams et al. 1991).

To mediate entry into host cells, the S1-CTD of most known members of the
alphacoronavirus genus interacts with aminopeptidase N (APN) (for an overview
and references, see Table 1). However, the alphacoronavirus HCoV-NL63 uses a
different type-I membrane glycoprotein, angiotensin-converting enzyme 2 (ACE2)
(Wu et al. 2009), which contains a large N-terminal ectodomain composed of two
alpha-helical lobes. The same molecule, ACE2, has been identified as a receptor for
the zoonotic betacoronavirus SARS-CoV (Li et al. 2003). The betacoronaviruses
MERS-CoV and bat coronavirus HKU4 use yet another cellular peptidase for virus
entry: dipeptidyl peptidase 4 (DPP4) (Yang et al. 2014; Raj et al. 2013). The
MERS-CoV S protein has a higher affinity for human DPP4, while the HKU4 S
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protein binds more strongly to bat DPP4 (Yang et al. 2014). Chemical peptidase
inhibitors do not affect virus entry, indicating that SARS-CoV and MERS-CoV
receptor usage and entry are independent of the receptor’s peptidase activity and
merely depend on binding to these particular host receptors (Li et al. 2005c; Raj
et al. 2013).

Besides the receptors discussed above, also extracellular, cell surface-associated
and/or lysosomal proteases play a role in coronavirus entry by activating the fusion
activity of the S protein [for a recent review, see (Li 2016)]. For SARS-CoV, fusion
of the viral and cellular membrane is triggered upon cleavage of the S protein by the
cell surface-associated transmembrane protease, serine 2 (TMPRSS2) (Glowacka
et al. 2011). The same protease is important for cleavage and activation of the
HCoV-229E and MERS-CoV S protein (Shirato et al. 2013; Bertram et al. 2013).
After endocytosis, the SARS-CoV S protein is cleaved by the lysosomal proteases
cathepsin L and cathepsin P in early endosomes, leading to fusion of the virus
envelop with the endosome membranes and release of the viral RNA into the
cytosol of the infected cell (Huang et al. 2006a, b; Simmons et al. 2005).
MERS-CoV entry occurs by a similar mechanism (Shirato et al. 2013; Burkard
et al. 2014), although inhibition of the cellular protease furin abolished the entry of
MERS-CoV but not SARS-CoV, indicating that furin-mediated cleavage is pivotal

Table 1 Overview of known coronavirus entry receptors

Genus Species: S1-NTD S1-CTD References

Alphacoronavirus Alphacoronavirus 1 Neu5Gc and
Neu5Ac*

APN (Tresnan et al. 1996;
Delmas et al. 1992)

PEDV Neu5Ac APN (Liu et al. 2015; Li
et al. 2007)

PRCV APN (Schultze et al. 1996)

HCoV-229E APN (Yeager et al. 1992)

HCoV-NL63 ACE2 (Wu et al. 2009)

Betacoronavirus Betacoronavirus 1 Neu5,9Ac2 (Schultze and Herrler
1992; Krempl et al.
1995)

MERS-CoV DPP4 (Raj et al. 2013)

MHV CEACAM1 (Williams et al. 1991)

HKU1 Neu5,9Ac2 (Huang et al. 2015b)

HKU4 DPP4 (Yang et al. 2014)

SARS-CoV ACE2 (Li et al. 2003)

Gammacoronavirus IBV Neu5Gc (Schultze et al. 1993)

Deltacoronavirus PDCV Unknown unknown

(Abbreviations PEDV Porcine epidemic diarrhea virus; TGEV Transmissible gastroenteritis
coronavirus; PRCV Porcine Respiratory coronavirus; FCoV Feline coronavirus; CCoV Canine
coronavirus; HCOV Human coronavirus; BCoV Bovine coronavirus; MHV Murine hepatitis virus;
IBV Infectious bronchitis virus; PDCV Porcine delta coronavirus). *Within the alphacoronavirus 1
species, only for TGEV the sialic acids Neu5Gc and Neu5Ac has been identified as attachment
factors
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